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Seismic monitoring networks are increasingly being used in urban areas to record and locate earthquakes. Recordings in the proximity of buildings also allow assessing, as a first approximation, the expected building damage. The DARR (Damage Assessment for Rapid Response) method provides local-scale information on expected damage patterns. The potential of this approach is discussed here for the August 24 M6 event of the Central Italy seismic sequence (2016–2017). We focus only on the first event of the sequence because cumulative damage is outside the scope of this study. The earthquake recordings are available from two Italian monitoring networks: the Italian Accelerometric Archive (ITACA) and the OSS (Osservatorio Sismico delle Strutture), which collects data from monitored buildings and bridges in Italy. We selected four target areas (Amatrice, Norcia, Visso and Sulmona) characterized by different epicentral distances and building typologies, that suffered different levels of damage during the M6 event on 24 August 2016. Using recordings either in the free field or in the basement of buildings, the expected relative displacement of building typologies common in the studied areas is calculated with the DARR method. Using predefined damage thresholds from literature, the obtained results allow quantifying the expected damage for dominant building typologies in the surroundings of the recording sites. We investigate and discuss the potential use and applicability of the DARR method in different areas depending on the epicentral distance and building characteristics. The results indicate that the DARR approach is useful for supporting and improving rapid response activities after a seismic event.
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INTRODUCTION
Most casualties caused directly by earthquakes are due to damage in residential buildings (So and Spence, 2013). For this reason, the rapid assessment of expected damage can support effective response actions and prioritize interventions, thereby reducing human losses. Assessing damage to buildings depends on multiple factors, such as the characteristics of the ground shaking, the building’s vulnerability (and its response to shaking) and the occurrence of local amplification (site effects).
Ground motion recordings allow extracting the ground shaking characteristics and, in particular, the peak parameters (e.g., peak ground acceleration, PGA). The engineering community has devoted considerable effort to identifying the critical values of ground motion that lead to building damage and collapse. This was done based on both empirical (Rota et al., 2008; Masi et al., 2019) and analytical (Borzi et al., 2008; Donà et al., 2020) approaches. Fragility and vulnerability curves have been defined for different building types and are currently used to estimate expected damage in case of seismic events (e.g., Borzi et al., 2008; Poggi et al., 2020).
Measuring and analyzing the ground motion is therefore of paramount importance for estimating expected damage to buildings. However, using peak ground motion parameters to assess expected damage does not account for the frequency content of the recorded signal. For this reason, the coverage of seismic monitoring networks is increasing worldwide and includes seismic stations installed both in the field and in buildings or infrastructure (Mori et al., 1998; Trifunac et al., 2001; Okada et al., 2004; Espinosa-Aranda et al., 2009; Gorini et al., 2010; Satriano et al., 2011; Wu et al., 2013; Parolai et al., 2017; Bragato et al., 2021). In Italy, ground motion recordings are collected in the Italian Accelerometric Archive (ITACA, Russo et al., 2022). In addition, the Italian monitoring network, OSS (Osservatorio Sismico delle Strutture, Dolce et al., 2017) comprises more than 120 public buildings, and some bridges and dams continuously monitored by low-cost seismic sensors.
The recorded signal in buildings allows assessing their response to earthquakes and monitoring changes to their structural health (e.g., Rahmani et al., 2015; Rahmani and Todorovska, 2021). Past studies have demonstrated the relevance of assessing the building’s fundamental period (Goel and Chopra, 1997), which is a key parameter for estimating the expected performance of buildings during earthquakes (Michel et al., 2010). Some authors (e.g., Crowley and Pinho, 2010; Michel et al., 2010) pointed out discrepancies between the simplified period-height relationships used in most building codes (e.g., Eurocode, CEN 2004) and the fundamental period estimated experimentally using ambient noise measurements (e.g., Gallipoli et al., 2009). Thus, several authors proposed period-height relationships based on experimentally estimated fundamental periods (e.g., Gallipoli et al., 2009; Michel et al., 2010; Gallipoli et al., 2022). It is also relevant to compare the fundamental frequency range of buildings and soils (e.g., Gallipoli et al., 2020) to assess the possible occurrence of soil-building resonance (e.g., Bard et al., 1996; Mucciarelli et al., 2004).
Since 2009, the OSS network has provided significant information on the dynamic response of single buildings during the main Italian earthquakes (Spina et al., 2010). The occurrence of damage is estimated by comparing the observed interstory drift values with thresholds defined in literature (e.g., Rossetto and Elnashai, 2003 for reinforced concrete, RC, buildings). However, the procedure requires at least two recordings (one at the top and another at the bottom of the building) in order to estimate the interstory drift ratio.
