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The Amazon River Basin (ARB) plays an essential role in global climate

regulation. Recent studies have revealed signs of increasing drought

conditions in different parts of the basin. Although human activities have

degraded large areas, little work has been done to assess whether

prolonged drought may exacerbate land degradation. Among different

methods for monitoring land degradation, the Sustainable Development

Goal (SDG) indicator 15.3.1 adopted by the United Nations Convention to

Combat Desertification (UNCCD) allows a comprehensive assessment of the

impacts of land degradation due to its multi-factor nature and scalability. The

aims of this study are twofold: 1) to assess the status of land degradation using

the SDG indicator 15.3.1 from 2001 to 2020 in the Amazon basin; and 2) to

explore the relationship between the detectability of land degradation using the

UNCCD approach and long-term drought severity. The Standardized

Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index

(SPEI), and self-calibrating Palmer Drought Severity Index (scPDSI) were used as

drought indices. The results revealed 757,704 km2 (12.67% of the basin) as

degraded land, which was reflected by a downward trend in land

productivity dynamics followed by the combined downward trend in land

productivity, Soil Organic Carbon (SOC) degradation, and land cover

degradation. The largest land degradation hotspot was identified along the

southwestern boundary of the Amazon River Basin. Furthermore, there was

strong evidence that the detection of land degradation through SDG indicator

15.3.1 is sensitive to long-term drought, particularly when applied to rainfed

croplands.
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1 Introduction

The Amazon River Basin (ARB) is a hotspot of biodiversity

and ecosystem function in South America (Ritter et al., 2019). It

plays an essential role in the hydrological and carbon cycles at the

regional and global scales through precipitation recycling and

acting as a carbon sink (Marengo, 2005). These cycles are

dependent on the spatiotemporal patterns of precipitation

(Haghtalab et al., 2020). The moisture transport from the

Atlantic Ocean partially controls the temporal variability of

rainfall (Sorí et al., 2017). The precipitation is mainly

modulated by sea surface temperature (SST) anomalies over

the tropical Atlantic region and the El Niño-Southern

Oscillation (ENSO) phenomenon (Satyamurty et al., 2013).

Some of these mechanisms and their interactions may lead to

drought events in different parts of the Amazon basin (Marengo

et al., 2013). On the other hand, the feedback between the climate

and the tropical rainforest influences precipitation at the local

and regional scales (Bagley et al., 2014) and thus must be

considered as part of any drought assessments on the vegetation.

Drought originates from a deficiency of precipitation over a

specific region. The temporal persistence can affect different

sectors as this anomaly propagates through the hydrological

cycle, so the scientific literature recognizes four major types:

meteorological, hydrological, agricultural, and socioeconomic

drought (Mishra and Singh, 2010). Drought has various key

features (i.e., intensity, spatial extent, timing, and duration),

which can be derived from numerical indices based on

observed measurements, remote sensing, or modeled data.

Nowadays, the increased availability of satellite missions

dedicated to Earth observation has allowed the development

of satellite-based indices to monitor drought conditions in large

regions with limited access to observational data (Ahmadalipour

et al., 2017), such as the Amazon basin. Unlike ground-based

drought indices, these indices provide comprehensive spatial

coverage, long time series, and data completeness. Their

attributes have motivated the progressive adaptation of

ground-based drought indices to satellite data to overcome

their point-in-space nature (Zargar et al., 2011). The

Standardized Precipitation Index (SPI, McKee et al., 1993),

Standardized Precipitation Evapotranspiration Index (SPEI,

Vicente-Serrano et al., 2010), and self-calibrating Palmer

Drought Severity Index (scPDSI, Wells et al., 2004) represent

examples of drought indices that take advantage of satellite data.

The SPI has been widely used to monitor meteorological

droughts due to its multi-scalar nature and capacity to identify

different drought types. It has also been endorsed by the World

Meteorological Organization (WMO) in preference to others of a

similar character (Hayes et al., 2011). The SPI considers the

cumulative precipitation at different time scales, is fitted with a

probability distribution, and is then transformed to the normal

distribution while considering a baseline period (Zargar et al.,

2011). There is a wide variety of satellite-based gridded

precipitation products. However, the Climate Hazards Group

InfraRed Precipitation with Stations (CHIRPS) offers significant

advantages because it combines satellite and rain gauge

information (Funk et al., 2015). CHIRPS also has data

availability on a longer temporal scale (1981–present), high

spatial resolution (0.05°), low latency (15°days), and different

temporal resolutions (e.g., daily, pentadal, dekadal, monthly, and

annual). Moreover, it has been assessed through comparisons to

gauge measurements in the Amazon basin, exhibiting an

acceptable performance on a monthly time scale (da Motta

Paca et al., 2020; Haghtalab et al., 2020). Therefore, the

CHIRPS-based SPI is ideal for meteorological drought

monitoring throughout the Amazon basin (Oliveira-Júnior

et al., 2021).

