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This study evaluated the performance of seven CMIP6 HighResMIP models in the
simulations of drought over two sub-regions of West Africa: the Guinea coast and the
Sahel during the historical period of 1985–2014, in terms of the potential
evapotranspiration index (PET), climatic water availability (CWA), and standardized
precipitation evapotranspiration index (SPEI) at three time scales (i.e., 1, 3, and
12 months). The Climate Research Unit (CRU) TS v4.03 datasets were used as the
observation reference. The observation shows that the PET and CWA during August
(i.e., the rainfall annual peak) were less than 30 and 200 mm/month over the Guinea
coast, respectively. The corresponding values over the Sahel were 100 and -50 mm/
month, respectively. A significant decreasing trend was observed in drought over the
Guinea coast (except Nigeria) and the Sahel. The frequencies of extreme and severe
droughts were observed over Nigeria, Liberia, and Sierra Leone during the historical
period. The seven HighResMIP models show different behaviors in simulating all of the
abovementioned observation features. Among all the simulations, the ENSEMBLE,
ECMWF, and IPSL generally perform better in almost all the statistical indices used,
although there are still biases that need to be resolved in the models.
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1 INTRODUCTION

Drought, one of the devastating precipitation extremes, has attracted the attention of meteorologists,
geologists, ecologists, and environmentalists. Droughts affect any zone, and the largest aspect that is
mostly affected is agriculture. It is responsible for agriculture losses globally four times that of floods,
and when it is compared to hydrological disasters, the consequences are higher (Dai et al., 2011;
Ahmed et al., 2016; Ebi and Bowen 2016; Damania et al., 2017; Mohsenipour et al., 2018; Qutbudin
et al., 2019).

Drought has affected a lot of regions in West Africa, starting from the 1970s onward. Kasei
et al. (2010) assessed drought intensity, areal extent, and recurrence frequency, using the
standardized precipitation index (SPI) over 52 meteorological stations in West Africa within
1961, 1970, 1983, 1992, and 2001. The assessment indicated that nearly 75% of West Africa was
under extreme drought during the period. Sante et al. (2019) examined the characteristics of
drought over Cote d’Ivoire using the Markov chains 1 and 2. They discovered that most of the
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remarkable droughts in terms of intensity and duration
transpired during the 1970s. Hassanein et al. (2013)
investigated the change of drought during 1961–2008 using
the standardized precipitation evapotranspiration index
(SPEI) at time scale 12, and a gradual increase in drought
during the decades was concluded.

Due to sparse gauge data sets, several studies involving
drought are limited to a small area in West Africa. To improve
the understanding and knowledge of past and future changes
in drought, global climate models (GCMs) under the
supervision of the Couple Model Intercomparison Project
(CMIP) have been widely used. For example, based on the
CMIP5 simulations, Rodríguez-Fonseca et al. (2015)
concluded that the Sahel experienced the most dramatic
drought starting from 1970; Shiru et al. (2020) projected
that increases in temperature will result in a decrease in
SPEI, which indicates an increase in drought frequency
over Nigeria. At present, the CMIP has evolved to the
sixth phase (CMIP6), in which some improvements have

been made in physics processes and model resolutions
(Eyring et al., 2016). Some recent studies have started to
use the CMIP6 simulations for the evaluation and projection
of drought (e.g., Cook et al., 2020; Papalexiou et al., 2021;
Wang et al., 2021; Yang et al., 2021). Wang et al. (2021)
revealed that the CMIP6 has high simulation accuracy at mid-
latitudes for drought analysis. However, Papalexiou et al.
(2021) showed that no single model can perform better
over a large region. Therefore, the challenge of coarse
resolutions has discouraged some researchers from using
GCMs. The establishment of the High-Resolution Model
Intercomparison Project (HighResMIP) at 25–50 km is
timely as the main aim is to increase the horizontal
resolution of models (Haarsma et al., 2016). A question
arises as to whether the HighResMIP models show a better
performance in the simulation of drought over West Africa.
Thus, this study is motivated to assess the performance of
seven CMIP6 HighResMIP models in simulating drought
over West Africa.

TABLE 1 | Description of the CMIP6 HighResMIP models used.

