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Prior studies have repeatedly shown that probabilistic seismic hazard maps from

several different countries predict higher shaking than that observed. Previous map

assessments have not, however, considered the influenceof site responseonhazard.

Seismologists have long acknowledged the influence of near-surface geology, in

particular low-impedance sediment layers, on earthquake ground-motion at

frequencies of engineering concern. Although the overall effects of site response

are complex, modern ground-motion models (GMMs) account for site effects using

termsbasedonVS30, the time-averaged shear-wave velocity in theupper 30mof the

Earth’s surface. In this study, we consider general implications of incorporating site

terms frommodern GMMs using site-specific VS30 as a proxy in probabilistic seismic

hazard maps for California. At the long periods (1–5 s) that affect tall buildings, site

terms amplify the mapped hazard by factors of 1–3 at many sites relative to maps

calculated for the standard reference soft-rock site condition, VS30 = 760m/s.

However, at the short periods of ground-motion that are the main contributors

to peak ground acceleration (PGA) and thus affect smaller structures, only negligible

effects occur due to nonlinear deamplification of strong ground-motion at high

frequencies. Nonlinear deamplification increases as the shaking level increases. For

very strong shaking, deamplification can overcome the linear amplification, yielding

net deamplification.We explore the implications of these results for the evaluation of

hazard maps. Because site effects do not change the maps appreciably at short

periods,wecanexclude site responseasanexplanation forwhy themapsoverpredict

historically observed shaking as captured by the California Historical Intensity

Mapping Project (CHIMP) dataset. The results are expected to be generalizable to

regions that are comparable to California in terms of structure and seismicity rates. In

low-to-moderate-seismicity regions where the hazard reflects weaker shaking,

nonlinear site response is expected to be less important for the hazard.
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Introduction

Probabilistic seismic hazard analyses (PSHA) forecast the

level of earthquake shaking that will be exceeded with a certain

probability over a given period of time, providing a critical

product for earthquake hazard assessment and risk mitigation

(Cornell, 1968). PSHA models and corresponding maps are

based on assumptions about the rates, spatial distribution, and

sizes of potential future earthquakes and the resulting shaking as

a function of distance, as described by ground-motion models

(GMMs) that cover broad geologic regions. These maps seek to

forecast future shaking, so some degree of inaccuracy is expected,

as that arises for weather forecasts. Published hazard maps

appear to overpredict shaking relative to historical data for

shaking datasets and hazard maps developed by different

groups and using different approaches.

An important question is how these maps can best

incorporate the effects of conditions at a specific site. Since

the 1906 San Francisco earthquake, seismologists have

recognized that unconsolidated material with low seismic

velocity could amplify shaking (e.g., Wood, 1908; Kanai and

Yoshizawa, 1956; Gutenberg 1957; Borcherdt, 1970). Although

site effects will modify ground-motion in more complicated ways

than a GMM site term alone can capture, present models

incorporate site effects using VS30, the time-averaged shear-

wave velocity in the top 30 m of soil, as a proxy (Abrahamson

et al., 2008; Borcherdt, 2014; Gregor et al., 2014). Although

ground-motion can also be affected by factors other than local

site conditions (Olsen, 2000), in the development of national

hazard maps using ergodic GMMs, the effect of the complexity of

the site amplification beyond VS30 is represented by the aleatory

standard deviation of the GMM. Thus, as site factor models are

now widely used, we consider their implications for PSHA maps.

Here, the term “ground-motion” refers to response spectral

acceleration.

The 2018 USGS National Hazard map is calculated with a

uniform reference VS30 of 260 and 760 m/s. VS30 = 760, a

common reference value, is about that of dense soil or soft

rock (Seyhan and Stewart, 2012; Petersen et al., 2020). This

VS30 value corresponds to a National Earthquake Hazards

Reduction Program (NEHRP) site class B/C (BSSC, 2020).

The U.S. Geological Survey (USGS) publishes maps for more

site classes but does not include detailed site-specific effects. In

this study, we refer to these maps for constant VS30 = 760 m/s as

reference maps. Because the maps are intended for use with site-

specific factors (U.S. Geological Survey, 2021), the reference

maps allow simple site-specific adjustments for VS30, which

varies considerably based on site conditions (Borcherdt, 1970;

Petersen et al., 2020). Maps are available for shaking for response

spectral values at various spectral periods. The most commonly

used ground-motion parameter, peak ground acceleration

(PGA), corresponds to the response spectral acceleration at a

period of T = 0.0 s. Using the Next-Generation AttenuationWest

2 (NGA-West2) GMMs for California, the 5%-damped response

spectra are nearly flat at T=0.01 s. We use the response spectral

acceleration at T=0.01 s as an estimate of the PGA, which is

consistent with the approach of two of the NGA-W2 GMMs

(Abrahamson et al., 2014; Chiou and Youngs, 2014).

