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In this study, the degree of bleaching of multi-grain coarse quartz optically stimulated
luminescence (OSL) signal of near-surface aeolian samples collected around the Tengger
Desert is assessed. The single-aliquot regenerative dose (SAR) protocol and the
standardized growth curve (SGC) method are applied to measure the equivalent dose
(De) of these samples. The bleaching degree of the samples is assessed by investigating 1)
the relationship between Ln/Tn and SAR De and 2) the SGC De distribution. Various
degrees of heterogeneously-bleached multi-grain dose distributions synthetized with a
numerical simulation method is further used to validate the bleaching performance of the
samples. It demonstrates that the investigated samples are characterized by tight De

distributions and the maximum De estimate is smaller than 1.1 Gy. The numerical
simulation method which uses as input a large proportion of fully-bleached grains and
a small baseline dose is able to reproduce multi-grain De distributions similar to the
measured ones. We conclude that OSL signals of multi-grain coarse quartz extracted from
most of the investigated aeolian samples are fully bleached before deposition.
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INTRODUCTION

Optically simulated luminescence (OSL) dating techniques are widely used for the determination of
the burial ages of Quaternary sediments (e.g., Li et al., 2002, 2014; Zhao et al., 2007; Yi et al., 2015;
Peng et al., 2022). To obtain accurate OSL ages, optically sensitive charges that were previously
accumulated in the mineral (quartz and feldspar) grain should be completed zeroed (or bleached) by
sunlight prior to the last deposition of sediments (Godfrey-Smith et al., 1988; Peng et al., 2020).
However, heterogeneous bleaching of quartz OSL signals has been frequently reported in the
literature, especially for younger sediments with smaller equivalent dose (De) values (e.g., Lian and
Huntley, 1999; Li, 2001; Zhang et al., 2003; Olley et al., 2004; Arnold et al., 2009; Pietsch, 2009; Hu
et al., 2010; Costas et al., 2012; Ou et al., 2015; Mahadev et al., 2019).

Aeolian sediments are the most readily available materials for OSL dating in semi-arid/arid
regions (Peng et al., 2022), and are thought to be the most unlikely influenced by heterogeneous
bleaching (Wintle, 1993) due to their longer time of exposure to sunlight before deposition compared
to water-lain sediments. Although many authors reported that their aeolian samples under analyzed
were fully bleached before deposition (e.g., Bailey et al., 2001; Ballarini et al., 2003; Stokes et al., 2004;
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Singarayer et al., 2005; Zhao et al., 2012; Gong et al., 2013; Fu
et al., 2015; Long et al., 2019; Yang et al., 2020), there is a growing
lines of evidence indicating that it is not a sufficient guarantee that
aeolian sediments under all deposition environments were fully
bleached (e.g., Lian andHuntley, 1999; Spooner et al., 2001; Goble
et al., 2004; Olley et al., 2004; Tissoux et al., 2010; Costas et al.,
2012; Fan et al., 2013, 2022; Buckland et al., 2019). Accordingly, it
is important to assess the bleaching degree of aeolian sediments in
a region-specific scale to obtain accurate OSL ages for young
samples to establish reliable geochronological framework on a
century to decadal time scale.

Tengger Desert is a major proximal desert upwind to the
Chinese Loess Plateau and aeolian dust released therein has
significantly influenced region- and hemisphere-scale
environments (Peng et al., 2022). Fan et al. (2013) assessed the
bleaching degree of fine-grained quartz (11–63 μm) OSL signals
near the Lanzhou city 200 km south to the Tengger Desert and
indicated that most (but not all) the investigated samples were
fully bleached. Fan et al. (2022) investigated the bleaching degree
of coarse-grained quartz (90–125 μm) OSL signal of dune sands
from the hinterland of the Tengger Desert and suggested that
approximately a half of the studied samples were heterogeneously

bleached. However, the bleaching characteristics of coarse-
grained quartz OSL signals of aeolian sediments along the
margin of the Tengger Desert have not been formally assessed
yet, although a growing number of chronostratigraphic records
from the desert margin were dated using coarse-grained quartz
OSL (e.g., Qiang et al., 2010; Yin et al., 2013; Peng et al., 2016,
2022). In this study, near-surface coarse aeolian samples collected
around the margin of the Tengger Desert were investigated to
assess their multi-grain quartz OSL signal bleaching degrees using
both empirical and numerical simulation methods.