Model Institute(s) Short name Resolution Lat x lon

EC-Earth Consortium, Rossby Center, Swedish Meteorological and Hydrological Institute/SMHI Sweden EC-Earth3P 0.70 ×0.70
European Centre for Medium-Range Weather Forecasts ECMWF-IFS-LR (ECMWF) 1× 1
Chinese Academy of Sciences, Beijing, China FGOALS-f3-H(FGOAL) 0.25 × 0.25°

Institute for Numerical Mathematics, Russian Academy of Science, Moscow, Russian INM-CM5-H (INM) 0.5 × 0.67°

Institute Pierre Simon Laplace, France IPSL-CM6A-ATM-HR (IPSL) 0.7 ×0.5
Max Planck Institute for Meteorology, Germany MPI-M-MIP-ESM1.2-XR (MPI) 0.47 ×0.47
Meteorological Research Institute, Japan MRI-AGCM3-2-H (MRI) 0.56 ×0.56

FIGURE 1 | Map of the study area showing the elevation of the study domain. The division is between the Guinea Coast and Sahel. Gnitou et al., 2019.
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FIGURE 3 | Observed and simulated climatological distribution of potential evapotranspiration (PET) over West Africa during 1985–2014. r is the Pearson pattern
correlation between CRU and each HighResMIP simulation.

FIGURE 2 | Annual cycle of potential evapotranspiration (PET) and climatic water availability (CWA) over West Africa, Guinea Coast, and the Sahel during the
historical period 1985–2014 with respect to CRU. A–C and C–F represents PET and CWA respectively, over West Africa, Guinea Coast and Sahel.
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FIGURE 4 | Observed and simulated climatological distribution of climatic water availability (CWA) over West Africa during 1985–2014. r indicates the Pearson
pattern correlation between CRU and each HighResMIP simulation.

FIGURE 5 |Observed and simulated climatological distribution of standardized evapotranspiration index 1 (SPEI-1) over West Africa during 1985–2014. r indicates
the Pearson pattern correlation between the observation and each HighResMIP simulation.
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2 MATERIAL AND METHODS

2.1 Observation and CMIP6 Datasets
The study usedmonthly precipitation andmaximum andminimum
temperatures from the Climate Research Unit (CRU TS v4.03),
which was produced at 0.5 km resolution (https://crudata.uea.ac.uk/
cru/data/hrg/). For the model dataset, the monthly precipitation,
maximum and minimum temperatures of the historical simulations
for the period 1985–2014 from seven HighResMIP models (see
Table 1) were used. These data were archived by the Earth System
Grid Federation (ESGF) under the CMIP6 (https://esgf-node.ipsl.
upmc.fr/search/cmip6). West Africa is located in the domain of
latitude 0o-30oN and longitude 20oW-20oE (see Figure 1). For the
purpose of this study, we refer to it as two climatic zones: Guinea
coast (south of 15oN) and the Sahel (north of 15oN).

2.2 Methods
2.2.1 Standardized Precipitation Evapotranspiration
Index
The difference between precipitation (PRE) and potential
evapotranspiration (PET) index, called climatic water
availability (CWA), was used to calculate the SPEI (Vicente-
Serrano et al., 2012). The SPEI is different from SPI because
maximum and minimum temperatures are usually used to
calculate PET, which is crucial in deriving the SPEI. There are
several methods used in the calculation of PET, such as those
by Hargreaves, Thornthwaite, and Penman-Monteith
(Thornthwaite, 1948; Monteith, 1965; Hargreaves and

Samani, 1985). Donohue et al. (2010) proposed that the
Hargreaves method is better because it does not
overestimate PET. In this study, the Hargreaves method was
used to estimate PET.

The probability density function of a log-logistic distribution is
given as

f(x) � β

α
(x − γ

α
)[1 + (x − γ

α
)]

−2
, (1)

where α, β, and γ are, respectively, scale, shape, and origin
parameters. The probability distribution function for the CWA
series is then given as

f(x) � [1 + (α
x
− γ)β]

−1
. (2)

The SPEI is retrieved as the standardized values of f(x); this is
in harmony with the method used by Abramowitz and Stegun
(1964).

SPEI � −2 ln(P) − C0 + C₁W + C₂W2

1 + d₁W + d₂W2 + d₃W3
. (3)

For P≤ 0.5, p is the probability of exceeding a determined
CWA value, P � 1 − f(x)

If P> 0.5, p is replaced by 1 − P, and the sign of the resultant
SPEI is reversed. The constants are C0=2.515,517,
C1=0.802,853, C2=0.001308, d1=1.432,788, d2=0.189,269,
and d3=0.001308.