In this article, we explore the implications of site terms from

current GMMs with VS30 as a proxy on hazard maps for

California, which contain a range of sites in different geologic

environments with well-documented site conditions. A range of

GMMs that include site effect terms has been developed for the

area. To explore the resulting effects, we estimate site-specific

VS30 values for California using the results of Wills et al. (2015)

(Figure 1). Most sites have VS30 equal to or lower than the

reference value, 760 m/s. Lower VS30 values are found in the Los

Angeles Basin, San Francisco Bay Area, and Central Valley,

whereas relatively high VS30 values are present throughout the

Sierra Nevada. To consider the effect of site-specific VS30 on the

reference USGS maps, we use the site terms in the four NGA-

West2 models that were averaged to create the maps

(Abrahamson et al., 2014 (ASK14), Boore et al., 2014

(BSSA14), Campbell and Borzorgnia, 2014 (CB14), and Chiou

FIGURE 1
(A)Map of median VS30 in 10 × 10 km grid cells for California.
(B)Histogramofmedian VS30 values. Most sites have VS30< 760 m/s,
the reference value used in USGS hazard maps.
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and Youngs, 2014 (CY14)). The resulting site-specific maps are

expected to capture first-order site effects.

Site effects in NGA-West2 models

Each of the four NGA-West2 GMMs includes a site

amplification term that amplifies or deamplifies shaking relative

to the model’s reference VS30. Because the reference VS30 values vary

among the four GMMs (ASK14 uses 1,180 m/s (Figure 2A),

BSSA14 uses 760 m/s (Figure 2B), CB14 uses 1,100 m/s (Figure

2C), and CY14 uses 1,130 m/s (Figure 2D)), we first normalize the

models to the USGS maps’ reference value of 760 m/s by scaling by

the ratio of the GMM’s amplifications at 760 m/s and the GMM’s

amplification at each model’s reference velocity.

The three models requiring VS30 normalization (ASK14,

CB14, and CY14) each contain a site response model. Scale

factors can be applied to the spectral acceleration at the

model’s reference VS30 (Vref) to obtain the relative

amplification at VS30 = 760 m/s. These scale factor

computations depend on the model.

For ASK14, when 760 > Vlin, the velocity specified by the

aforementioned model whose linear behavior is observed,

we simply calculate the scale factor for VS30 = 760 m/s from a

Vref = 1,180 m/s to equal exp (c ln (1,180/760)) as defined in the

GMM. The other two models have different reference velocities:

Vref = 1,100 for CB14 m/s and 1,130m/s for CY14. For a given

spectral acceleration, SA, we compute f (SA, 760) and f (SA, Vref),

where f (SA, VS30) is the site response term (in ln units) for each

GMM. The scale factor to normalize each GMM to 760 m/s is

FIGURE 2
A) Linear amplification and nonlinear deamplification effects for PGA as a function of VS30 and shaking level, calculated using relations from (A)
ASK14, (B)CB14, (C) BSSA14, (D)CY14, and (E) amodel averaging the fourmodels. Themodels have consistent trends but vary in the net amplification
or deamplification. Amplification factors are given relative to shaking at a site with the reference VS30 = 760 m/s (vertical black line). An amplification
factor of 0.0 indicates that the shaking with site effects is the same as that without site effects. Different lines indicate various shaking levels.
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thus exp (f (SA, Vref) - f (SA, 760), where f (SA, 760) is defined

in the GMM.

After obtaining the scale factors to normalize each GMM to

VS30 = 760 m/s, we calculate site amplifications or

deamplifications to PGA relative to those for a site with the

reference VS30 = 760 m/s using the four GMMs. Again, site

amplification depends upon VS30, period, and shaking level

(Figure 2). For ASK14 and CY14, we use coefficients given for

PGA, which are equivalent to those for spectral acceleration at

a period of T = 0.01 s. Thus, for consistency, we use

coefficients given for T = 0.01 s for CB14 and BSSA.

Because PGA is approximately equivalent to the spectral

acceleration with a ground-motion period of 0.01 s (Booth,

2007), using this period for PGA gives consistency between

models and with known relations between PGA and spectral

acceleration.

