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Precipitation prediction is crucial for water resources management and

agricultural production. We deployed a hybrid model based on ensemble

empirical mode decomposition (EEMD) and Bayesian model averaging

(BMA), called EEMD-BMA, for monthly precipitation series data at Kunming

station from January 1951 to December 2020. Firstly, the monthly precipitation

data series was decomposed intomultiple Intrinsic Mode Functions (IMFs) and a

residue with EEMD. Next, autoregressive integrated moving average (ARIMA),

support vector regression (SVR) and long short-term memory (LSTM) models

are used to predict components respectively. The prediction results of EEMD-

ARIMA, EEMD-SVR and EEMD-LSTM are obtained by summing the prediction

results of each component. Finally, BMA is used to combine the prediction

results of the EEMD-ARIMA, EEMA-SVR and EEMD-LSTM models, whose

weights are calculated by birth-death Markov Chain Monte Carlo algorithm.

The results show that the proposed EEMD-BMAmodel provides more accurate

precipitation predictions than the individual models; the RMSE is 17.2811 mm,

theMAE is 12.6999 mmand the R2 is 0.9573. Moreover, the coverage probability

(CP) and mean width (MW) of the 90% confidence interval for the predicted

values of the EEMD-BMA model are 0.9375 and 60.315 mm, respectively.

Therefore, the proposed EEMD-BMA model has good application prospects

and can provide a basis for decision makers to develop measures against

potential disasters.
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1 Introduction

Precipitation is an essential input for hydrologic simulation and prediction, which is

widely used in activities such as agriculture, water resource management and flood

forecasting (Kang et al., 2020). The climate continues to warm with rapid socio-economic

development, population growth, and a dramatic increase in greenhouse gases. Extreme

precipitation and extreme drought events are occurring more and more frequently,

seriously threatening people’s lives and property. Accurate precipitation prediction can
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provide preparation time and decision basis for authorities to

cope with potential disasters. Due to the complexity and

variability of meteorological conditions, it is very difficult to

predict precipitation accurately. Until now, there have been two

main types of prediction models for precipitation: process-based

models and data-driven models. Process-based models require

large amounts of data on physical parameters, while data-driven

models require only historical observations and are easy to

implement. Data-driven models have been widely adopted in

hydrological forecasting with excellent results. Lai and Dzombak

(2020) used an Autoregressive Integrated Moving Average model

(ARIMA) model to predict temperature and precipitation. Their

results showed that ARIMA models are generally more accurate

than other forecasting models, especially with interval

predictions. However, the ARIMA model only works well

when the time series is stationary. Recently, various machine

learning models, such as Support Vector Regression (SVR)

(Wang et al., 2019), Artificial Neural Networks (ANN)

(Cheng et al., 2015; Jabbari and Bae, 2018), and Adaptive

Neuro Fuzzy Inference System (ANFIS) (Jimeno-Saez et al.,

2017; Belvederesi et al., 2020), have been widely used for time

series forecasting due to their powerful learning capabilities.

Although these models can handle non-linear data, they

ignore the sequential relationships between the data and their

predictive performance needs to be improved.

The recurrent neural network (RNN) architecture contains

feedback connections which allow the network to remember

previous information. However, recurrent networks have

difficulty learning long-term dependencies in sequences.

Gradient disappearance and explosion problems occur when

back-propagation errors flow through multiple time steps

(Bengio et al., 1994). The Long Short-Term Memory (LSTM)

neural network introduces a memory block to control the

transmission and updating of information, effectively

alleviating the problem of gradient disappearance (Hochreiter

and Schmidhuber, 1997). Due to the power of LSTM to handle

sequential problems, it has been widely used in time series

prediction, speech recognition, sentiment analysis and natural

language processing (Sundermeyer et al., 2015; Fischer and

Krauss, 2018; Al-Smadi et al., 2019; Lippi et al., 2019). In the

past few years, several studies have used LSTM for hydrological

and meteorological prediction with good results. Kratzert et al.

(2018) adopted LSTM to simulate rainfall-runoff and showed the

potential of LSTM for hydrological modelling applications. Xu

W. et al. (2020) used LSTM to predict river flow and achieved

great results.

Data denoising can enhance the performance of data-

driven models, and Ensemble Empirical Mode

Decomposition (EEMD) is one of the most commonly used

data denoising methods. The EEMD was proposed by Wu and

Huang (2009), and effectively suppressed the mode mixing

problem of the Empirical Mode Decomposition (EMD)

method. Due to its simplicity and effectiveness, EEMD has

been successfully applied for time series prediction. Kang et al.