The calculation of the SPEI involves the same procedure as

the SPI, except that it considers precipitation (P) minus potential

evapotranspiration (PET) rather than precipitation alone. For

this reason, the SPEI is better suited for evaluating meteorological

drought impacts under global climate change (Zargar et al.,

2011).

Unlike the SPI and SPEI, the scPDSI is more appropriate

for identifying agricultural droughts. It has been developed

based on a two-layer soil moisture balance in the rooting zone,

whose inputs are the soil water capacity, precipitation, and

PET. The processing steps include a self-calibrating phase

where a set of empirical constants are replaced with

dynamically calculated values considering the

characteristics of the local climate (van der Schrier et al.,

2013). The positive values of the scPDSI, SPI, and SPEI

represent wetter than average conditions, while negative

values denote drier than average conditions.

There are currently various free global SPEI, SPI, and scPDSI

products available, including the Global SPEI Database (Vicente-

Serrano et al., 2010) and global scPDSI (van der Schrier et al.,

2013). The key benefit of the SPI, SPEI, and scPDSI derived from

satellite data is that these are comparable across space and time

because they use a similar drought category classification (Zargar

et al., 2011). Despite having so many drought indices, there is no

universally accepted index to assess drought. This paradox is

mainly due to the complexity of the drought phenomenon and

the attributes of each drought index (Mishra and Singh, 2010). As

mentioned earlier, the SPEI and SPI show better performance

than the scPDSI in detecting meteorological drought. However,

the scPDSI is a more reliable indicator of drought-induced

decline in plant photosynthetic activity (Keyantash and

Dracup, 2002; van der Schrier et al., 2013). This does not

imply that one is better than another but rather that each one

has a specific scope of application. Obviously, a comprehensive

drought assessment must integrate several drought indices to

capture underlying processes that are not apparent due to

complex water-vegetation-atmosphere interactions (Hao and

Singh, 2015). For these reasons, the SPI, SPEI, and scPDSI

were adopted for drought characterization in this study.
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Drought varies significantly in duration, spatial extent, and

intensity in the Amazon basin (Paredes-Trejo et al., 2021). For

instance, the Amazon basin suffered two unprecedented

droughts in 2005 and 2010. Both events caused massive

forestry losses through wildfires (Panisset et al., 2018). Recent

studies have suggested that the high deforestation rate observed

from satellite images in recent years could have exacerbated their

impacts (Bullock et al., 2020). However, it is still unclear whether

a concomitant effect between the drought and human activities

may be leading to accelerated land degradation in the Amazon

basin.

Land degradation is a serious environmental problem at

present. The United Nations Convention to Combat

Desertification (UNCCD) defines this term as the reduction of

the biological or economic productivity of the land because of a

combination of pressures, including climate variations and

human activities (Diallo, 2008). Several satellite-based

approaches have been applied to analyzing land degradation

in the Amazon basin (Lu et al., 2007). Most of them assess the

long-term land degradation, exploiting the strong relationship

between the in-situ Net Primary Productivity (NPP)

measurements and a reflectance-based vegetation index, such

as the Normalized Difference Vegetation Index (NDVI) (Li et al.,

2021; Rotllan-Puig et al., 2021). The challenge of this type of

method is to discriminate between the biogenic (i.e., insect

attacks), climate (i.e., drought), and anthropogenic

(i.e., deforestation) disturbances (Easdale et al., 2018). In the

Amazon basin, it is well known that extreme droughts

significantly decreased NDVI values in grasslands and

pastures (Barbosa et al., 2015).

The determination of transitions from one land cover and

land use (LCLU) class to another for two specified dates using

satellite-based land cover maps has been used to evaluate land

degradation in the Amazon basin (Souza et al., 2020). Among the

state-of-the-art LCLUmaps for this basin, those developed by the

MapBiomas network using Google Earth Engine have the highest

accuracy (Souza et al., 2020). Nevertheless, this approach is not

entirely suitable for degradation detection. The adopted

classification system and uncertainties in the LCLU map may

miss relevant transitions for detecting land degradation (Neves

et al., 2020).

The UNCCD adopted a novel approach for land degradation

assessment through satellite-based data in 2021 called the

Sustainable Development Goal (SDG) indicator 15.3.1. This

indicator expresses the proportion of land degraded over the

total land area for a baseline and subsequent reporting periods.