Based solely on recordings at the bottom of buildings (or in the free field nearby), it is possible to rapidly estimate the occurrence of damage by taking the simplified buildings linear dynamic response into account (Scaini et al., 2021; Petrovic et al., 2022). In fact, the DARR (Damage Assessment for Rapid Response) method uses the entire recording and simulates the maximum relative displacement (drift) for a specific building type (defined by fundamental frequency and damping ratio) based on simplified oscillators (single or multi-degree-of-freedom) using the Z transform (Lee, 1990; Jin et al., 2004; Parolai et al., 2015). The method has produced successful results for selected building types, including unreinforced masonry (URM) buildings (Petrovic et al., 2022), a common building typology in Italy and in particular in Central Italy (Sorrentino et al., 2019).
The DARR method can be extended to estimate expected damage to specific building typologies in the surrounding area of a recording (Scaini et al., 2021). In addition to interstory drift limits (e.g., Borzi et al., 2008; Rossetto et al., 2016), relative displacement limits (e.g., Lagomarsino and Giovinazzi, 2006) are available for different building types. These include both RC and URM typologies associated with different characteristics (height, age of construction, seismic design level). The occurrence of damage is assessed by comparing the estimated relative displacement or interstory drift (ratio) for each building type with the limits available in literature. However, DARR is based on a number of assumptions, in particular on an average building height (when considering building types instead of specific buildings) and the simplified dynamic behavior of building typologies (dominated by the fundamental mode/modes, obtained from period-height relationships from literature), the choice of thresholds for damage occurrence, and the homogeneous soil conditions in the target area.
In this work, we present an application of the DARR method to the first shock of the Central Italy seismic sequence, which occurred on 24 August 2016 (Rossi et al., 2018). Recordings are available at several locations (both in free field and in structures) and at different distances from the epicenter, from both the ITACA and OSS databases. We focus our study on four target areas (Amatrice, Norcia, Visso and Sulmona) with different epicentral distances for which different damage levels have been observed. The analysis of the available recordings of the event in the four locations shows that, based on the earthquake recordings and the building characteristics, it is possible to quickly estimate whether structural damage is expected for previously characterized building typologies dominant in the study area. Outcomes are compared with damage evidence collected during field surveys (visual inspection and subsequent damage assessment) performed in these areas after the 24 August 2016 event (e.g., Fiorentino et al., 2018; Sorrentino et al., 2019; D’Ayala et al., 2019).
DARR METHOD AND DAMAGE THRESHOLDS
For the damage assessment, we use DARR, a method proposed by Scaini et al. (2021) and Petrovic et al. (2022). The linear dynamic behavior of buildings is simulated as simple single-degree-of-freedom (SDOF) oscillators, describing the buildings in a first order approximation by their fundamental frequency and the damping ratio. The fundamental frequencies are estimated from building-soil specific period-height relationships from Gallipoli et al. (2022). An average story height of 3.5 m is assumed for the ground floor (e.g., Chieffo et al., 2019), for the upper storys 3 m are considered (e.g., Sorrentino et al., 2019). The latter is compatible with the minimum required height of 2.7 m in Italy and some other European countries (Appolloni and D’Alessandro, 2021) and accounts for the floor thickness. Additionally, 1.5 m are added for the roof. For the damping ratio, a standard value of 5% (e.g., Eurocode 8, CEN 2004) is used. The relative displacement between top and bottom (drift) is calculated with the Z transform (e.g., Lee, 1990; Jin et al., 2004; Parolai et al., 2015). The total displacement at the top can be obtained as the sum of the displacement at the bottom and the relative displacement. The interstory drift ratio is estimated by dividing the relative displacement (drift) by the building height.
The occurrence of damage can be estimated using either interstory drift (e.g., Rossetto et al., 2016) or relative displacement limits from literature (e.g., Lagomarsino and Giovinazzi, 2006), based on the characteristics (construction materials) and height of the studied buildings. In this study, we consider the relative displacement damage limits for low to mid-rise URM (simple stone and regular) and RC buildings, representative of the Italian building stock and dominant in the study area. The relative displacement thresholds for different damage states are adopted from Lagomarsino and Giovinazzi (2006, Table 1) for different building typologies. The limits for low, moderate and high-code RC frames are adopted for the zone of higher seismicity in the Italian official seismic zonation (Italian Seismic Hazard map, Meletti et al., 2006; Stucchi et al., 2011 and following modifications). The description of damage levels for both masonry and reinforced concrete buildings is based on the EMS-98 (Grünthal, 1998) macroseismic scale. The method focuses on the expected occurrence of structural damage (extensive or complete). Extensive damage corresponds to level-3 damage of EMS-98 (moderate structural damage, heavy non-structural damage). Complete damage includes both level 4 and 5 of the EMS-98 scale (heavy and very heavy structural damage and/or collapse). The absence of damage is associated with a relative displacement lower than 70% of the yielding displacement (Table 1), which corresponds to level-1 damage of the EMS-98 following Lagomarsino and Giovinazzi (2006). In all other cases, non-structural damage is assumed.
TABLE 1 | Relative displacement limits (in centimeters) for selected building typologies according to Lagomarsino and Giovinazzi (2006).