Intuitively, site effects are expected to amplify the predicted

shaking because most sites have VS30 lower than the reference

velocity of 760 m/s, and low-impedance sediments are expected

to amplify shaking relative to that on higher-impedance

materials. However, this is not always the case due to

nonlinear damping in soil at strong shaking levels.

Nonlinearity in stress–strain relations was initially predicted

from laboratory tests (see Beresnev et al., 1995) and was

confirmed observationally as on-scale strong motion data

became increasingly available (Beresnev et al., 1995; Field

et al., 1997; Bonilla et al., 2005).

Figure 2 shows the combined effects of amplification and

deamplification in terms of the predicted spectral

acceleration relative to that for a site with the reference

velocity VS30 = 760 m/s, for each of the four GMMs and

their average. The values shown are relative to the predicted

maximum shaking from the reference hazard map for very

short period (T = 0.01 s) motion corresponding to PGA and

several levels of shaking (PGA = 0.001, 0.01, 0.1, and 1 g).

Positive amplification values correspond to net amplification,

and negative values correspond to net deamplification. For

clarity, we refer to “amplification” and “deamplification,”

although in the literature both are often jointly termed

“amplification.” At sites with VS30 below 760 m/s, linear

models predict amplification for all shaking levels due to the

low-impedance effect. However, because current GMMs

incorporate nonlinear effects, at sites with low velocities, the

predicted linear amplification can be offset by nonlinear

FIGURE 3
Site amplifications and deamplifications versus VS30 for different periods (A) T = 0.01 s (PGA), (B) T = 0.2 s, (C) T = 1.0 s and (D) T = 5.0 s and the
average ground-motion model. Nonlinear effects decrease for longer-period shaking. The vertical black line corresponds to VS30 = 760 m/s. An
amplification factor of 0.0 indicates that the shaking with site effects is the same as that without site effects. Different lines indicate various shaking
levels. Periods of 1.0 s correspond roughly to a 10-story building. SA is spectral acceleration.
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deamplification resulting from soil damping. Nonlinear

deamplification increases as the shaking level increases. For

very strong shaking, deamplification can overcome the linear

amplification, yielding net deamplification.

The net predicted effect also depends on the response spectral

period (T), as illustrated in Figures 3, 4 for the average model at

four different spectral periods and shaking levels. The two figures

present the results in complementary representations. Nonlinear

effects are the strongest for spectral periods below 0.2 s (Yu et al.,

1992), causing appreciable deamplification (Figures 3B, 4B). The

nonlinear effect is much smaller for the long periods of ground-

motion that affect tall buildings, as shown for 1-second-period

spectral acceleration (Figures 3C, 4C). Even longer periods, such

as T = 5 s, experience no nonlinear effects because the effect of

increases on soil damping effects from these models is negligible

at these periods (Figures 3D, 4D).

Nonlinear deamplification is the strongest for shorter periods

and higher levels of shaking. Thus, deamplification is a major

effect for very short-period (T = 0.01 s) ground-

motion corresponding to PGA, especially for sites with low

VS30 (< ~ 300 m/s) that experience strong shaking(e.g.,

Figures 3A, 4A). For very strong shaking, deamplification due to

increased damping can overcome the linear amplification due to softer

soil, yielding net deamplification. Hence, although low levels of short-

period shaking are amplified at sites with lowVS30, as often noted (e.g.,

Hough et al., 1990), the higher levels of shaking that are reflected in

hazard maps are deamplified (Figures 4A,B).

The fact is that for higher levels of short-period shaking (PGA,

T= 0.01 s), nonlinear deamplification partly or totally offsets the linear

amplification and reduces the net effect of soil conditions on hazard

maps. Because most sites in California have VS30 below 760m/s

(Figure 1), these effects are important to consider for hazard maps.

Complete inclusion of site effects in
hazard maps

Our approach incorporates site effects into the standard

hazard maps. A complete inclusion of site effects would

require implementing site-specific VS30 during the calculation

of hazard curves that inform the maps. Doing so would affect

both the median and variance of ground-motion, which both

influence predictions; changes to the median shift the hazard

curve, whereas changes to variance would affect the slope of the

FIGURE 4
Amplification or deamplification effects versus shaking level, given as spectral acceleration for VS30 = 760 m/s, for various periods (A) T = 0.01 s
(PGA), (B) T = 0.2 s, (C) T= 1.0 s and (D) T= 5.0 s. In (A), linear amplification arises for weak shaking and nonlinear deamplification for strong shaking. In
(D), linear amplification arises for all shaking. For all periods, no amplification or deamplification occurs when VS30 = 760 m/s, as shown by the solid,
1-1 line. For VS30 > 760 m/s, deamplification is linear (purple dashed line). Linear amplification arises for VS30 < 760 with long-period shaking, for
e.g., (D). Nonlinear deamplification arises for VS30 < 760 m/s, with strong, short-period shaking (e.g., A).
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hazard curve. However, developing hazard maps involves