The calculation of the SDG indicator 15.3.1 is based on three sub-

indicators: 1) trend in land cover, which identifies where

degradation occurs through land cover change; 2) trend in

land productivity, which estimates the change in long-term

land productivity derived from the NDVI-based annual

productivity; and 3) trend in soil organic carbon (SOC)

stocks, which estimates the change in the SOC. Three metrics

allow us to measure land productivity: 1) trend, which measures

the trajectory of productivity change; 2) state, which compares

the current productivity level against historical registers of

productivity; and 3) performance, which indicates the level of

local productivity compared with other areas with exhibiting

similar land productivity potential in the targeted region. The

three sub-indicators are integrated using a one-out-all-out

(1OAO) method. The premise is that land degradation occurs

when any sub-indicator shows degradation (Sims et al., 2019).

Each approach mentioned above has strengths, weaknesses,

and limitations, but the UNCCD approach attempts to provide a

robust procedure for monitoring land degradation (Prince,

2019). Since that studies assessing land degradation through

SDG indicator 15.3.1 across the Amazon basin are currently

lacking, the key contributions of this paper were to assess the land

degradation using that indicator and the relationship between the

detectability of land degradation and long-term drought severity

in the entire basin. The premise is that the delayed response of

vegetation to drought could be misunderstood by the SDG

indicator 15.3.1 as a degradation process. In this context, the

drought severity derived from SPI, SPEI, or scPDSI is taken as a

proxy for long-term drought conditions.

2 Data and methods

2.1 Study area

The study was conducted in the Amazon River Basin (ARB),

located between 5.3°N and 20.1°S and 49.2–79.5°W (Figure 1). At

Óbidos, a city near the basin’s outlet, the mainstream drains

4,670,000 km2 with an annual mean flow of 163,000 m3/s (Nobre

et al., 2009). The elevation ranges from near 0 m above sea level

(a.s.l.) in the eastern lowlands to more than 3,000 m a.s.l. In the

higher Andes, with an estimated 24 million inhabitants (Tritsch

and Le Tourneau, 2016). The forest is the predominant land

cover, covering about 83% of its entire surface (Ometto et al.,

2016). The spatiotemporal precipitation variability is modulated

by the moisture transport from the Atlantic Ocean, which is

controlled by SST anomalies over the tropical Atlantic region and

the ENSO phenomenon (Marengo, 2005). Mean annual

precipitation ranges from around 1,500 to >2,500 mm. The

rainy season is mainly concentrated from March to May in

the northern portion of the Amazon basin, while the dry

season co-occurs in the southern portion; this pattern is

reversed during the northern region’s dry season

(i.e., December to February) (Marengo, 2004). While

precipitation varies seasonally and spatially in different parts

of the Amazon basin, the temperature regime is more stable; the

annual average air temperature generally remains between 24°C

and 26°C (Kayano et al., 2017). The Köeppen-Geiger climate

zones Af, Am, and BWh are dominant in about 93% of the basin

(Beck et al., 2018).

Frontiers in Earth Science frontiersin.org03

Paredes-Trejo et al. 10.3389/feart.2022.939908

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.939908


2.2 Datasets

2.2.1 CHIRPS-based standardized precipitation
index

The CHIRPS dataset is considered a reliable dataset for

drought studies in the Amazon basin, as confirmed in

previous studies (da Motta Paca et al., 2020; Haghtalab et al.,

2020; Oliveira-Júnior et al., 2021). Therefore, the SPI derived

from the gridded CHIRPS precipitation product (available at

https://bit.ly/3hoyFWn; version 2; spatial resolution: 0.05°) at a

12-month time scale (hereafter referred to as SPI12) was used to

assess drought conditions in time over the Amazon basin. In this

context, the SPI12 for December 2001 considers the total P from

January 2001 to December 2001. The rationale behind this time

scale is to focus attention on long-term drought events to ensure

consistency with the UNCCD approach used to assess land

degradation and drought (Sims et al., 2019; Barker et al.,

2021). A reference period of 1981–2010 was used to calculate

the SPI12. The SPI12 was calculated using the R package SPEI

(version 1.7) developed by Beguería et al. (2014); further details

can be found in McKee et al. (1993).

2.2.2 Standardized precipitation
evapotranspiration index

In order to assess long-term atmospheric dryness in the

Amazon basin, the SPEI at 0.5° spatial resolution and a 12-

month time scale (hereafter referred to as SPEI12) was extracted

from the global gridded SPEI database (available at https://bit.ly/

3C5r0WH; version 2.6). This database is maintained by the

Spanish National Research Council (CSIC), covering January

1901 to December 2018 at several time scales. The CSIC uses P

and PET from the Climate Research Unit Time Series (CRU TS)

dataset (version 4.03) developed by the University of East Anglia

to calculate SPEI12. PET is derived from the Food and

Agriculture Organization of the United Nations-56 (FAO-56)

Penman-Monteith approach (Beguería et al., 2014). The CSIC-

FIGURE 1
The study area. Map of (A) the hydrographic network; (B) mean annual precipitation from the CHIRPS dataset for the period 2000–2018; (C)
LCLU from MapBiomas at 2020 aggregated to the UNCCD classes (Sims et al., 2019); (D) terrain elevation according to the Shuttle Radar
Topographic Mission (Jarvis et al., 2008).
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based SPEI12 has been used in some climate studies in the

Amazon basin, showing a low percentage of uncertainty

compared to ground-based benchmark sites (Awange et al.,

2016). Other dataset details are provided in Vicente-Serrano

et al. (2010).