[image: Table 1]DAMAGE ASSESSMENT FOR BUILDING TYPOLOGIES IN SELECTED TARGET AREAS
Our study makes use of the recordings collected by the OSS network (Osservatorio Sismico delle Strutture, Dolce et al., 2017) and the ITACA database (Russo et al., 2022), in order to estimate the expected damage for selected locations for the 24 August 2016 M6 event. We focus on the first event of the Central Italy 2016 sequence, since the applied DARR method (Scaini et al., 2021; Petrovic et al., 2022) does not account for cumulative damage.
Based on the analysis of the damage patterns after the first event of the Central Italy seismic sequence (24 August 2016, Figure 1), four areas (Figures 2A–D) are selected for the application of DARR: Amatrice, Norcia, Visso and Sulmona. Two of the selected areas were very close to the epicenter (Amatrice and Norcia, respectively 9 and 15 km away). Nonetheless, the observed damage patterns (Stewart and Lanzo, 2018; D’Ayala et al., 2019) are very different due to the characteristics of the buildings (e.g., presence or absence of retrofitting) and the occurrence of site effects. Moreover, the different damage patterns could be due to the near-source effect (Luzi et al., 2016; Tinti et al., 2016; Chiaraluce et al., 2017). The third area (Visso) is located at a medium distance of 28 km from the epicenter. Damage was mostly observed in the central-western part of the town and hardly in the historical center located in the southeastern part (Gaudiosi et al., 2016). The fourth area (Sulmona) is located at a greater distance from the epicenter (approximately 90 km): here, the shaking was perceived by inhabitants but did not cause significant damage to the buildings.
[image: Figure 1]FIGURE 1 | Map showing the locations of the four test sites Amatrice, Norcia, Visso and Sulmona (red rhombi) and the epicenter of the M6 event (yellow star).
Since for Amatrice no recordings were available from the OSS network, a free field recording from the ITACA database located close to the historical center was used to estimate the expected damage for selected building typologies. For Norcia, Visso and Sulmona, recordings of sensors of the OSS, installed in the basement of a building located in the historical center (Norcia: 3 story RC school building, Visso: 2 story simple stone URM school building, Sulmona: 4 story RC hospital building) were used for the damage assessment in the target areas which correspond to the historical centers of the three towns. In the case of Visso, the target area also includes an urbanized area located in the central-western part of the town.
The building stock of the historical centers of the four considered towns is/was composed mainly of low- and mid-rise simple stone buildings mostly constructed before 1919 (Munari et al., 2010; Sorrentino et al., 2019). In addition, low-to mid-rise regular masonry and RC frame buildings were considered due to their presence in the studied areas. These buildings were constructed typically between 1950 and 1980.
Amatrice
The ground motion recordings in Amatrice are available from the ITACA database. The considered station AMT (Figure 2A, red square) is located on sandy-silty lithofacies (Todrani and Cultrera, 2021), which can be classified as soft soils. The minimum and maximum distances between the recording and the buildings in the old town are of 200 and 600 m, respectively (Figure 2A). Unfortunately, no recording in the historical center of Amatrice is available.
[image: Figure 2]FIGURE 2 | (A–D): Location of the earthquake recordings and the selected buildings for the four target areas (from left to right, Amatrice, Norcia, Visso and Sulmona). (E–H): Results of DARR for 3-story simple stone URM buildings in the target areas of Amatrice, Norcia, Visso and Sulmona. (I–K): Documented damage collected from post-event surveys after the 24 August 2016 event in Amatrice, Norcia and Visso. The damage patterns are extracted from OpenStreetMap (OpenStreetMap contributors, 2015) and are in good agreement with the documented post-event damage (e.g., Gaudiosi et al., 2016; Stewart and Lanzo, 2018; D’Ayala et al.,. 2019). In Sulmona no damage was observed in Sulmona.
According to Vignaroli et al. (2019) and Milana et al. (2018), the old town of Amatrice was built on sands or conglomerates. Amplification effects affect the ground shaking on the Amatrice terrace (Milana et al., 2018). We assume that the recording from the AMT station can be used to assess the expected damage in the old town, but the ground acceleration on the Amatrice terrace might be larger than at the recording site due to amplification effects (Gaudiosi et al., 2021).
Following the DARR method, the relative displacement (drift) for different building typologies representative for the building stock of Amatrice (2 and 3 story URM buildings in the historical center and 3–6 story RC buildings in the town) are estimated (Table 2). The maximum absolute value of both components (aligned with the main perpendicular directions of the town) is reported in Table 2.
TABLE 2 | Damage assessment for Amatrice for the most common building typologies (2-3 story URM and 3–6 story RC buildings).
[image: Table 2]The studied building typologies were prevalent in the town of Amatrice. The building stock in the historical center was predominantly simple stone URM buildings (95%), most of them with 2 or 3 stories (Sorrentino et al., 2019). The fundamental periods T of the different building typologies are calculated using the period-height relationships proposed by Gallipoli et al. (2022) for URM and RC buildings on soft soils (URM: T = 0.0170H, RC-MRF: T = 0.0164H). The recordings of station AMT were first rotated to be aligned with the main perpendicular directions of the historical center, to take the orientation of the studied buildings (as a first order approximation, see Figure 2) into account. Based on the relative displacement limits in Table 1 (low-rise simple stone URM, extensive damage: 0.85 cm, complete damage: 1.40 cm; low-rise regular URM, extensive damage: 1.38 cm, complete damage: 2.36 cm), non-structural damage should be expected for 2 story simple stone and regular URM buildings (Table 2, relative displacement: 0.63 cm). Following the damage limits in Table 1, extensive damage should be expected for 3 story simple stone URM buildings (Table 2, relative displacement: 1.57 cm) and non-structural damage for 3 story regular URM buildings.