FIGURE 6 | Same as Figure 5 but for SPEI-3.
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2.3.3 Trend Analysis
The Z statistics (Morid et al., 2006; Patel et al., 2007; Akhtari et al.,
2009; Dogan et al., 2012) is usually used to detect trends in climate
data. This was used for trend analysis in this study. The positive
(negative) value of Z statistics indicates an increasing (decreasing)
trend. The significance of trends in data series was determined by
the Mann–Kendall test (Mann 1945; Kendall 1975; Wang et al.,
2005). The Mann–Kendall test is a nonparametric test with non-
homogenous time series, which makes it have low sensitivity to
short break (Tabari et al., 2011). The data required need not be
normally distributed before the test is carried out.

3 RESULTS

3.1 Annual Cycle of PET and CWA
Figure 2 presents the annual cycle of PET and CWA over West
Africa and the two sub-regions: Guinea Coast and Sahel. In
general, the observed annual cycle of PET and CWA are
reproduced by the HighResMIP individual models and the
ENSEMBLE. Over the Guinea Coast (Figure 2B), the observed
PET reached its highest value (greater than 50 mm/month)
during the driest period (from November to March) and
dropped to its lowest value (less than 40 mm/month) during
the rainy period (from April to October). This pattern is
adequately captured by the HighResMIP models, but with
variations in the magnitude of the simulated amount. Most of
the simulations underestimate the PET magnitude, except the

FGOAL model, which exhibits slight overestimation. Over the
Sahel (Figure 2C), the FGOAL and MPI models consistently
overestimate the PET magnitude, while the MRI, ECMWF, and
IPSL models show an underestimation. In comparison, the INM
and ENSEMBLE perform better in reproducing the PET pattern.
Due to low PET and high PRE during the rainy period over the
Guinea coast, the CWA is high as the annual peak during August
(200 mm/month) in the observation (Figure 2E). The CWA
pattern is adequately reproduced by the HighResMIP
simulations, although there are variations in the simulated
values. Over the Sahel sub-region (Figure 2F), the observed
CWA was negative throughout the year. The negative pattern
of CWA is well-captured but with overestimation or
underestimation by the HighResMIP models.

3.2 Spatial Distribution of PET and CWA
Figure 3 shows the climatological distribution of PET over West
Africa. The observation displayed a low PET over the coastal
areas, which increased from the south to the north. Over the
coastal areas and the Sahel, the PET was observed in the range of
0–100 mm/month and 100–150 mm/month, respectively. Such a
PET pattern is adequately simulated by the HighResMIP models
and the ENSEMBLE with a strong positive pattern correlation
(r>0.75). However, the FGOAL model overestimates the
magnitude over the northern region.

The observed CWA showed low climatic water over the Sahel,
which ranges from 0 to -100 mm/month and the high value
ranging from 50 to 250 mm/month over the coastal area of West

FIGURE 7 | Same as Figure 5 but for SPEI-12.
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FIGURE 8 | Observed and simulated distribution of Z-statistics for SPEI-1 over West Africa during 1985–2014. The positive and negative values indicate the grid
with increasing and decreasing trends, respectively. The grids with significant trends at the 0.05 confidence level are hatched. r indicates the Pearson pattern correlation
between CRU and each HighResMIP simulation.

FIGURE 9 | Same as Figure 8 but for SPEI-3.
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FIGURE 10 | Same as Figure 8 but for SPEI-12.

FIGURE 11 | Observed and simulated distribution of frequencies of severe meteorological drought (SPEI-1) over West Africa during1985–2014. r indicates the
Pearson pattern correlation between the CRU and each HighResMIP simulation.
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Africa (Figure 4). This result agrees with the findings of previous
studies (Nicholson et al., 2003; Afiesimama et al., 2006; Gbobaniyi
et al., 2014; Akinsanola et al., 2017, 2018; Ajibola et al., 2020). The
HighResMIP simulations perform well in reproducing the spatial
pattern of CWA (r>0.80). However, the FGOAL and INMmodels
overestimate the CWAmagnitude over southern Nigeria, Liberia,
and Sierra Leone, while the EC-EARTH3P and MPI models
consistently underestimate the CWA over the high rainy
region of the study area. In comparison, the ECMWF model
and the ENSEMBLE perform adequately in reproducing the two
climatic variables spatially.