2.2.3 Self-calibrating palmer drought severity
index

The impact of drought conditions on the root-zone soil

moisture was assessed through the global scPDSI dataset

(available at https://bit.ly/3C7Uh32; version 4.05; spatial

resolution: 0.5°). Similar to SPEI, P and PET from the CRU

TS dataset (version 4.05) are used to calculate scPDSI.

Nevertheless, different from the SPEI and SPI, this drought

index is based on a monthly time scale. The scPDSI has

proved to be a reliable index to assess the soil moisture stress

suffered by plants during the growing season in the Amazon

basin (Lewis et al., 2011; Jiménez-Muñoz et al., 2016), which was

the primary motivation for choosing the scPDSI. Further

technical details about the scPDSI are presented by Wells

et al. (2004).

2.2.4 Land cover and land use maps
In order to assess the land cover change in the Amazon

basin, the MapBiomas LCLU dataset (available at https://bit.

ly/3hL2Ib8; version 3; hereafter referred to as MapBiomas) at

30 m spatial resolution was used. These maps are derived

from satellite images from the Landsat program. For the first

level, they provide six LCLU classes (i.e., forest, non-forest

formation, farming, non-vegetated area, water, and not

observed) compatible with the Food and Agriculture

Organization (FAO)’s Land Cover Classification System

(LCCS) hierarchical structure (Souza et al., 2020). Its high

overall accuracy in the Brazilian Amazon (about 95%)

verified in recent studies (Anderson et al., 2018) has been

the primary motivation for using it in this study. More details

about the uncertainty of the product can be found in Neves

et al. (2020).

2.2.5 Normalized difference vegetation index
The land productivity change in the Amazon basin was

assessed through the 16-day MOD13Q1 NDVI product

(available at https://lpdaac.usgs.gov; collection 6; hereafter

referred to as NDVI) at 250 m spatial resolution derived from

the Moderate Resolution Imaging Spectrometer (MODIS) sensor

aboard the Terra platform. The NDVI has been the most widely

used spectral index for vegetation monitoring in the Amazon

basin because it correlates well with several biophysical

vegetation parameters such as green biomass and NPP

(Atkinson et al., 2011; Barbosa et al., 2015). Furthermore, the

UNCCD recommends the NDVI as the standard vegetation

index for assessing land productivity. As such, this study

chose the NDVI as an empirical proxy for NPP. More

technical details of the MODIS-based NDVI are outlined in

Friedl et al. (2010).

2.2.6 Soil organic carbon stock
The long-term change of SOC stocks in the Amazon basin

was inferred using the global SoilGrids dataset at 250 m spatial

resolution (available at https://soilgrids.org/; version 2.0). The

SoilGrids provides SOC stock estimates for 0–30 cm with pixel-

scale spatial uncertainty (Hengl et al., 2017), making it a suitable

alternative in regions without a SOC database like the Amazon

basin (Sims et al., 2019).

2.3 Methodology

2.3.1 Land degradation
The geographic extent of degradation is based on the

UNCCD approach for measuring land degradation (Sims

et al., 2019). The study period encompassed 2001 to 2020,

which was chosen for two reasons. First, the

MOD13Q1 product provides NDVI time series from

2001 onwards. Second, it allows attention to be focused on

long-term changes in NPP induced by drought.

The first step (i.e., land productivity) was to compute the

annual integrals of NDVI time series during each year’s growing

season at the pixel level. They are then used to calculate three

measures of change: trajectory, state, and performance for each

pixel. The trajectory is calculated by fitting a linear regression to

the annually integrated values of NDVI. The trend slope and the

statistical significance of said slope are determined through the

Thiel-Sen median (Hu et al., 2020) and the Mann-Kendall non-

parametric test (Yue et al., 2002). Positive trend slopes at a level of

95% confidence indicate a trend of increasing productivity

(i.e., improvement), and significant negative values indicate

decreasing productivity (i.e., degradation). In contrast, non-

significant trends indicate a stable condition. The state is

calculated by defining the periods 2001–2017 and

2018–2020 as the baseline and comparison. The mean and

standard deviation are computed for both periods, and then a

t-test for the mean difference is applied to compare the

2018–2020 productivity level to the 2001–2017 measurements.