Our results for the expected extensive damage of 3 story simple stone URM buildings (Table 2; Figure 2E) are in accordance with the information on observed damage in the Amatrice historical center (e.g., Figure 2I; Stewart and Lanzo, 2018; D’Ayala et al., 2019). Following these reports, most of the low and mid-rise URM buildings were either highly damaged or totally destroyed during the 24 August 2016 event (see Figures 3A,B for a comparison of the main road before and after the considered M6 event). According to Sorrentino et al. (2019) most damage occurred to buildings with more than 2 stories. A video of the damage undergone by the historical center is available at: https://www.youtube.com/watch?v = 3-UDfhIH70M. Outside the historical center, in Amatrice a number of low (1–3 story) and mid-rise (4–7 story) RC buildings (of which 37 surveyed by Masi et al., 2019) were constructed in different time periods, based on different building codes (low and moderate). For these buildings, different damage levels were observed after the analyzed M6 event (Stewart and Lanzo, 2018; Masi et al., 2019; D’Ayala et al., 2019). In our study, we considered the damage thresholds for both low and moderate code RC frame buildings. Results are presented for 3–6 story RC buildings which are the most frequent RC buildings in the study area. Following both the low and moderate code thresholds, non-structural damage should be expected for 4–6 story RC frame buildings. Here, we present two examples of RC buildings for which information on the damage state is available from literature (D’Ayala et al., 2019). The first one is a 6 story RC building constructed in the late 1980s, following a moderate building code (Figure 2A, yellow triangle), only non-structural damage was inspected after the event. The second is a 5 story RC building constructed in the late 1970s or early 1980s following a low building code (Figures 3C, 2A, red triangle). This building was extensively damaged during the M6 event (Figure 3C), suffering structural damage (partial collapse of the masonry infill panels and shear failure of some columns). Additional pictures of the damage (non-structural and structural) undergone by the two RC buildings are available in D’Ayala et al. (2019). Considering the damage thresholds for the two selected mid-rise RC frame buildings, from our results we expect non-structural damage for both buildings. This is in accordance with the observed damage for the moderate-code, but not for the low-code building.
[image: Figure 3]FIGURE 3 | Photos of Amatrice. (A) View of the historical center of Amatrice on 26 February 2012 (Wikimedia Commons, Silvio Sorcini, licensed under CC-BY 4.0 and is available at: https://commons.wikimedia.org/wiki/File:2012-02-26_Corso_Amatrice.jpg); (B) Historical center on 29 August 2016, damaged by the M6 event of 24 August 2016 (Wikimedia Common, Diego Bianchi, licensed under CC-BY 2.0 and is available at: https://commons.wikimedia.org/wiki/File:Terremoto_centro_Italia_2016_-_Amatrice_-_corso_Umberto_I_(29242968591).jpg); (C) 5 story RC building, constructed following a low code, showing extensive damage photographed on August 31, 2017 (Mapillary, https://www.mapillary.com/, valentina_p, licensed under CC BY SA 4.0).
Norcia
For Norcia, the M6 earthquake recordings of the sensors (OSS, Figure 2B) installed in the basement of the San Benedetto school building (e.g., Comodini et al., 2018; Falcone et al., 2021) were used to estimate the expected relative displacements (Table 3, maximum absolute values of the two horizontal components are reported) using the DARR method. The target area corresponds to the historical center, which according to Sorrentino et al. (2019) was mostly constituted by low-rise URM buildings (in total 95%): 74% of them had 2 stories, 15% 1 story and 11% 3 stories. Hence, the building typologies of 1–3 story URM buildings were analyzed in this study. Moreover, low and mid-rise RC buildings were studied.
TABLE 3 | Damage assessment for different building typologies for Norcia (1-3 story URM and 3-5 story RC buildings).
[image: Table 3]The historical center is located in an intermountain sedimentary basin (e.g., Bindi et al., 2011; Luzi et al., 2019; Pagliaroli et al., 2020), i.e., on soft soils with potential occurrence of site effects. Thus, the fundamental periods T of the building typologies are calculated using the period-height relationships for URM and RC buildings on soft soil from Gallipoli et al. (2022). Since the school building was aligned the same way as most of the buildings in the historical center, the traces were not rotated.
Based on our results (Table 3, Figure 2F), non-structural, extensive and complete damage should be expected for 1, 2, and 3 story simple stone URM buildings, respectively. For 1–3 story regular URM buildings, non-structural damage should be expected. During the first event of the sequence, only a few buildings were damaged, most of them not structurally (Figure 2J and D’Ayala et al., 2019), but some of them also suffered structural damage. After the 1979 (Val Nerina) and 1997 (Umbria-Marche) events, most of the buildings in Norcia have been strengthened and retrofitted (Sisti et al., 2019; Sorrentino et al., 2019). Structural damage was only observed for a few masonry buildings with poor or no retrofitting. The URM buildings in the historical center of Norcia are assumed to behave as regular URM buildings to account for the retrofitting. In that case, only non-structural damage would be observed, in accordance with the few damage observed in the historical center of Norcia after the M6 event.