extensive computations, so in practice it is often not justifiable

to compute hazard maps for every site condition. Furthermore,

nonlinear site effects on the variance are small for most site

conditions. Thus, such approximate methods used here are

commonly used (American Society of Civil Engineers, 2017).

Current practice approximates site effects by scaling the median

ground-motion using nonlinear scale factors and ignoring

changes to variance (American Society of Civil Engineers, 2017).

Figure 5 shows the effect of different approaches. At typical

site conditions of VS30 (~400 m/s), the approximate approach is

consistent with the complete inclusion of VS30 (Figure 5). For

context, the median VS30 in California is approximately 500 m/s,

so different approaches have little effect on the final hazard

prediction (Figure 1, Figure 5). At low VS30 (~200 m/s), the

approximate approach follows the trend of the complete

inclusion but with an even stronger effect due to the change

in the variance. Because the effect is stronger, our approximate

values reduce the discrepancy between the hazard map and

historical shaking more than the complete inclusion of VS30.

Because our analysis is prompted by the discrepancy, this

article uses the approximation that is consistent with current

practice.

Approximating site effects in hazard
maps

We produced approximated site-specific hazard maps from

the 2018 USGS reference PGA hazard maps by including the

effect of site-specific VS30 (Figure 1) using the average of the four

NGA-West2 models for T = 0.01 s (Figure 2E). The reference

(constant VS30 = 760 m/s) maps are shown in Figures 6A,D. Site-

specific VS30 hazard maps including amplification and

deamplification are shown in Figures 6B,E. Although this

method is an approximation for the full inclusion of site

effects in the hazard map, it is consistent with standard

practice in engineering purposes for the building design.

Only minor differences arise when the PGA hazard maps

are corrected for site-specific VS30 (Figures 6C,F). Most

locations only see a slight increase in predicted PGA, with

the average PGA increase being 0.027 and 0.019 g for the 475-

year and 2475-year return-period maps (Figure 6). Although

most sites have VS30 of less than 760 m/s, the change is small

because the predicted linear amplification is largely offset by

nonlinear deamplification at the strong shaking levels reflected

in the maps.

Figure 7 shows net amplification/deamplification factors

(Figure 3) for shaking with periods of T = 0.01 s, 0.2 s, 1.0 s,

and 5.0 s. The nonlinear effects depend on the shaking level, so

amplification/deamplification is shown for maps with two

different return periods because maps with longer return

periods predict higher shaking.

Net amplification from site effects is considerably larger at

longer ground-motion periods (T = 1.0 and 5.0 s) (Figure 7). At

these periods, damping is less and thus the nonlinear effect

causing deamplification is less (or none) (Figure 3). For T =

5.0 s, only linear amplifications (for VS30 < 760 m/s) and

deamplifications (for VS30 > 760 m/s) relative to the reference

map are predicted.

FIGURE 5
(A)Hazard curves for 760 m/s (blue lines) compared to those computed via the complete method for site-specific VS30 of 200 m/s (red dashed
line) and approximate method (green dashed line). (B) Similar comparison for Vs30 = 400 m/s. At VS30 = 400 m/s, the approximate and complete
methods are indistinguishable. At VS30 = 200 m/s, the approximate hazard curve has a larger effect than the complete method, which would further
reduce the discrepancy between the map and the observed shaking.
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Comparison with historical intensity
data

Site-specific hazard maps are important for many reasons.

We now consider whether site-specific maps are more or less

consistent with historically observed shaking intensities than

reference maps. Seismologists have recently begun assessing

how well PSHA models and maps forecast the shaking that

actually occurs. The problem is challenging because of both

limitations in the available data and conceptual issues in how

to assess the performance of probabilistic forecasts (Gneiting and

Katzfuss, 2014; Marzocchi and Jordan, 2014; Stein et al., 2015;

Wang, 2015; Vanneste et al., 2018; Brooks et al., 2019).