This metric compares land productivity in recent years to

historical observations in a given area (Sims et al., 2019).

Positive differences at a level of 95% confidence indicate a

state of increasing productivity (i.e., improvement), significant

negative differences indicate decreasing productivity

(i.e., degradation), while non-significant differences indicate a

stable condition. The performance is calculated by comparing the

mean of the annually summed NDVI against the 90th percentile

for other pixels with the same Land Cover/Ecosystem Functional

Unit (LCEU) throughout the study area for the

2001–2020 period. When the ratio is less than 0.5, that pixel

is considered degraded; otherwise, it is not considered degraded.
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The trajectory, state, and performance metrics are combined to

determine degradation at the land productivity sub-indicator

level, as indicated in Supplementary Figure S1. The trajectory,

state, and performance metrics outcomes are shown as

categorical maps (i.e., degraded/stable/improvement) at a

250 m pixel resolution.

The second step (i.e., land cover change) was to assess

changes in MapBiomas maps for 2001 (i.e., baseline year) and

2020 (i.e., target year). Both maps were reclassified to the seven

UNCCD land cover classes (i.e., tree-covered, grassland,

cropland, wetland, artificial, other land, and water body).

Supplementary Figure S2 shows how the MapBiomas legend

was harmonized with UNCCD classes. Once the MapBiomas

maps were reclassified, an analysis of LCLU change was

performed using the transition matrix shown in

Supplementary Figure S3 to identify the key degradation

processes.

The third step (i.e., SOC stock) was to assess changes in SOC

over the 2001–2020 period. A combined land cover/SOC

approach is applied based on carbon conversion coefficients

proposed by the 2006 IPCC Guidelines for National

Greenhouse Gas Inventories (IPCC, 2006). This methodology

relates the SOC stock from the SoilGrids dataset to

environmental and management factors, with different

methods and defaults for mineral and organic soils. Pixels

with a SOC change ≤−10% are considered to be degraded; if

SOC change ≥10%, it is identified as an improvement; while

outside that range is stable (Sims et al., 2019). The outcomes of

the SOC stock and land cover change sub-indicators are

categorical maps at 250 m pixel resolution with three classes:

degraded, stable, and improvement. For more information on the

rationale behind this approach, see Sims et al. (2019).

The fourth step was to integrate the three sub-indicators

described above to generate the SDG indicator 15.3.1, following

the 1OAO rule. If one sub-indicator shows degradation in a pixel,

it is considered degraded (see Supplementary Figure S4). This

method generates a categorical map (i.e., degradation/stable/

improvement; hereafter referred to as land degradation map)

with a spatial resolution of 250 m. All methods were

implemented through Trends. Earth (available at https://bit.ly/

3JGmb94; version 1.99.8) under the QGIS software.

Supplementary Figures S5, S6 summarize the process used for

each sub-indicator.

The contribution of the sub-indicators to the land

degradation map was explored through cross-tabulations

applied to a stack of raster layers. Cross-tabulations were

implemented using the R package raster (version 3.5.15;

Hijmans and Van Etten, 2019) to count the number of

combined sub-indicators at the pixel level.

2.3.2 Characterization of drought
The SPI12 and SPEI12 time series for each December from

2001 to 2020 were adopted to characterize the meteorological

drought. The underlying assumption behind this defined time

scale and month is that an annual aggregation can capture long-

term extreme drought conditions (Paredes-Trejo et al., 2021).

This time scale has also been used in previous studies to evaluate

the impact of drought on different types of vegetation (Panisset

et al., 2018), changes in land productivity (Faiz et al., 2020), and

SOC stocks (Metcalfe et al., 2010; Liu et al., 2014). The annual

mean scPDSI from 2001 to 2020 characterized the agricultural

drought.

For this study, a dry spell starts when SPI12 (SPEI12 or

scPDSI) ≤−1.00 for at least two consecutive calendar months, and

it ends when SPI12 (SPEI12 or scPDSI) >−1.00 at a given pixel

following the onset of a drought. Four drought intensity classes

were adopted to measure the change in the extent of drought

conditions over time. Classes include mild drought (−1 to 0),

moderate drought (−1.5 to −1), severe drought (−2 to −1.5), and

extreme drought (≤−2) (McKee et al., 1993; Barker et al., 2021).

The total area exposed to drought clustered by drought class and

month was derived from counts of the number of pixels.

The long-term drought severity per pixel was also assessed.

The drought severity was computed by summating the negative

SPI12 (SPEI12 or scPDSI) values during the time window under

study, the result from which was converted to an absolute value.

The following step was to resample the three drought severity

maps at 250 m using the bilinear interpolation method to match

their spatial resolution with the land degradation map. Finally, to

ensure the comparability and consistency between the drought

severity maps, their values were scaled from 0 to 1 at the pixel

level, where 0 and 1 represent the lowest and highest drought

severity values, respectively. Supplementary Figure S7 shows the

process used for drought characterization.