One example of the retrofitting of the buildings in Norcia is the 3 story RC school building, from which the recordings in the basement were used for the damage assessment. The building was designed in the 1960s and retrofitted in 2003 and 2011 (Comodini et al., 2018). The second retrofitting included the installation of dissipative braces on the 1st to 3rd floors. Figure 4 shows the simulated and observed relative displacements for this building for an M3.9 event occurring on 30 November 2013 at approximately 20 km distance and for the M6 event of 24 August 2016. The observed accelerations at the top and bottom of the building and the corresponding Fourier Spectra are presented in Supplementary Figure S1, S2. The building is simulated as an SDOF oscillator in both directions, with fundamental frequencies of 4.3 Hz (longitudinal direction X) and 4.6 Hz (transverse direction Y) and a damping ratio of 2% for small magnitude events. The values characterizing the SDOF oscillator (frequency and damping) have been estimated using a small magnitude event and tested for several small magnitude events, giving satisfactory results in all cases. As presented in Figure 4A, the simulated and observed maximum absolute relative displacements are similar for the M3.9 event for both directions. For the y direction, the relative displacement was almost precisely reconstructed. When considering the M6 event, probably due to the activation of the dissipators, the damping increases in the y direction. Therefore, a 10% damping ratio (Ferraioli and Lavino, 2019; Foti et al., 2020) is assumed for this direction. Although we do not precisely reconstruct the observed relative displacement at the top of the building, the simulated and observed maximum absolute relative displacements at the top of the building are similar. The simulated maximum absolute relative displacement was estimated as 1.7 cm. When considering the damage limits for a low-rise RC frame building constructed after a low or moderate code, non-structural or no damage should be expected, respectively. This is in accordance with the fact that only non-structural damage was observed.
[image: Figure 4]FIGURE 4 | Observed (blue) and simulated relative displacements (orange) at the top of the building for an M3.9 event of 30-11-2013 (A) and the M6 event of 24-08-2016 (B) for the two main directions of the building (X and Y).
Visso
For the Visso target area, the recordings in the basement of the Pietro Capuzi school building (OSS, Figure 2C) have been used to estimate the expected relative displacements (Table 4, maximum absolute values of the two horizontal components are reported) and the corresponding expected damage. The main axes of the school building were approximately oriented as the dominant building directions of the Visso town. The case study of the Visso school building has been studied in Petrovic et al. (2022) and, following the limits for 1–2 story simple stone URM buildings in Table 1, complete damage should be expected for the August 24 M6 event. After the event, moderate to severe damage has been observed (Brunelli et al., 2021). The Visso target area includes both the historical part (located in the southeast) and the central-western part of the town. The town of Visso is/was mainly composed of 2–4 story simple stone URM and 2–3 story regular URM buildings (Gaudiosi et al., 2016) constructed on soft soils (Brunelli et al., 2021). Thus, the T-h relationships for soft soils (Gallipoli et al., 2022) were used. Many buildings had been partially reconstructed or retrofitted after the 1997 Umbria-Marche sequence (Gaudiosi et al., 2016).
TABLE 4 | Damage assessment for different building typologies for Visso (2-4 story URM buildings).
[image: Table 4]Following the considered damage limits (Table 1), non-structural damage should be expected for 2–4 story simple stone URM buildings (Table 4, Figure 2G). For 2–3 and 4 story regular URM buildings, no damage and non-structural damage should be expected, respectively. Our results are partially in accordance with the fact that damage has been observed only for a few buildings in the historical center (Gaudiosi et al., 2016).
However, the surveys performed after the 24 August event (Gaudiosi et al., 2016) show that both non-structural and structural damage occurred for many simple stone buildings outside the historical center (Figure 2K), including some partially reconstructed after the 1997 Umbria-Marche sequence (Gaudiosi et al., 2016). These differences might be due to a combination of factors including the variability of the dynamic behavior of buildings within the same typology and the occurrence of site effects, also suggested by Gaudiosi et al. (2016).
Sulmona
The recordings in the basement of the Orthopedic Surgery Pavilion of the Sulmona hospital (part of OSS, Figure 2D) have been used to calculate the expected relative displacements (Table 5, maximum absolute values of the two horizontal components are reported) in the target area of Sulmona (epicentral distance: approximately 90 km). The buildings in the historical center are mostly URM (simple stone) buildings constructed before 1800 (Munari et al., 2010). Thus, we considered here 2 and 3 story URM buildings for the historical city center, as well as low and mid-rise RC buildings for the recently constructed buildings. Sulmona was constructed on terraced fluvial and alluvial deposits (Di Giulio et al., 2015), therefore, the T-h relationships for soft soils (Gallipoli et al., 2022) were considered. The hospital building’s main directions are aligned with the dominant building directions in the town of Sulmona.