SAMPLES AND METHODS

Twelve aeolian samples collected from nine different sites around
the margin of the Tengger Desert were investigated (Figure 1A).
The maximum distance between these sites and the mobile sand
sea of the desert are smaller than 60 km. Samples were collected at
the near-surface of the outcrops (with an average depth of
~0.86 m) and were expected to have De values approaching
zero. Sample TDN6-4 is sandy loess and the remaining
samples are aeolian sand. The results of grain-size analysis

FIGURE 1 | (A) Site locations of the investigated samples. The bold rectangle in the inset indicates the studied region and the dashed red line indicates the border of
the East Asia summer Monsoon. (B) Grain-size distributions of the investigated samples.
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demonstrate that most samples are dominant by coarse fractions
with particle diameters greater than 63 μm (Figure 1B). The
reader is referred to Peng et al. (2022) for further information on
the samples.

Raw samples were processed with the standard procedure (see
Peng et al., 2022 and reference therein) to extract the 90–125 μm
(or 63–90 μm, i.e., sample TDN6-4) quartz fractions which were
subsequently contained in the inner part (four to five mm in
diameter) of the discs for OSL measurements. Post-IR OSL
signals were measured with a Risø-TL/OSL-DA-20 reader
equipped with IR LEDs (870 nm, 48 mW/cm2) and blue LEDs
(470 nm, 48 mW/cm2) to suppress the contribution of feldspar
luminescence (e.g., Banerjee et al., 2001). Post-IR OSL signals
were collected at 130°C for 40 s (with 400 channels). The preheat
temperatures before the natural and regenerative OSL
measurements were 260 and 220°C, respectively. The test dose
used for sensitivity correction was 7.9 Gy throughout the
measurements. De measurements were conducted using the
single-aliquot regenerative-dose (SAR) (Murray and Wintle,
2000) and the standardized growth curve (SGC) (Roberts and
Duller, 2004) methods. SAR De was determined by a full protocol
with one natural cycle and six regenerative cycles. SGC De was
determined by projecting the sensitivity-corrected natural OSL
signal (Ln/Tn) onto a pre-determined SGC. OSL data analysis was
performed using the R package “numOSL” (Peng et al., 2013;
Peng and Li, 2017).

Numerical simulations were performed to generate
heterogeneously-bleached De distributions (e.g., Peng, 2021) so
as to validate the bleaching performance of the measured multi-
grain aliquots. Single-grain OSL sensitivities were simulated from
the empirical distribution of a measured sand dune sample
according to the method of Rhodes (2007). OSL signals were
generated using a pre-determined dose-response curve (DRC)
described by a single saturating exponential function (e.g., Li
et al., 2017). The heterogeneous bleaching process of the single-
grain quartz OSL was simulated by assuming that the fast-
component OSL signal decays exponentially with sunlight
exposure duration with a bleaching rate of 0.4 s−1 which
allows the OSL signal to decay to less than 2% of its initial
level after a bleaching duration of 10 s (Peng et al., 2020). This is
consistent with the sunlight bleaching experiment work carried
out by Godfrey-Smith et al. (1988) who predicted that 90% of the
natural optical signal should be erased following a 10 s exposure
to sunlight. The methodologies and terminologies used to
simulate the baseline doses, baseline signals, residual signals,
residual doses, burial doses, and natural doses were consistent
with those of Peng et al. (2020). To synthetize multi-grain De

distributions, a random sampling protocol (without replacement)
was used to draw subsets from 1,000 simulated noise-free single-
grain OSL datasets, and each subset containing OSL signals from
Ng heterogeneously-bleached grains were superposed and noised
to generate a “measured” multi-grain De value (and associated
standard errors). The process was implemented repeatedly to
generated “measured” multi-grain De distributions. The
“measured” OSL signal was simulated by taking into account
the counting statistics, instrument irreproducibility, and intrinsic
over-dispersion (e.g., Li et al., 2017; Peng et al., 2020; Peng, 2021).