(2017) used the EEMD-LSSVM model to predict short-term

wind speed and performed well in terms of the evaluation

metrics selected. Tayyab et al. (2018) utilized the EEMD-RBF

model to forecast streamflow in the Upper Indus basin,

Pakistan. Their results indicated that the EEMD-RBF has

better predictive capability. Wang et al. (2020) applied the

EEMD-SVR and EEMD-ANN models for monthly flow series

regression, and the regression results were more precise than

regressing directly with the original series. However, the

reconstruction error (RE) of the EEMD method, which

represents the difference between the original sequence and

the corresponding IMFs, affects the final prediction accuracy.

The RE is often complex and unpredictable, but if we discard

it, the final prediction will deviate somewhat from the original

precipitation data.

In precipitation prediction studies, focusing only on

model accuracy tends to ignore the risks associated with

the uncertainty of the model itself. Draper (1995) proposed

the Bayesian model averaging (BMA) method to solve the

model uncertainty problem. BMA assigns appropriate

weights to each base model, resulting in more robust

prediction results. In addition, BMA can also obtain

interval forecasts with certain probabilities, thus providing

more useful information for decision makers. BMA has

been widely used in research of hydrological ensemble

forecasting (Jiang et al., 2018; Meira Neto et al., 2018; Xu

L. et al., 2020).

In this study, a hybrid EEMD-BMA model, is proposed

for monthly precipitation prediction. The monthly

precipitation data series of Kunming Station in southwest

China, from January 1951 to December 2020, is used as an

example for the study. Section 2 contains the methods used in

this study. Section 3 provides the results and analysis of

precipitation projections. Section 4 summarizes the full

paper.

2 Materials and methods

2.1 Study area and data

Kunming is the capital of Yunnan province and lies at the

longitude of 102°10′-103°40′E and the latitude of 24°23′-26°22′N.
The position of Kunming station is shown in Figure 1. Kunming

is in a subtropical highland monsoon climate zone. The annual

average temperature is approximately 15°C and the annual

average precipitation is about 1000 mm. 90% of Kunming’s

precipitation is concentrated between May and October and

there are many heavy rainstorms, making it vulnerable to

flooding.

In this study, monthly precipitation data from Kunming

station was from the China Meteorological Data Service Centre
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(http://data.cma.cn) from January 1951 to December 2020. All

monthly precipitation data is quality controlled and checked. The

monthly precipitation data, as shown in Figure 2, fluctuates

greatly. We used 70% of the entire dataset as the training set

and 30% as the test set. The training set, ranging from January

1951 to December 1999 is used to build the model. The test set

covers January 2000 to December 2020 and is used to evaluate the

model prediction performance.

2.2 Ensemble empirical mode
decomposition (EEMD)

The Empirical Mode Decomposition (EMD) method is an

effective method to deal with non-stationary and non-linear

signals (Huang et al., 1998). It decomposes the original signal

into multiple intrinsic mode functions (IMFs) and a residue.

Each IMFmust satisfy the two rules: 1) The number of extrema in

the entire signal data sequence must be equal to the number of

zero crossing or differ at most by one; 2) The average value of the

envelope defined by local maxima and minima must be zero at

any point. The core of the EMD method is the screening process

that generates IMFs, and the specific steps are as follows:

1) Determine all local extrema of the original signal data

series x(t).
2) Using the cubic spline interpolation function, generate the

upper envelope eup(t) and lower envelope elow(t) of the

original signal data series.

3) Calculate the mean value m(t) of the envelopes. The average
value m(t) can be calculated as:

m(t) � eup(t) + elow(t)
2

, (1)

4) Obtain the difference h(t) between the original signal

sequence x(t) and the mean value m(t). h(t) can be

calculated by the following formula:

h(t) � x(t) −m(t), (2)

FIGURE 1
Location of the Kunming station.

FIGURE 2
Monthly precipitation data of Kunming station from January
1951 to December 2020.
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5) Check h(t): If h(t) satisfies the two conditions of IMFs,

indicating that h(t) is an IMF, then repeat the above steps

with r(t) � x(t) − h(t) instead of x(t); Otherwise, continue
the above steps with h(t) instead of x(t).