TABLE 5 | Damage assessment for different building typologies for Sulmona (2-3 story URM and 3-5 story RC buildings).
[image: Table 5]No damage should be expected Figure 2H based on the obtained relative displacement (Table 5, Figure 2H) using the limits for different damage states (Table 1) for all building typologies. Our results are in accordance with the fact that no damage was reported in Sulmona after the M6 event.
DISCUSSION
In this study, we tested and verified the potential of the DARR method for providing local-scale information on structural damage for selected building typologies dominant in the studied areas. The estimation is based on a single recording in or close to be selected target area when the site conditions can be assumed homogeneous. Since only the recordings of one sensor are needed for each target area, it is a cost-effective and quick method for a rapid estimation of the expected damage both in single monitored buildings and target areas, and can support rapid response actions of the civil protection. If more than one recording is present for a considered target area, the choice should be made depending on the proximity of the recording and the similarity of geological conditions.
The DARR method relies on several assumptions discussed in Scaini et al. (2021) and Petrovic et al. (2022). There is a wide number of studies on the dynamic response of specific buildings to earthquakes (e.g., Rahmani and Todorovska, 2021) that allow identifying damage patterns in a precise way. The DARR method only accounts for the linear dynamic response of buildings, assuming that it can support the identification of structural damage. With this approximation, the precise reconstruction of the traces during the non-linear behavior is not possible, but the overstepping of the thresholds and the subsequent damage is successfully assessed (Scaini et al., 2021; Petrovic et al., 2022). For the purposes of rapid damage assessment, this approximation is satisfactory. DARR can be used for a large number of buildings with prior information (dominant building typologies, average building heights, period-height relationships, soil conditions) supporting rapid post-event damage assessment. Nonetheless, to correctly define the damage thresholds and to assess the expected damage, precise information on the building typologies (including construction age for building code identification) is needed. In particular, the use of period-height relationships requires information on the average building or story height, which might vary among the typologies, leading to different values of the fundamental frequency and thus, different relative displacement and expected damage. In case of scarce information on the building typologies, the identification of the damage thresholds and thus, the assessment of expected damage might be erroneous. In our study, we estimated the frequencies representative for the considered building typologies from period-height relationships from literature (Gallipoli et al., 2022). These relationships were developed from ambient vibration measurements in residential buildings in southern and northeastern Italy. There might be a variation in the frequencies of the building typologies of the studied area due to variations in the construction (e.g., materials, story heights etc.). Peak relative displacements increase drastically for mid to high-rise buildings with frequencies lower than 2 Hz (Norcia) and 5 Hz (Amatrice), as shown by the response spectra in Figure 5. Following the damage limits (Table 1), these buildings would suffer extensive or complete damage according to DARR.
[image: Figure 5]FIGURE 5 | Displacement Response Spectra for (A) Amatrice (B) Norcia (C) Visso and (D) Sulmona for the two main directions of the buildings (gray and black lines) in the considered towns.
The DARR method relies heavily on the choice of the relative displacement or interstory drift limits used for the damage assessment. Currently, the literature provides both interstory drift (e.g., Borzi et al., 2008; Shahzada et al., 2011; Chourasia et al., 2016; Minas and Galasso, 2019) and relative displacement limits (e.g., Lagomarsino and Giovinazzi, 2006; Frankie et al., 2013; Lestuzzi et al., 2016). Each set of limit values is derived based on different assumptions and for specific building typologies and study areas, and their use and validity depends on the typology dynamic behavior. DARR assumes that the relative displacement and interstory drift limits derived with different methods (e.g., numerical methods) are comparable with those found with the Z-transform for the purpose of a simplified damage assessment. However, further work is needed to validate the usability of the relative displacement and interstory drift limits derived with numerical methods. This would be strongly supported by the availability of more recordings both at the bottom and at the top of damaged buildings in correspondence of structural damage.
In this study, we considered different building typologies that are representative for the studied areas. The selection of damage thresholds for the analyzed building typologies is critical and further work is needed in order to estimate the expected behavior of specific building types (e.g., retrofitted URM buildings) and the influence of different soil conditions (e.g., Gallipoli et al., 2020). In addition, different damage state definitions are available from literature, based either on empirical damage identification (e.g., EMS-98, Grunthal, 1998) or limit states identified by numerical modeling (e.g., Borzi et al., 2008). In order to compare the outcomes of different damage assessment, a strong uniformation effort is required, as discussed by e.g., Rossetto and Elnashai (2003), Faravelli et al. (2019).