RESULTS

Measured Results
Typical natural OSL decay curves are presented in Figure 2, for
samples TDN6-4 and TDN15-1. A detectable natural OSL
signal is presented in certain aliquots of TDN6-4 but absent
in all aliquots of TDN15-1. Figure 3A shows typical SAR De

calculation for a sample (TDN15-1). Due to the low signal-to-
noise ratios of the measured decay curves, the SAR De

calculations were characterized by very large uncertainties.
Figure 4 shows the variation of the SAR De with the
sensitivity-corrected natural OSL signal (e.g., Li, 2001) for
eleven out of twelve samples (except TDN33-1). It shows that
for certain samples (such as TDN6-4, TDN15-1, TDN17-1,
and TDN30-4) positive correlations are observed between De

and Ln/Tn values.
We applied the SGC method to these young aeolian

sediments to improve the precision of De determination and
to rapid explore their potential burial dose distributions (e.g.,
Hu and Li, 2019; Yang et al., 2020). The common DRC used for
SGC De calculation (i.e., Peng et al., 2022) is shown in Figure
3B and a comparison of SAR and SGC De estimates for eleven
samples is shown in Figure 3C. The two different methods
yield De estimates that are broadly consistent with each other
after accounting for associated errors. The calculated SGC De

distributions are shown in Figure 5 as radial plots (Galbraith,
1988). Since negative De values present in most SGC De

FIGURE 2 | Natural post-IR OSL decay curves of samples TDN6-4 and
TDN15-1.
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distributions due to poor counting statistics, a linear
transformation (rather than a logarithmic transformation)
as suggested by Vermeesch (2009) was used to draw the
radial plots. It demonstrates that the SGC De distributions
fall into narrow ranges and most De values are within the two-
sigma range. The final De estimates were determined using an
unlogged version of the central age model (Galbraith et al.,
1999). The max final De estimate was calculated as 1.09 ±
0.15 Gy (i.e., sample TDN6-4) and ten samples (i.e., TDN15-1,

TDN15-2, TDN17-1, TDN18-1, TDN21-1, TDN21-2, TDN24-
1, TDN24-2, TDN32-1, TDN33-1) yield De estimates ranging
between -0.26 ± 0.05 Gy and 0.2 ± 0.23 Gy.

Simulated Results
Considering that each of the above measured multi-grain aliquots
contains at least 200 quartz grains (i.e., according to Duller, 2008)
and therefore the results may be influenced by the “averaging”
effect whichmay obscure the results and the effect amplifies as the
number of grains within an aliquots (Ng) increases (e.g., Wallinga,
2002; Rhodes, 2007; Buckland et al., 2019), we explored the
possible influences of this effect on the resultant multi-grain
De distributions measured from aeolian samples with weak OSL
intensities by numerical simulation of heterogeneously-bleached
dose distributions (e.g., Peng et al., 2020; Peng, 2021). The mean
burial dose absorbed by the grains since their last exposure to
sunlight (μa) was fixed as 0.1 Gy (i.e., close to the average CAMDe

determined in Figure 5), the mean baseline doses (μq)
accumulated in the quartz grains prior to their last transport
and depositional events was either 10 or 50 Gy, and the
proportion of fully-bleached grains (p) was either 0.05, 0.5, or
0.95. The simulated De distributions with Ng values of 1, 10, and
200 are presented in Figures 6, 7, respectively, for two scenarios
with μq values of 10 and 50 Gy.

We demonstrated in both scenarios that the standard errors of
De values decrease dramatically while the CAM De estimates
increase gradually as Ng increases (Figures 6, 7). In addition, in
the cases of p = 0.05 and p = 0.5, the increase in CAMDe estimates
is more significant when Ng increases from 1 to 10 (compared to
the situation of Ng increases from 10 to 200). By contrast, in the
cases of p = 0.95, the increase in CAMDe estimates is insignificant
among Ng values of 1, 10, and 200. These demonstrate the non-
linear variation of the “averaging” effect with p and Ng values. In
both scenarios, the CAM De estimate decreases as p increases
(Figures 6, 7). In the scenario of μq = 10 Gy, the single-grain
CAMDe estimate (Figure 6G) is consistent with multi-grain ones
(Figures 6H,I) when p = 0.95. By contrast, in the scenario of μq =
50 Gy, the CAM De estimate increases slightly as Ng increases
from 1 to 200 when p = 0.95 (Figures 7G–I). In addition, the
CAM De estimates obtained from a smaller baseline dose are
obviously lower than those obtained from a larger baseline dose;
the maximum CAMDe estimates are 2.22 ± 0.013 Gy and 10.37 ±
0.047 Gy, when μq = 10 Gy and μq = 50 Gy, respectively. These
results demonstrate the strong influences of the baseline doses
and the proportion of fully-bleached grains on the simulated dose
distributions (Peng et al., 2020).