6) The screening process is repeated until the stopping criterion

is met. The stopping criterion can be achieved by limiting the

size of the standard deviation (SD), which is calculated from

two consecutive screening results:

SD � ∑T
t�0
[|hk−1(t) − hk(t)|2

h2k−1(t)
], (3)

where k is the number of times the screening process takes place.

When the SD is less than a predefined value, typically 0.2 to 0.3,

the screening process stops. Finally, by summing all of the IMFs

ci(t) and the residual item r(t), we obtain

x(t) � ∑n
i�0
ci(t) + r(t), (4)

There are still some unavoidable drawbacks of EMD. One of

the main problems is the mode mixing, whichmeans that a single

IMF is mixed with different frequency components, or different

IMFs contain the same frequency component. The mode mixing

problem seriously interferes with decomposition effect. The

EEMD facilitates the separation of different scales of the input

data by adding Gaussian white noise (Yuan et al., 2021). White

noise helps to perturb original signal and enable the EMD

algorithm to visit all possible solutions in the finite

neighborhood of the true final answer (Wu and Huang, 2009).

Due to the zero-mean characteristic of Gaussian white noise,

after multiple averaging, the noises cancel each other out and give

a better combined average result (Li et al., 2021). The main

procedures of EEMD are as follow.

1) The original signal data sequence x(t) is supplemented with

Gaussian white noise wi(t). The new sequence can be

calculated as:

xi(t) � x(t) + wi(t), (5)

2) Using the EMD sifting process, decompose the new data

sequence into IMFs;

3) Repeat the preceding steps with different white noises;

4) Calculate the average values of the corresponding IMFs as the

final results:

cj � 1
N

∑N
i�1
cj,i, (6)

whereN is the ensemble times of adding noise, cj reparents the jth

IMF component; cj,I is the ith IMF when adding the ith noise.

The impact of the added noise should abide by the statistical

rules:

εn � ε��
N

√ , (7)

Where N is the number of ensemble members, ε denotes the

amplitude of the added noise, and εn represents the final standard

deviation of RE.

2.3 Single models for precipitation
prediction

We used a one-step ahead approach to predict

precipitation. This means that previous l data sample

points Pt-1, Pt-2, . . . , Pt-l are used to predict the present

data point Pt, where l is the time step. ARIMA, SVR and

LSTM are used for precipitation prediction. Since each IMF

component corresponds to a different time step, resulting in

different lengths of predictions, we retain the shortest length

after aligning from back to front. Finally, the predictions of all

components are summed to obtain the final precipitation

forecast. As precipitation is non-negative, all negative

values appearing in the precipitation forecasts are replaced

by zero.

2.3.1 Autoregressive integrated moving average
(ARIMA) model

The ARIMA model was introduced by Box and Jenkins. It

has become a prominent method in time series analysis. ARIMA

essentially relies on past values of the series and previous error

terms for prediction (Adebiyi et al., 2014). It can be calculated as:

Yt � ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 +/ + ϕpYt−p + εt + θ1εt−1 + θ2εt−2

+/ + θqεt−q,

(8)
Where Yt is the actual value and εt is the random error at time t, p

and q are the order of the autoregressive and moving average,

respectively.

2.3.2 Support vector regression (SVR)
The basic idea of support vector machine (SVM) is to map

the sample space to a high-dimensional space by a kernel

function, so that samples that cannot be accurately classified

in the original sample space become linearly separable in the

high-dimensional feature space. Support vector regression (SVR)

is a regression method developed from SVM. The regression

function is as follows:

f(x) � ∑n
i�1
(αpi − αi)K(xi, xj) + b, (9)

Where αi* and αi are the Lagrange multipliers; K (xi, xj) is the

kernel function; b is bias.
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2.3.3 Long short-term memory (LSTM) neural
network

Traditional RNNs encounter the problem of gradient

disappearance when dealing with long-term dependency

problem. To overcome this problem, Hochreiter and

Schmidhuber (1997) proposed the long short-term memory

(LSTM) neural network. Due to the strength of the LSTM in

discovering long-term dependencies, it is widely used in the

processing of sequence information.