2.3.3 Comparison between the drought severity
and land degradation

The higher the value of drought severity, the more significant

the potential impacts on the land productivity and SOC stock.

Based on this premise, the drought severity maps based on SPI12,

SPEI12, and scPDSI were compared to the trajectory, state,

performance, and land degradation maps. This choice was

based on their dependence on the annualized NDVI. Since

these maps have a large number of pixels (about 9.6 × 107), a

stratified sampling with three strata (i.e., degradation, stable, and

improvement) was applied. The randomly selected pixels were

set to 5,000 pixels for each stratum (hereafter referred to as

benchmark sites) to guarantee that the sample is representative

and balanced (Levine and Wilks, 2000). This procedure was

implemented using the sampling R package version 2.90 (Tillé

et al., 2016).

The non-parametric Kruskal-Wallis test was conducted to

explore if degraded/not degraded pixels show significant

differences in drought severity. The statistical significance

threshold to identify robust evidence that the detection of

degraded pixels is affected by drought was 5%
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(i.e., p-value ≤0.05). The non-parametric Dunn’s test with

adjusted p-values via the Bonferroni method (Ma, 2019)

further refined the comparison. These statistical tests were

chosen because they do not require the assumption of

normality in the stratified data (Boschetti et al., 2006). Both

non-parametric tests were implemented with the R package stats

TABLE 1 List of statistical tests applied in this study.

Statistical test Simplified procedure Where is it applied? References

The Thiel-Sen
median*

1. The annual NDVI time series is divided into N(N-1)/2 pairs The trajectory metric at the pixel level Hu et al. (2020)

2. The slope of each data pair is calculated

3. The median of all the slopes is calculated, the Thiel-Sen median (ß)

4. If ß > 0, the trend increases; otherwise, it decreases

Where: N is the number of years

The Mann-Kendall
test

1. The annual NDVI time series is defined as Xn, where n = 1, 2... The trajectory metric at the pixel level. If ß < 0 and |S| > S

α=95% refers a trend of decreasing productivity
(i.e., degradation)

Yue et al.
(2002)2. The dual number of the sequence is calculated: Xi < X, where i,j =

1, 2,..

3. The variance of Kendall’s t and the Mann-Kendall S statistic are
determined. If |S| > S α=95% the series trend changes significantly,
otherwise, it is nonsignificant

Where: a is a given reliability level

Paired sample
t-test

1. For the annual NDVI time series, the mean (µ) and standard
deviation (s) are calculated during the period 2001–2017 (baseline)

The state metric at the pixel level Sims et al.
(2019)

2. The mean of the final 3 years (i.e., 2018–2020), �x, is calculated

3. The Z statistic is calculated as followsz � �x−μ
σ

/�
3

√

4. If z < -1.96 indicates decreasing productivity (i.e., degradation)

The
Kruskal–Wallis test

1. The values of drought severity from both groups (i.e., degraded/not
degraded) are ranked

In order to explore if degraded/not degraded pixels show
significant differences in drought severity

Ma (2019)

2. The H statistic is calculated as: H � 12
N(N+1)∑

2
i�1

R2
i

ni
− 3(N + 1)

Where: N is the total number of observations; Ri is the sum of the
ranks from the i th group; ni is the total number of observations for
the i th group

3. The critical value of chi-squared is defined by adopting one degree
freedom and 95% as the significance level

Note: * this procedure is combined with the Mann-Kendall test to assess the trend.

FIGURE 2
Map of the metrics (A) trajectory; (B) state; and (C) performance in the Amazon basin for the 2001–2020 period. The location of the Brazilian
states is shown as BR-RR, Roraima; BR-AM, Amazonas; BR-PA, Pará; BR-MT, Mato Grosso; and BR-RO, Rondônia. The location of the Bolivian states
is shown as BO-L, La Paz; BO-S, Santa Cruz; and BO-P, Potosí.
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(version 4.1.2) developed by R Core Team. The statistical tests

and their simplified procedure are outlined in Table 1.

3 Results

3.1 Land degradation in the Amazon basin

The trajectory of productivity change between 2001 and

2020 showed 358,507 km2 (about 6% of the basin; Figure 2A)

under land degradation in the Amazon basin. The most

significant areas of land degradation occurred in the Brazilian

states Pará, Mato Grosso, and Rondônia (up to 202,000 km2), and

Santa Cruz in Bolivia (36,190 km2). In addition, when the

productivity level of the last 3 years was compared with the

previous historical observations of the productivity of the land

for each pixel (i.e., the state metric), 500,583 km2 was identified as

degraded land (about 8% of the Amazon basin; Figure 2B). In this

case, the extent of degraded land dominated three Brazilian

states: Pará, Mato Grosso, and Amazonas (221,855 km2). On

the other hand, around 0.66% of the basin (39,086 km2)

experienced a declining local productivity trend compared to

other regions with similar productivity potential (i.e., the

performance metric). This situation was particularly relevant

in the Roraima state in Brazil and the La Paz and Potosí states in

Bolivia (Figure 2C). However, to have a complete picture of land

degradation processes in the basin (see Supplementary Figure

S8), these metrics must be integrated through the land

productivity land sub-indicator (Prince, 2019).