DISCUSSION

A positive correlation was identified between Ln/Tn and
corresponding SAR De in several samples (Figure 4),
suggesting that these multi-grain aliquots might have been
influenced by heterogeneous bleaching (e.g., Fan et al., 2013).
However, we noted that it is improper to diagnose them as
heterogeneously-bleached samples based solely on the Ln/Tn

versus De plot. For example, although the natural OSL

FIGURE 3 | (A) shows SAR De determination for two different aliquots of
sample TDN15-1. The dashed lines indicate the fitted DRCs. (B) shows the
sensitivity-corrected regenerative post-IR OSL signals used for establishing
the SGC. The blue line indicates the established SGC. (C) compares
SAR and SGC De estimates for eleven samples. For each sample, the SAR De

estimate were based on twelve aliquots and the SGC ones were based on at
least twenty-three aliquots. The dashed red line indicates y = x.
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intensity of sample TDN15-1 is close to the background level
(Figure 2B), an obvious positive relationship is observed between
Ln/Tn and De (Figure 4B), suggesting the diagnosis method is
inapplicable. This may because 1) the huge uncertainty of the

calculated SAR De caused by poor counting statistics and 2) the
“averaging” effect arising from the multi-grain results discount
the usefulness of the Ln/Tn versus De plot; In the first situation,
Ln/Tn and De values have large uncertainties and in the second

FIGURE 4 | Variations of SAR De values as a function of the sensitivity-corrected natural OSL signals for different aeolian samples.
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situation, an increase of De as a function of Ln/Tn may merely
result from the superposition of signals originated from different
grains. Wallinga (2002) demonstrated that a correlation between

natural OSL and associated De should only be expected for
heterogeneously-bleached multi-grain samples when the OSL
sensitivity of individual grains is similar. In addition, Fan et al.

FIGURE 5 | Radial plot showing calculated SGC De distributions of different aeolian samples. The dashed lines indicate the two sigma range of the distribution.
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(2013) suggested that the Ln/Tn versus De plot is only applicable
for the portion of the plot containing only positive De values. An
alternative method for bleaching degree diagnosis is inspecting
the De distribution, that is, tight De distributions are expected for
undisturbed and fully-bleached samples (e.g., Olley et al., 2004;
Arnold et al., 2009). The De distributions obtained using the SGC
method demonstrate small between-aliquot variations and the
resultant CAM De estimates are very small (Figure 5). However,
it has been pointed out that the detection of heterogeneous
bleaching based solely on this method may fail if a large
number of grains are presented within an aliquot (e.g.,
Wallinga, 2002; Duller, 2008). Accordingly, it is best that the

bleaching degree of OSL signals of multi-grain aliquots can be
assessed using multiple methods.

Considering the abovementioned concerns on the detection of
heterogeneous bleaching based on the multi-grain results
presented here, we further applied a simulation approach to
validate the bleaching degree of these samples. When a grain
number of 200 (i.e., the expected minimum grain numbers for the
measured aliquots of Figure 5) and a small baseline dose (10 Gy)
were applied, the CAM De calculated using the simulated multi-
grain aliquots were 2.22 ± 0.013 Gy (Figure 6C), 1.24 ± 0.011 Gy
(Figure 6F), and 0.2 ± 0.0068 Gy (Figure 6I), respectively, if the
proportion of fully-bleached grains are small (5%), moderate