The main advantage of LSTM over the traditional RNN is

that LSTM adds a memory cell to store information and three

gates to control the delivery and updating of information. The

exact calculation steps of the LSTM are as follows:

ft � σ(Wf · [ht−1, xt] + bf), (10)
it � σ(Wi · [ht−1, xt] + bi), (11)

gt � tanh(Wc · [ht−1, xt] + bc), (12)
Ct � ft pCt−1 + it pgt, (13)

ot � σ(Wo · [ht−1, xt] + bo), (14)
ht � ot p tanh(ct), (15)

Where ft, it, ot are the outputs of forget gate, input gate and output

gate; xt is the input; ht is the outputs of the hidden layer; Ct is the

cell state; gt is the candidate state of the cell; Wf, Wi, Wo, Wc are

the weights; bf, bi, bo and bc are the bias terms.

2.4 Bayesian model averaging (BMA)

The BMA method ensembles individual models using

posterior probabilities as weights, effectively dealing with the

model uncertainty problem (Draper, 1995). The basic principle

of BMA is as follows.

Suppose y is the forecast value of BMA, the data setD consists

of the forecast results and the actual precipitation, and M = [M1,

M2, . . .,Mk] is the model space consisting of all possible models.

Then the posterior distribution of y can be expressed as:

p(y∣∣∣∣D) � ∑K
k�1

p(Mk|D)pk(y∣∣∣∣Mk,D), (16)

Where Mk represents the kth model in the model space; K

denotes the number of models contained in the model space.

p(Mk|D) is the posterior probability of Mk,.

The p(Mk|D) can be calculated by the following equation:

P(Mk|D) � P(D|Mk)P(Mk)∑K
k�1

P(D|Mk)P(Mk)
, (17)

where P(D|Mk) denotes the integral of the likelihood function

corresponding to model Mk; p (Mk) is the prior probabilities of

model Mj.

The posterior mean and variance can be expressed as:

E[y∣∣∣∣D] � ∑K
k�1

E[y∣∣∣∣Mk,D]p(Mk|D) � ∑K
k�1

wkMk, (18)

Var[y|D] � ∑K
k�1

⎛⎝Mk −∑K
k�1

wkMk
⎞⎠2

+∑K
k�1

wkσ
2
k, (19)

Where σk
2 is the variance of Mk.

The posterior probability distribution of BMA often

involves the computation of complex high-dimensional

integrals. Markov Chain Monte Carlo (MCMC) is a good

way to solve this problem. The basic idea of MCMC is to

build a Markov chain with a smooth distribution π(x) that is a
good approximation of the posterior distribution. After a

period of pre-iterations, a series of simulated values of the

Markov chain is generated, which can be considered as

independent samples from the posterior distribution.

Various statistical inferences can then be made based on

these samples. Due to its high efficiency and robustness,

MCMC has been widely used in many fields (Pérez

et al.,2006; Ching and Chen, 2007; Zhao and Wang, 2020).

In this study, the BMA method was implemented using the

BMS package in R (Zeugner, 2011). A birth-death MCMC

algorithm (Stephens, 2000) was used to wander through

model space by adding or dropping regressors from the

current model. The number of iterations was set to

200,000 to ensure that the Markov chain reached a steady state.

FIGURE 3
The workflow Chart of EEMD-BMA.
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2.5 The EEMD-BMA model

Precipitation data is highly nonlinear and nonstationary,

which makes it difficult to accurately predict with a single

model. We used a hybrid EEMD-BMA model to predict

monthly precipitation data. The process of EEMD-BMA is

shown in Figure 3. The specific procedures are as follows:

1) The decomposition of monthly precipitation data series: The

EEMD method was used to decompose the original monthly

precipitation sequences into multiple IMFs and a residue.

2) Determination of time step: The input time step was obtained

using the PACF algorithm.

3) Predicting of IMFs and residue: Build proper ARIMA, SVR

and LSTM models for components.

4) Predicting of reconstruction error: According to Eq. 7, the

standard deviation of the reconstruction error can be kept

small by appropriately increasing the number of times white

noise is added. In this way, we can obtain relatively accurate

prediction results by using the average value of the training set

of reconstruction error as the prediction value of its test set.

5) Reconstruction of predicted results: The respective

predictions were summed to obtain the predictions of

monthly precipitation by the EEMD-ARIMA, EEMD-SVR

and EEMD-LSTM models.

6) Weighted average of predicted results: Averaging the results

of EEMD-ARIMA, EEMD-SVR and EEMD-LSTM by BMA.

7) Evaluate model performance: The model’s predicted results

are compared with real precipitation. Evaluate the

performance of the EEMD-BMA model based on several

statistical metrics.