In particular, shaking data recorded since a typical probabilistic

seismic hazard model was made span a time period that is short

compared to the return period of the hazard map (e.g., 475 or

2,745 years). Hence, typically few of the largest earthquakes that

control hazard for a given area have occurred since the map was

made. Retrospective assessment, or hindcasting, using

compilations of historical shaking data spanning hundreds of

years, provides one approach to address this problem (Stirling

and Petersen, 2006; Stirling and Gerstenberger, 2010; Mak et al.,

2014; Nekrasova et al., 2014; Stein et al., 2015; Brooks et al., 2016,

2017, 2018; Mak and Schorlemmer, 2016).

Recently, the California Historical Intensity Mapping Project

(CHIMP) presented the first systematically compiled dataset of

FIGURE 6
(A) 2018 USGS reference hazard map for PGA with constant VS30 = 760 m/s for a 10% probability of exceedance in 50 years (475-year return
period). (B) Corresponding site-specific VS30 map and a residual map showing the differences (C). (D) 2018 USGS reference hazard map for a 2%
probability of exceedance in 50 years compared to a site-specific map (E), with residuals (F). Most locations have a slight increase in predicted PGA.
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observed seismic intensities from the largest earthquakes in

California over a 162-year period between 1857 and 2019

(Salditch et al., 2020) measured on the Modified Mercalli

Intensity (MMI) scale (Wood and Neumann, 1931). Salditch

et al. (2020) used CHIMP data for an initial assessment of the

performance of the 2018 USGS time-independent seismic hazard

models and maps for California (Rukstales and Petersen, 2019).

This previous assessment used several simplifying assumptions.

Among these, the mapped ground-motion values for a reference

VS30 of 760 m/s were assumed to be comparable with

observations from sites on different ground conditions. Based

on these assumptions, reference maps with both a 10%

probability of exceedance in 50 years (475-year return period)

and a 2% probability of exceedance in 50 years (2475-year return

period) overpredict shaking relative to the CHIMP data.

Qualitatively, similar overestimations have been observed in

comparisons of hazard maps with historical data for Italy and

Japan (Stein et al., 2015; Brooks et al., 2016; Allen et al., 2021).

Thus, this inconsistency between data and estimations arises

in different regions for shaking datasets and hazard maps

developed by different groups and using different

approaches.

Our results imply that the apparent overestimations of the

2018 hazard maps cannot be explained by site effects because site

effects as characterized by the modern GMMs do not appreciably

change the PGA maps at these return periods. The predicted

ground-motions, which are generally higher than observed, are

amplified slightly at most sites, increasing the inconsistency.

We repeated Salditch et al.’s (2020) assessment using the

CHIMP data and the site-specific hazard maps generated in this

study. Stein et al. (2015) defined the fractional exceedance metric,

M0 =| f-p |, where f and p are the observed and predicted fractions

of site exceedances, respectively. Hazard map assessment is a

relatively new enterprise, so no threshold is currently available

for a “good” M0 metric (Salditch et al., 2020). A map for which

the predicted fraction of site exceedances is greater than that

FIGURE 7
Amplification factors, as in Figure 3, relative to a reference VS30 = 760 m/s due to site-specific VS30 for two hazard maps with different return
periods and shaking with periods of 0.01 s (A,E), 0.2 s (B,F), 1.0 s (C,G), and 5.0 s (D,H). Only slight amplifications arise in the PGA maps (A,E).
Appreciable amplifications arise in longer-period maps (1.0 s and 5.0 s) because little to no nonlinear deamplification occurs. Only linear
amplification occurs for 5.0 s period, making (D) and (H) identical. Nonlinear effects are the strongest for spectral periods below 0.2 s (Yu et al.,
1992). An amplification factor of 1.0 indicates that shaking with site effects is the same as that without site effects.
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observed (p > f, or f—p is negative) overpredicts the shaking from

past earthquakes.

Figure 8 compares the CHIMP data to the reference and site-

specific hazard maps. Both maps are converted from PGA to

MMI via Worden et al.’s (2012) ground-motion intensity

conversion equation. The 475- and 2475-year return-period

reference maps predict 718 and 156 exceedances, respectively,

in 162 years, far more than observed. The site-specific amplified

hazard maps perform slightly worse (higher M0) than the

reference maps because the higher predicted shaking yields

fewer observed exceedances. In both cases, the fraction, f, of

sites, where the largest shaking exceeds that predicted from the

map is much lower than predicted. For the 475-year map, which

predicts p = 0.289 (718 exceedances), f decreases from 0.06

(148 exceedances) to 0.044 (109 exceedances) when the map

is adjusted for site-specific VS30. This represents a decrease of

~26%, or 39 sites. Similarly, f for the 2475-year map, which

predicts p = 0.063 (156 exceedances), decreases from 0.007

(18 exceedances) to 0.006 (15 exceedances), a decrease of

~17%, or 3 sites. The longer return-period map likely sees a

smaller percent decrease because the original fractional

exceedance (f) is already so low. The M0 values for the

reference maps were 0.229 and 0.056 for the 10% probability

of exceedance in 50 years and the 2% probability of exceedance in

50 years map, respectively, lower than the values for the site-

specific maps, 0.245 and 0.057.