FIGURE 6 | De distributions simulated using a burial dose of μa = 0.1 Gy and a baseline dose of μq = 10 Gy, for different proportions of fully-bleached grains (p) and
different numbers of grains contained in an aliquot (Ng). Each subplot consists of 1,000 De values. The dashed lines indicate the two sigma range of the distribution.
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(50%), and large (95%). When a grain number of 200 and a
relatively large baseline dose (50 Gy) were applied, the CAM De

estimates were 10.37 ± 0.047 Gy (Figure 7C), 4.76 ± 0.029 Gy
(Figure 7F), and 0.62 ± 0.011 Gy (Figure 7I), respectively. The
measured De distributions containing both positive and negative
De values and tight dose distributions (Figure 5B–l) are more
similar to the one of Figure 6I simulated with a large proportion
of fully-bleached grains and a small baseline dose. In addition, a
small baselined dose and a proportion of fully-bleached grains of
50% (i.e., Figure 6F) yield a CAM De similar to the measured
sample TDN6-4 (Figure 5A). These results validate that the
measured multi-grain aliquots of Figure 5 (except TDN6-4)

had small residual doses before the last exposure to sunlight
and most of their grains (at least 95%) were fully bleached before
deposition. Yang et al. (2020) reached a similar conclusion for
their coarse-grained aeolian samples collected from the middle
Hexi Corridor to the west of the Tengger Desert.

The bleaching of optically sensitive electrons within a quartz
grain depends on both the transport medium and the deposition
mechanism. The distance or time duration of transport (Spooner
et al., 2001; Singhvi and Porat, 2008) and the deposition process
(Rhodes, 2011; Fan et al., 2013) are two major factors influencing
the bleaching degree of aeolian sediments, that is, a longer
transport distance and a slower deposition rate enable higher

FIGURE 7 | De distributions simulated using a burial dose of μa = 0.1 Gy and a baseline dose of μq = 50 Gy, for different proportions of fully-bleached grains (p) and
different numbers of grains contained in an aliquot (Ng). Each subplot consists of 1,000 De values. The dashed lines indicate the two sigma range of the distribution.
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degree of bleaching. Since most of the investigated aeolian
samples were collected along the margin of the Tengger Desert
(with relatively short transport distance), transport distance
should not be a critical factor responsible for the good
bleaching performance. A possible mechanism prompting a
high degree of bleaching is that these near-surface samples
have experienced strong wind-driven erosion/reworking
processes before their final deposition. This is likely to occur
in relatively high-energy environments characterized by
intermittent strong winds such as the Tengger Desert (e.g.,
Fan et al., 2002; Lv et al., 2009; Zhang et al., 2014). The
extremely high volume abundances in the uppermost part of
the grain-size distributions (see Figure 1B) suggest that almost
samples acquired their sorting characteristics in a high-energy
environment. An already halted/deposited quartz grain will have
a chance to be exposed to sunlight if it subsequently suffers from
at least one cycle of erosion/reworking, which explains why the
measured multi-grain De distributions can be successfully
reproduced by the simulation model fed with a small baseline
dose. Rhodes (2011) emphasized the importance of total
transport time and the repeated burst of movement
interspersed with temporary shallow burial or halts on the
bleaching of grains and pointed out that the last transport
event before the final deposition is not necessarily the most
important if the grain has been exposed for sufficient duration
during previous movement/rework. In addition, the negligible
volume abundances of fine particles contained within almost
aeolian samples (Figure 1B) suggest that the bleaching of these
coarse grains might have not been severely influenced by the
phenomena of aggregation (or the adhering of fine particles to
coarser ones) (e.g., Derbyshire et al., 1998) which impedes the
bleaching of aggregated grains by attenuating of sunlight during
transportation.

CONCLUSION

The bleaching degree of multi-grain coarse quartz OSL signals
from the margin of the Tengger Dessert was investigated by both
empirical analysis and numerical validation. The tight De

distributions and small De values indicate that these multi-

grain aliquots may have been fully bleached before deposition.
A numerical modelling method is able to reproduce multi-grain
De distributions similar to the measured ones only if the vast
majority of the grains within an aliquot are fully bleached and the
baseline dose is relatively small during the simulation. These
results reassure us to strengthen the conclusion that most
investigated samples are fully bleached before deposition,
which may be explained by the wind-driven erosion/reworking
of the already stopped near-surface sediments and/or the absence
of severe aggregation of grains.
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