2.5.1 Statistical assessment indicators for
predicting performance

Four evaluation metrics were used in this study to assess the

predictive accuracy of the models. They include mean square

error (MSE), root mean square error (RMSE), mean absolute

error (MAE), and coefficient of determination (R2). MSE, RMSE,

MAE indicate the magnitude of errors between original

precipitation and predicted results. The smaller their values

are, the higher the accuracy of the model. R2 is a measure for

the degree of model fit. The closer R2 is to 1, the higher the degree

of fit between the predicted and actual precipitation. The

corresponding formulas are as follows:

MSE � 1
n
∑n
i�1
(Pi − Pp

i )2, (20)

RMSE �
������������
1
n
∑n
i�1
(Pi − Pp

i )2√
, (21)

MAE � 1
n
∑n
i�1

∣∣∣∣Pi − Pp
i

∣∣∣∣, (22)

R2 � 1 −
∑n
i�1
(Pi − Pp

i )2
∑n
i�1
(Pi − �P)2 , (23)

Where Pi and Pp
i are the observed and predicted values of

precipitation at time i, respectively; n is the number of data

sample points; �P represents the average of the observed

values.

The coverage probability (CP) and mean width (MW) are

used in this paper to assess the suitability of BMA prediction

intervals. The formulas are as follows:

CP � C

N
× 100%, (24)

MW � 1
N

∑N
i�1
(upi − downi), (25)

Where C is the number of sample points covered by the BMA

prediction interval; upi and downi are the upper and lower

bounds of the BMA prediction interval, respectively.

3 Results and discussion

3.1 Decomposition results with EEMD

Choosing the appropriate ensemble times and amplitude

of the added noise is crucial for EEMD decomposition. We

tried different combinations of noise amplitudes and

ensemble times, and found that the RE always existed.

Reducing the noise amplitude makes the RE smaller, but

too small amplitudes cannot separate out the different time

scales in the original precipitation series and may lead to

serious mode mixing problems. Thus, we choose a larger

amplitude and increase the ensemble times. This ensures that

the decomposition is effective while keeping the fluctuations

in RE within a small range.

The original precipitation data is decomposed into eight

IMFs and one residue by EEMD (Figure 4). As can be seen in

Figure 4, the eight IMF components are arranged in

decreasing order from high to low frequencies. The

residue reflects the change trend of precipitation at

Kunming station. Compared with the original

precipitation series, the fluctuations of each component

are more regular. After the EEMD decomposition, the

model can better identify the variation characteristics of

each component, which helps to improve the prediction

performance. Statistics of the monthly precipitation series

and decomposition results at Kunming station are given in

Table 1. The standard deviations of the components are

smaller than the original precipitation data, indicating that

the components are more stable.
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The RE of EEMD fluctuates dramatically around its mean

value (Figure 5). The standard deviation of the RE is relatively

small. Therefore, we can get relatively good results by using the

mean of the RE as its predicted value.

3.2 Input time step of components

In this study, the partial autocorrelation function (PACF) is

applied to determine the input time step. The PACF is effective in

FIGURE 4
The decomposition results of the precipitation series at Kunming station by EEMD.

TABLE 1 Descriptive statistics of EEMD decomposition results.

Series Minimum (mm) Maximum (mm) Mean (mm) Standard deviation (mm)

Observation 0.0000 474.9000 82.5430 88.0334

IMF1 −125.8639 153.9365 −0.7023 36.0404

IMF2 −99.2246 126.9243 −2.7023 40.2490

IMF3 −88.1733 90.5367 0.0164 38.4080

IMF4 −21.6137 28.3822 0.0853 9.9353

IMF5 −10.9529 13.2763 −0.1609 5.3810

IMF6 −13.4176 13.5154 0.1927 6.3497

IMF7 −0.2489 8.2293 3.7375 2.6584

IMF8 65.8543 68.5056 67.2855 1.0030

Residue 85.2137 86.8779 86.0879 0.5378
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identifying correlation between the present value and several

previous values of the series (Zhang et al., 2018). By calculating

the partial autocorrelation coefficients of the decomposition

results, their lag orders can be obtained. The PACF plots for

the decomposition results of Kunming station are shown in

Figure 6. The number of lags beyond the 95% confidence level

(dotted line) is the input time step. As can be seen from Figure 6,

the input time steps for the IMFs of Kunming station are

12,8,7,4,5,8,5,1 and 1.