The land productivity sub-indicator revealed 353,694 km2 of

land (about 6% of the basin; Figure 3A), where the productivity

levels declined between 2001 and 2020. In addition, there were

262,779 km2 and 10,342 km2 with signs of moderate degradation

and potentially stressed (4.63% of the basin), respectively.

According to this sub-indicator, the most extensive degraded

land coverage occurred in Pará (76,567 km2), Mato Grosso

(74,136 km2), and Rondônia (50,619 km2), followed by Santa

Cruz with 36,100 km2 in Bolivia. A detailed review of this

FIGURE 3
Map of the sub-indicators (A) land productivity; (B) land cover degradation; and (C) SOC degradation; together with (D) the SDG indicator
15.3.1 for the period 2001–2020. The location of the Bolivian states is shown as BO-B, El Beni; and BO-S, Santa Cruz.
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indicator revealed that those areas with declining land

productivity show a degraded state (43% of the affected area),

a degraded trajectory (20% of the affected area), or both land

conditions (36% of the affected area).

The land cover degradation sub-indicator showed

318,484 km2 (5.32% of the basin; Figure 3B) as degraded land

for 2001–2020. Most of them are localized in Mato Grosso, Pará,

and Rondônia (Brazil; up to 114,000 km2) and El Beni and Santa

Cruz (up to 42,852 km2) in Bolivia (see Supplementary Figure

S9). The main driver of land degradation identified through this

sub-indicator was the transition from forest to cropland

(260,356 km2; 4.36% of the basin), followed by wetlands to

grasslands (19,142 km2; 0.32% of the basin).

The SOC degradation sub-indicator applied to the entire

Amazon basin identified 292,348 km2 of degraded land

(Figure 3C; 4.89% of the basin) for 2001–2020. In this case,

Mato Grosso (51,470 km2), Pará (40,905 km2), Rondônia

(23,019 km2) in Brazil, and Santa Cruz (818,943 km2) in

Bolivia have shown the largest degradation hotspots (see

Supplementary Figure S9).

An inspection of Figure 3D reveals the highest land

degradation in the states Pará (138,033 km2), Mato Grosso

(129,647 km2), Amazonas (75,317 km2), and Rondônia

(66,458 km2). This indicator identified 757,704 km2 (12.67% of

the basin), where land degradation was driven primarily by a

declining trend of land productivity (57.46% of the degraded

land) or a combined declining trend of land productivity, SOC

degradation, and land cover degradation (25.02% of the degraded

land) (see Supplementary Figure S10). These findings prove that

multiple factors are behind the drivers of land degradation in

those lands identified as degraded. Therefore, it is not adequate to

categorize land as degraded using only one sub-indicator (e.g.,

land cover change) in the Amazon basin.

Despite the advantages of SDG indicator 15.3.1 over its sub-

indicators for capturing the most relevant facets of land

degradation (Sims et al., 2019), the effects of seasonal and

inter-annual climate variability on NDVI should be taken into

account during its interpretation, particularly in cases of multi-

annual extreme events (Marengo et al., 2008b; Barbosa et al.,

2015). For this reason, the long-term drought condition in the

Amazon basin from 2001 to 2020 was analyzed.

3.2 Drought severity in the Amazon basin

The most remarkable geographical extent of drought

conditions occurred in 2015/2016, when the area exposed to

drought was greater than 70% of the basin. Supplementary

Figures S11–S13 also show that large regions have been

affected by recurrent droughts between 2001 and 2020. This

result is consistent with recent studies where the intensification of

drought conditions has been attributed to large-scale climate

variability drivers acting over the basin, such as ENSO (Lima

et al., 2014; Jiménez-Muñoz et al., 2016; Paredes-Trejo et al.,

2021). Figure 4 shows the proportion of land under drought for

each drought intensity class to the total land in the Amazon

basin. The percentage of land under drought reflected by the

SPI12, SPEI12, and scPDSI for each year has been relatively

similar. Nevertheless, it should be noted that the scPDSI tended

to offer higher values for the extreme drought class than that

derived from SPI12 and SPEI12.