Amatrice and Norcia had a similar epicentral distance (9 and 15 km, respectively) and the ground motion recordings of the August event in Norcia and Amatrice are comparable in terms of PGA and PGD. However, during the 24 August 2016 M6 event, masonry buildings in Norcia successfully resisted a ground motion that might have led to a structural damage state (D4-D5) as documented in Amatrice (Figure 2I). The different damage patterns might be due to several factors including site effects, building typologies (e.g., retrofitting) and orientation, and the main direction of seismic wave propagation. In particular, DARR assumes that the ground motion in the target areas is homogeneous and can be represented by the recording. However, Figure 5 shows the different response spectra in Amatrice and Norcia, with large amplitudes at lower frequency related to local site effects. All these factors should be pondered when interpreting the recording from a single station and concur to identify the target area for applying DARR. For the Amatrice test site, the location of the recordings was outside the historical center (target area). Due to site effects, the relative displacement and thus, the expected damage might be slightly underestimated.
Apart from a number of studies on specific buildings (e.g., Ferraioli and Lavino, 2019; Gandelli et al., 2019; Foti et al., 2020), to our knowledge there are no studies that estimate the expected increase in relative displacement or interstory drift capacity for specific retrofitted building typologies. Additional studies on relative displacement or interstory drift limits for retrofitted building typologies might improve the results on the expected damage from the DARR method. In addition, no specific period-height relationships exist for retrofitted buildings which modify the stiffness of the buildings (e.g., Michel et al., 2018). Finally, retrofitting can influence the building’s damping and can be different in the two main building directions, as shown for the case of San Benedetto school in Norcia. Further research on the effect of retrofitting on the dynamic response of the considered building typologies would be desirable.
For the case study of Visso, non-structural damage should be expected for the August 24 event for 2–4 story simple stone URM buildings. The school building in Visso was a 2 story simple stone URM building and was damaged during this event. However, the school building has to be considered as a different building typology, with much higher floor heights and a more complex T shape. Following the T-h relationships from Gallipoli et al. (2022), for a 2 story building of 8 m height, we assume an average fundamental frequency of 7.35 Hz. In contrast, the school building was 13.5 m high and had a fundamental frequency of 3.18 Hz (Ferrero et al., 2020). For this reason, the expected relative displacement is much higher (3.5 cm) than the one estimated for a standard 2 story URM building, resulting in complete damage. The response spectra in Figure 5 shows that for Visso the expected relative displacement increases for fundamental frequencies below 4 Hz. In the study of the school building in Visso (Petrovic et al., 2022), the damping ratio has been estimated as 15%. In this study, the standard value of 5% (EC8, CEN 2004) was used, resulting in a slightly higher relative displacement.
DARR supports the combined use of both relative displacement and interstory drift limits which might be appropriate for different case-studies (e.g., high-rise flexible buildings). Further work is needed to explore how these limits work and their performance for different building types. The validation of DARR is, at the time, limited by the difficulties of having simultaneous availability of the required data which comprise earthquake recordings, buildings characteristics (type, material, age, height, fundamental frequencies and damping) and knowledge of the soil conditions. Future efforts will be devoted to testing the method in other areas where the information is available.
There are several studies on the effect of different ground motion parameters on the expected structural building damage (e.g., Ghimire et al., 2021 for RC buildings). The optimum criterion depends on the expected collapse mechanism (which varies between building typologies), and can be defined based on multiple indicators, including duration (Hancock and Bommer, 2006). This criterion would help the rapid identification of areas where structural damage is expected and prioritize interventions.
CONCLUSION
In this work, we present an application of the DARR method to the August 24 M6 event of the Central Italy seismic sequence (2016–2017). Expected damage is estimated in four selected towns in Central Italy (Amatrice, Norcia, Visso and Sulmona) where earthquake recordings were available. Results of the damage assessment, performed for dominant building typologies (URM and RC frames), were validated with post-event surveys. DARR successfully estimated expected damage for some building types as mid-rise URM (e.g. in the historical center of Amatrice) but failed to identify the damage occurred for low-rise URM buildings (e.g. in the town of Amatrice). The reasons for this are discussed in the article pointing out the aspects to be improved in future. Extensive and complete damage is obtained in accordance with the observed damage for 2 and 3 story simple stone URM buildings in Norcia and non-structural damage for regular URM buildings. It also correctly estimates the absence of structural damage in a target area located at a larger epicentral distance (Sulmona). Our results suggest that relative displacement limits are suitable for the damage assessment of low and mid rise building typologies considered in this work. DARR has the potential to provide a timely and cost-effective estimation of the expected damage, both for selected buildings and target areas, to support rapid response in the aftermath of a potentially destructive earthquake.
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Building typology