We estimate that the uncertainty of the number of observed

exceedances using a simple model that assumes the number of

exceedances in 162 years is governed by a Poisson probability model:

P(m≤N) � e−
t
τ∑
N

m�1

t/τ
m

m!
, (1)

where t is the length of the interval (162 years), τ is the average
number of years between each exceedance (equal to 162/N, where

N is the observed number of exceedances, equal to 109 for the

475-year and 15 for the 2475-year return-period site-specific

maps). We compute 5 and 95% uncertainty ranges on N by

finding N0.05 and N0.95 such that P (m ≤ N0.05)=0.05 and P (m ≤
N0.95)=0.95. Then, N0.05/2,483 and N0.95/2,483 are the lower and

upper ranges of f, respectively, for the 2,483 total 10×10 km sites

(Figure 8). The uncertainty intervals on f are [0.037, 0.051] and

[0.004, 0.009] for the 475-year and 2475-year return-period

maps, respectively. In both cases, the observed fractions of site

exceedances, f, and their 5–95% uncertainty intervals are lower

FIGURE 8
Predicted versus observed shaking for the 2018 reference USGS hazard map with a 10% probability of exceedance in 50 years (A) and a site-
specific hazard map (B) and for the 2018 USGS hazard map with a 2% probability of exceedance in 50 years (C) and a site-specific hazard map (D). 1:
1 line is shown in red.
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than the predicted fraction of site exceedances, p = 0.289 and

0.063 (corresponding to an expected 718 and 156 exceedances).

Hence, the GMMs and corresponding maps still overpredict

CHIMP data when site-specific VS30 is considered. Because f is

lower when site conditions are considered, the amplified hazard

maps have a slightly greater overestimation than the referencemaps.

Although predicted nonlinearity reduces amplification and

causes deamplification of hazard in some areas, the effect is not

strong enough to improve the comparison between predicted and

historically observed shaking. Because the CHIMP data

overwhelmingly reflect short-period shaking—i.e., the effects

on small structures (Sokolov and Chernov, 1998)—we cannot

use them directly to assess the performance of hazard maps for

longer-period shaking.

Conclusion

A long-held tenet is that site response, especially the

amplification of shaking by soft near-surface sediments,

contributes appreciably to seismic hazard (Borcherdt, 1970).

Examples abound of damage associated with sediment-

induced amplification, dating back to seminal work of

Borcherdt (1970) and even earlier (Wood, 1908; Kanai and

Yoshizawa, 1956; Gutenberg, 1957). Our results show,

however, that modern GMMs including nonlinear

deamplification predict that site effects do not strongly affect

predicted hazard maps at high frequencies (Figure 5, Figure 6).

We note here that, gross nonlinear site response, i.e., liquefaction,

can pose a substantial additional hazard at sites underlain by

sediments that are susceptible to liquefaction (Seed and Idriss,

1967). The GMMs show that site response has greater effects at

longer periods due to the linear site amplification effects being

larger and the nonlinear effects being small or absent.

When site effects are included in the GMMs that are used in

the 2018 USGS hazard maps, predicted high-frequency PSHA

levels are amplified very slightly at most sites, and even

deamplified at some sites. More generally, incorporating site-

specific VS30 does not appreciably change hazard maps for PGA

because at the relevant short periods (0.01 s) and strong shaking,

nonlinear deamplification due to increased soil damping largely

offsets linear amplification due to low VS30. Our method is an

approximation, but we note that, as discussed, the full inclusion

of site effects would have an even smaller effect. Accordingly, we

find that the apparent overpredictions of the 2018 USGS hazard

maps relative to the CHIMP database of historically observed

intensities are not explained by incorporating site response via

VS30 into the maps. We expect our results to be generalizable to

other regions with seismicity rates and a range of site conditions

comparable to those in California. The overall effects of

nonlinear deamplification are expected to be lower, however,

in regions where seismicity is lower and hazard is controlled

more by shaking from source zones at regional distances.
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