3.3 Prediction results of individual model

We have obtained point prediction results for

precipitation using ARIMA, SVR, LSTM, EEMD-ARIMA,

EEMD-SVR and EEMD-LSTM. The predictions are shown

in Figure 7. It is clear that all hybrid models perform better

than the single models. The reason is that there are many

abrupt changes in the precipitation series that are not well

identified by the single models. By decomposing the

precipitation data into a series of relatively stable

components with the EEMD method, these models are able

to identify local variations in the components, thus improving

prediction accuracy. In addition, the EEMD-LSTM

predictions are the closest to the original data of all the

models, particularly at the extremes of the precipitation

series. This indicates that the EEMD-LSTM model

performed best in the one-step prediction of precipitation.

FIGURE 5
The reconstruction error (RE) of the precipitation series at
Kunming station by EEMD.

FIGURE 6
The PACF plots for the decomposition results of Kunming station.
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The scatterplots of the ARIMA, SVR, LSTM, EEMD-

ARIMA, EEMD-SVR, and EEMD-LSTM model predictions

versus the true precipitation at the Kunming station are

shown in Figure 8. As can be seen from the plots, the single

model predictions are far from the 45o line, which shows that the

three single models have poor prediction accuracy, with the

ARIMA model showing the worst results. However, the

hybrid models perform better than the single models,

indicating that the EEMD can improve prediction accuracy.

The predictions of the EEMD-LSTM model are closest to the

45o line, indicating that the predicted values of the EEMD-LSTM

have the highest correlation with actual precipitation.

3.4 Predictied results of the EEMD-BMA
model

To reduce uncertainty in precipitation predictions, we applied

BMA to average the single models and the hybrid models

respectively. The results of BMA are listed in Table 2. In Table 2,

PIP is the post inclusion probabilities; Post Mean denotes the

posterior expected value of coefficients, which is the weight

assigned by BMA; Post SD is the posterior standard deviation of

coefficients. The SVR model has the largest weight, which is 0.5235.

the LSTM model has the smallest weight, which is 0.0322.

Figure 9 shows the results of BMA with three single models.

It can be noticed that the ensemble mean of BMA is relatively

consistent with the trend of observed precipitation. However, for

the peaks of the precipitation series, the results of the BMA are

subject to large errors. In addition, the width of the 90%

confidence interval for the ensemble mean of the BMA is

large, indicating that there is still a large uncertainty in the

predictions after BMA. This is because single models are

unable to accurately identify the pattern of variability in

monthly precipitation series and their predictions are not

robust, which affects the effectiveness of the BMA.

The results of EEMD-BMA are shown in Table 3. The

EEMD-LSTM model has the largest weight of 0.9353,

indicating that the predicted results of EEMD-LSTM

contribute more to the BMA. The weight of EEMD-ARIMA

FIGURE 7
Comparison of the predicted results among ARIMA, SVR,
LSTM, EEMD-ARIMA, EEMD-SVR, and EEMD-LSTM.

FIGURE 8
Scatter plots of prediction and observation (A) ARIMA (B)
EEMD-ARIMA (C) SVR (D) EEMD-SVR (E)LSTM (F) EEMD-LSTM.

TABLE 2 Results of BMA.

Model PIP Post Mean Post SD

ARIMA 0.9998 0.3304 0.0677

SVR 0.9380 0.5235 0.1838

LSTM 0.1194 0.0322 0.1293
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model is close to zero, which means that the predicted results of

EEMD-ARIMA contribute little to the BMA.

The results of EEMD-BMA are shown in Figure 10. The

ensemble mean is very close to the observation, indicating that

the BMA can concentrate the strengths of the different models to

obtain more accurate predictions. In addition, the 90%

confidence interval of the ensemble mean by EEMD-BMA is

narrower than that of BMA with single models, indicating that

the hybrid models have less uncertainty. Moreover, extreme

precipitation events almost fall within the 90% confidence

interval of the EEMD-BMA.

3.5 Prediction performance comparison

Four statistical metrics (MSE, RMSE, MAE,R2) are used to

evaluate the predictive performance of different models more

clearly (Table 4). As can be seen from Table 4, the prediction

performances of the single models are poor and have a large error

compared to the real precipitation data. In particular, for the

ARIMA model, the MSE, RMSE and MAE values are all large,

while the R2 value is small, indicating that the single ARIMA

model is not suitable for predicting monthly precipitation. The

BMA assigns appropriate weights to each single model,

improving the predictive performance of the single models to

some extent. When compared with the single ARIMA, SVR, and

LSTM models, the prediction performance of hybrid EEMD-

ARIMA, EEMD-SVR and EEMD-LSTM models is greatly

improved, with RMSE reductions of 25.02%, 57.04% and

64.03%; and R2 improvements of 0.3193,0.2740 and 0.2907,

respectively. The R2 value of the EEMD-BMA model is close

to 1, indicating that the predictions of the EEMD-BMA model

are credible. Among all the models, the EEMD-BMA has the

smallest MSE, RMSE, MAE values and the largest R2 value, which

means that the EEMD-BMA is the most suitable tool for

predicting precipitation data.