Seismic code

Relative displacement limits (cm) for selected damage levels

No damage (ND)

Extensive damage (ED)

Complete damage (CD)

Simple stone URM, low-rise (1-2 story) na. <0.19 >0.85 >1.40
Simple stone URM, mid-rise (3-5 story) na. <0.42 >1.35 >2.10
Regular URM, RC-floors, low-rise (1-2 story) ~ na. <0.28 >1.38 >236
Regular URM, RC-floors, mid-rise (3-5 story) ~ na. <0.62 >2.19 >3.50
RC frame, low-rise (1-3 story) Low code <167 >4.78 >7.16
RC frame, mid-rise (4-7 story) <2.60 >7.42 >1L14
RC frame, low-rise (1-3 story) Moderate code <1.96 >6.48 >10.15
RC frame, mid-rise (4-7 story) <2.79 >10.19 >16.39
RC frame, low-rise (1-3 story) High code <184 >7.47 >1230
RC frame, mid-rise (4-7 story) <223 >10.59 >17.99

Extensive and complete structural damage (ED, CD respe
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ly) are associated with the exceedance of the respective limits. No damage (ND) is expected for displacement lower than the
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Building typology  Average building Period T* Frequency f Relative displacement Expected damage

height (m) (s) (Hz) (cm)
2 story URM 8 0.136 7.35 023 Simple stone URM: NSD, Regular URM: ND
3 story URM 1 0.187 535 043 Simple stone URM: NSD, Regular URM: ND
4 story URM 14 0238 420 114 Simple stone and regular URM: NSD

“Calculated using
ND: No:damage: N3l

H from Gallipoli et al. (2022) for URM and RC buildings soft soil.
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Building typology Average building Period T* Frequency f Relative displacement Expected damage

height (m) (s) (Hz) (cm)
2 story URM 8 0.136 7.35 0.63 Simple stone and regular URM: NSD
3 story URM 11 0.187 535 157 Simple stone URM: ED, Regular URM: NSD
3 story RC 1 0.180 554 132 Low and moderate code RC frame: ND
4 story RC 14 0.230 436 292 Low and moderate code RC frame: NSD
5 story RC 17 0279 359 331 Low and moderate code RC frame: NSD
6 story RC 20 0328 305 488 Low and moderate code RC frame: NSD

“Calculated using T=cH from Gallipoli et al. (2022) for URM and RC buildings on soft soil.
ND, No structural damage; NSD, Non-structural damage; ED, Extensive damage; CD, Complete damage.
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Building typology

Average building
height (m)

Period T*
(s)

Frequency

(Hz)

Relative displacement
(cm)

Expected damage

1 story URM
2 story URM
3 story URM
3 story RC
4 story RC
5 story RC

5
8
11
11
14
17

0.085
0.136
0.187
0.180
0230
0279

1176
7.35
535
554
4.36
339

0.20
0.98
217
226
220
207

Simple stone and regular URM: NSD
Simple stone URM: ED, Regular URM: NSD
Simple stone URM: CD, Regular URM: NSD
Low and moderate code RC frame: NSD
Low and moderate code RC frame: ND

Low and moderate code RC frame: ND

“Calculated using T=cH from Gallipoli et al. (2022) for URM and RC bui

ND, No structural damage; lon-strctural damage; ED, Extensive damage; CD, Complete damage.

D,

gs on soft soil.
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Building typology Average building Period T* Frequency f Relative displacement (cm) Expected damage

height (m) (s) (Hz)
2 story URM 8 0.136 736 001 Simple stone and regular URM: ND
3 story URM 11 0.187 535 001 Simple stone and regular URM: ND
3 story RC 1 0.180 554 001 Low and moderate code RC frame: ND
4 story RC 14 0.230 436 002 Low and moderate code RC frame: ND
5 story RC 17 0.279 359 0.03 Low and moderate code RC frame: ND

“Calculated using T=cH from Gallipoli et al. (2022) for URM and RC bui

ND, No structural damage; NSD,

gs on soft soil.

on-structural damage; ED, Extensive damage; CD, Complete damage.
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