3.3 Spatial Distribution of the SPEI
Figures 5–7 present the climatological distribution of the
SPEI during the historical period considered. The SPEI-1
represents the meteorological drought, the SPEI-3 depicts
the agricultural drought, and the SPEI-12 shows a glimpse
of hydrological drought. In the observation, positive SPEI-1
(Figure 5) and SPEI-3 (Figure 6) indicate wet conditions
appearing over West Africa, except Nigeria, Sierra Leone, and
Mali, where the SPEI-1 and SPEI-3 is around 0. This pattern is
not well-reproduced by the HighResMIP models except the
FGOAL, which reproduces the SPEI-1 pattern over Nigeria.
As the SPEI timescale increased to 12 (Figure 7), negative
SPEI-12 was observed over coastal cities in the southwest and
Nigeria in the southeast, which signifies dry hydrological
condition. The negative SPEI-12 over Nigeria can be

reproduced by the ENSEMBLE, ECMWF, and MPI
simulations. Overall, the Pearson pattern correlation
between the observation and simulations is positive but
low. It has to be noted that the SPEI in each grid could
either be positive or negative, and its temporal average
could result in low pattern correlation between the
observation and simulations, as also suggested by Quenum
et al. (2019).

3.4 Drought Trends
The spatial distribution of Z-statistics for the SPEI-1 is shown
in Figure 8. The positive (negative) value represents a trend
toward wetter (drier) condition. The observation indicated
significant positive (increasing) trends over Mali, Guinea
Bissau, Senegal, Ghana, Togo, and Benin. Insignificant
negative (decreasing) trends were observed over few regions
in the coastal area (Nigeria and Ghana). The ENSEMBLE, EC-
EARTH3P, ECMWF, and FGOAL can reproduce the
significant increasing trends of SPEI-1 over Ghana. The
ECMWF model performs better than other simulations over
the areas with significant positive changes observed and
produces a strong pattern correlation (r = 0.41) with the
observation.

The Z-statistics for the observed SPEI-3 showed that most of
the region had negative (decreasing) trends, with 3.4% of the grids
significant at the 0.05 level (Figure 9). Most of the simulations
can reproduce the insignificant negative trends over most cities in

FIGURE 12 | Same as Figure 11 but for the frequency of agricultural drought (SPEI-3).
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West Africa, except the IPSL and MPI models, which simulated
positive (increasing) trends. Most of the models reproduce a
negative correlation with the observation except IPSL. This
seemingly indicates the inability of HighResMIP models to
reproduce agricultural drought trend pattern.

The trends of SPEI-12 were observed to be more significant
than the aforementioned SPEIs. Except Nigeria, Benin, Togo,
southeast Ghana, and south Cote D’Ivoire, where significant
negative (decreasing) trends were observed, most of the study
region had positive (increasing) trends, with significant
increasing trends over north Ghana, Burkina Faso, Cote
D’Ivoire, Liberia, Sierra Leone, Guinea, Mali, and Nigeria
(Figure 10). Most of the simulations have a role in
simulating the widespread increasing trends. The EC-
EARTH3P and ECMWF can also reproduce the decreasing
trend over Nigeria. Most of the simulations show a phase
opposition in simulating hydrological drought patterns, except
EC-EARTH3P and ECMWF, which show a positive
correlation with the observation.

3.5 Frequency of Drought Events
The HighResMIP performances to reproduce the frequency of
severe meteorological, agricultural, and hydrological droughts
(-1.99≤SPEI≤-1.5) are evaluated in Figures 11–13,
respectively. The observation showed that as the scale of the
SPEI increases, the spread of high frequency of severe drought

events also increases. For the severe meteorological drought
event (SPEI-1), the high frequency, varying from 8 to 12, is
located over southern Nigeria, Cote D’Ivoire, Sierra Leone,
Guinea, Liberia, Burkina Faso, and Mali. In the remaining
regions, the frequencies mostly varied from 5 to 8 (Figure 11).
Compared to the meteorological drought, there is a more
widespread frequency of severe agricultural drought events
(SPEI-3), with the highest frequency occurring over Nigeria,
Sierra Leone, and Liberia (Figure 12). High frequencies of
severe hydrological droughts (SPEI-12) are shown over
Nigeria, Cote D’Ivoire, Sierra Leone, Liberia, Burkina Faso,
and Mali (Figure 13).