We use CP and MW to measure the superiority of the BMA

interval prediction, as shown in Table 5. The CP of the BMA is

87.5%, with some extreme precipitation events falling outside the

90% confidence interval. the MW of the BMA is 153.132 mm,

which is too wide to provide valid information. The EEMD-BMA

has a larger CP and a smaller MW, which suggests that the

EEMD-BMA has a more appropriate prediction interval than the

BMA and can provide more useful information for decision

makers. For example, excessive precipitation during the rainy

FIGURE 9
Results of BMA with three single models.

TABLE 3 Results of EEMD-BMA

Model PIP Post Mean Post SD

EEMD-LSTM 1 0.9353 0.1039

EEMD-SVR 0.3570 0.0718 0.1124

EEMD-ARIMA 0.0813 −0.0015 0.0088
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season may cause flooding and landslides, threatening people’s

lives and property. The point prediction results may

underestimate the actual precipitation, leading people to suffer

losses due to under-preparedness. Decision makers can prepare

in advance to reduce losses based on the upper limit of the

confidence interval of the EEMD-BMA.

3.5 Discussion

Since the monthly precipitation series have strong nonlinear

fluctuations, it is difficult for a single model to identify the

variation pattern of monthly precipitation. Therefore, the

prediction performances of single models are poor. Both

EEMD and BMA can improve the prediction accuracy of a

single model, and EEMD improves more. BMA can provide

FIGURE 10
Results of the EEMD-BMA

TABLE 4 Performances of different models.

Model MSE (mm) RMSE (mm) MAE (mm) R2

ARIMA 5096.9158 71.3927 48.5732 0.2707

SVR 2356.4570 48.5434 34.8603 0.6628

LSTM 2333.9699 48.3112 34.8369 0.6661

BMA 2088.1956 45.6968 32.3455 0.7012

EEMD-ARIMA 2865.5126 53.5305 38.2066 0.5900

EEMD-SVR 434.8458 20.8530 14.6796 0.9378

EEMD-LSTM 301.9400 17.3764 12.7772 0.9568

EEMD-BMA 298.6359 17.2811 12.6999 0.9573

TABLE 5 Performances of BMA and EEMD-BMA.

Model CP (%) MW (mm)

BMA 87.5 153.132

EEMD-BMA 93.75 60.315
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confidence intervals of the prediction results to quantify

uncertainty. the EEMD-BMA model combines the advantages

of EEMD and BMA, and the prediction results have high

accuracy and reliability. In other nonlinear time series

forecasting problems, EEMD-BMA model also has some

application value. It is worth noting that the prediction

performance of EEMD-LSTM and EEMD-ARIMA models

differ greatly, which affects the effect of BMA to some extent.

The weight of EEMD-ARIMA model is very small, and its

contribution to BMA is almost zero. Therefore, replacing the

ARIMA model with more effective models may lead to better

ensemble prediction results.

4 Conclusion

In this study, a hybrid EEMD-BMA model is proposed to

predict the monthly precipitation data series. The main

conclusions are as follows: 1) Processing precipitation data

with the EEMD method can significantly improve the

predictive power of the model. 2) We use the average of

the reconstruction error as its predicted value and add it to

the predictions of the components to obtain the final

prediction of precipitation. In this way the accuracy of the

precipitation prediction can be further improved. 3) BMA

can take full advantage of the strengths of individual models

to obtain more accurate results. Compared with other

models, the EEMD-BMA model has optimal prediction

performance. 4) The EEMD-BMA can quantify the

uncertainty of the prediction results and give suitable

confidence intervals. Based on the EEMD-BMA prediction

results and confidence intervals, decision makers have more

flexibility to develop effective measures against potential

disasters.

In this paper, we only studied the effect of BMA on ensemble

prediction. In future studies, other weighting methods, such as

stacking and blending, can be tried for comparison with BMA.
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