All the simulations consistently underestimate the high
frequency of severe meteorological drought. The ENSEMBLE
captures the high frequency of severe agricultural drought over
Nigeria, while the MRImodel reproduces the high frequency over
Liberia, Sierra Leone, Guinea, and Cote D’Ivoire, although
underestimated. Most of the models can reproduce the high
frequency of severe hydrological drought over Nigeria, with
overestimation by the MPI, while the ECMWF performs
slightly better with positive pattern correlation with
observation. The high frequency over Cote D’Ivoire, Sierra
Leone, Liberia, Burkina Faso, and Mali is underestimated by
most of the models.

High frequencies of extreme dry events (SPEI≤-2.0) were
observed over Nigeria, Sierra Leone, Liberia, and Mali for

FIGURE 13 | Same as Figure 11 but for the frequency of hydrological drought (SPEI-12).
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meteorological and agricultural droughts and over Nigeria,
Mauritania, Senegal, and Mali for hydrological droughts.
These were not adequately represented in the HighResMIP
simulations and ENSEMBLE.

4 SUMMARY AND CONCLUSION

West Africa has limited capacity to respond to climate change,
causing havoc to the economy of the region. Since climate change
such as drought has great impacts on the livelihood in this region,
the information of future climate change over the region is very
important for adaptation and mitigation actions. The CMIP
models are essential tools to project future climate change.
Before the projection, the performance of the models needs to
be assessed. In this study, we evaluated the performance of seven
HighResMIP models in the simulation of drought over West
Africa, using the metrics of PET, CWA, and SPEI. The results are
summarized below:

1) The HighResMIP individual models and the ENSEMBLE can
adequately reproduce the observed annual cycle of PET and
CWA over the Guinea coast and Sahel. The spatial
distribution of observed PET (CWA) which increased
(decreased) from the south to the north can also be
captured by the models. The observed PET (CWA) pattern
is adequately reproduced by each model with a spatial pattern
correlation of r>0.75 (r>0.8). The ENSEMBLE performs
better, and the ECMWF model outperforms among the
models considered.

2) The spatial distribution of the SPEI showed a slightly negative
SPEI-1 and SPEI-3 over Nigeria, Sierra Leone, and Liberia.
The negative SPEI, though not pronounced in SPEI-1 and
SPEI-3 until in SPEI-12 over the southern cities, indicates
increasing dry condition during the study period. GCMs and
ENSEMBLE could not consistently reproduce the negative
SPEI-1 and SPEI-3 over the region. However, EC-EARTH3P,
ECMWF, and IPSL performed better in reproducing the
negative SPEI-12 over Nigeria.

3) The trends in SPEI-1, SPEI-3, and SPEI-12 based on
Z-statistics and MK p-value were used to determine the
region with significant drought changes. The results
showed a significant positive (increase) trend in SPEI-1
over Mali, Guinea-Bissau, Senegal, and Ghana; a negative
(decreasing) insignificant trend in SPEI-3 in most cities over
the study region; and a significant positive (increasing) trend
in SPEI-12 over Sierra Leone, Liberia, north Ghana, Cote
D’Ivoire, Guinea, Mali, and Nigeria with a consistent
significant negative (decreasing) trend over Nigeria, Benin,
Togo, southeast Ghana, and south Cote D’Ivoire. Most of the
GCMs have a role in simulating the widespread increasing
(decreasing) trends. ECMWF, IPSL, EC-EARTH3P, and
ENSEMBLE performed better than the remaining
simulations.

4) In cases of high frequency of extreme and severe droughts,
most GCMs showed a moderate performance in simulating
severe droughts over Nigeria, Liberia, and Sierra Leone. The

extreme frequency of drought is not adequately represented in
HighResMIP simulations. The inability of most GCMs to
reproduce the frequency of drought appears to be the
present scenario of systematic bias in the GCM (Abiodun
et al., 2019).

It is worth noting that the Pearson correlation between the
simulations and observation for climatological SPEI
distribution, trends, and drought frequency over West
Africa is low. This is possibly due to the temporal
averaging of negative and positive values of the SPEI in
each grid, which might allow misrepresentation of the
observed pattern in the models. In general, this study
showed that the improvement of model resolution is a
crucial exercise. However, the performance of a model
does not stop on improving the resolution alone.
Individual simulations show a high capacity in reproducing
West African drought features. Simulations from ECMWF
and IPSL seem to outperform other models, with the
ensemble mean showing a high skill than all other models.
This study serves as motivation for further studies on drought
using CMIP6 HighResMIP simulations, and it can be
improved by analyzing the projection of drought over
West Africa.
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