While drought intensity classes provide a robust way to

compare the land exposed to drought in time (Figure 4), the

drought severity maps identify regions where this hazard has

been more serious and may become an important driver of land

degradation. The spatial patterns of drought severity derived

from SPI12, SPEI12, and scPDSI are shown in Figure 5. Areas

showing high drought severity for the SPEI12 tended to coincide

with areas with high drought severity for the scPDSI (Figures

5B,C). According to both maps, the most relevant drought

hotspot covers most of Mato Grosso and southwestern Pará

in Brazil. Furthermore, the three drought severity maps identified

most of upper Caquetá in Colombia as a drought hotspot.

Regardless of the drought index, drought hotspots are

characterized by the dominance of croplands, followed by

forests and grasslands (see Figure 1C).

Some differences in the spatial distribution of drought

severity are observed when the drought severity maps are

compared (Figure 5). This discrepancy is mainly due to the

fact that SPEI12 and scPDSI are better suited than SPI12 to

identify the influence of soil water stress and atmospheric dryness

on land productivity dynamics (Vicente-Serrano et al., 2015).

Unlike the SPEI12 and scPDSI, the SPI12 only considers

annualized precipitation. Consequently, the SPI12 cannot

discriminate a greater increase in atmospheric evaporative

demand due to a dryer and warmer atmosphere. In this sense,

the absence of high drought severities over a given region in the

map based on SPI12 does not necessarily represent an

improvement in the productivity of the vegetation.

Several studies have demonstrated that the NDVI is sensitive

to drought conditions in the Amazon basin (Anderson et al.,

2007; Marengo et al., 2008a; Zhao et al., 2017), in addition to

being strongly influenced by local factors, including the

dominant land cover type (Barbosa et al., 2015). However,

how the drought severity affects the detection of land

degradation under the SDG indicator 15.3.1 approach is

unknown. The next section further explores the concomitant

effect of both physical processes using drought severity maps as

benchmarks.

3.3 Influence of long-term drought on the
detection of land degradation

Figure 6 shows the values of scPDSI-based drought severity

of the trajectory, state, and performance metrics along with the
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SDG indicator 15.3.1 grouped by the land condition at the

benchmark sites. For a balanced comparison, 5,000 sites

correspond to degraded land, 5,000 sites to stable land, and

the remaining 5,000 sites to improvement according to SDG

indicator 15.3.1 (see Supplementary Figure S14). In all cases, sites

categorized as degraded exhibited more drought severity than

that observed for other land conditions (significant at 95% level).

The same response was observed when the drought severity

based on SPI12 was used as a reference (see Supplementary

Figure S15). This fact shows that the detection of land

degradation through the SDG indicator 15.3.1 depended

partly on the severity of drought (Figure 4).

When the SPEI12-based drought severity map was

examined, a differential response in drought severity

(significant at the 95% level) was only observed across state

and performance metrics (see Supplementary Figure S16).

These findings confirm a weak spatial coherence between

the drought severity based on SPEI12 and land condition

estimated via the SDG indicator 15.3.1. Even when drought

conditions are present, SPEI12 cannot capture long-term

changes in NPP through annualized NDVI at the pixel

level (i.e., trajectory). In this context, the scPDSI is better

suited to assess land degradation processes triggered by

drought conditions in the Amazon basin.

FIGURE 4
Percentage of the area under drought conditions for each drought intensity class according to the values of (A) SPI12; (B) SPEI; and (C) scPDSI in
December over the Amazon basin during 2001–2020. The calculation of the area under drought conditions is based on the number of pixels within
the drought intensity classes.
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FIGURE 5
Map of the drought severity derived from (A) SPI12; (B) SPEI12; and (C) scPDSI in the Amazon basin for the 2001–2020 period. For comparison,
the values of drought severity were scaled from 0 (minimum drought severity) to 1 (maximum drought severity) at the pixel level.

FIGURE 6
Box plots showing the scPDSI-based average drought severity for the (A) productivity trajectory degradation; (B) productivity state degradation;
(C) productivity performance degradation; and (D) the SDG indicator 15.3.1 at benchmark sites randomly distributed in the Amazon basin for the
period 2001–2020. For all panels, the differences in average drought severity between the degraded, stable, and improvement categories were
statistically significant at the 95% level. The thick line represents themedian, while the other horizontal lines of the box represent themaximum,
upper quartile, lower quartile, and minimum. For clarity, the outliers were omitted.
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4 Discussion

In this study, the physical processes behind land degradation

and its relationship with drought variability were analyzed to

better understand how the detection of degraded land through

the SDG indicator 15.3.1 adopted by the UNCCD can be affected

by long-term droughts in the Amazon basin.

4.1 Long-term land degradation in the
Amazon basin

The land degradation processes mostly coincided with a

downward trend in land productivity without a negative

signal in other sub-indicators, followed in relative importance

by the combined downward trend in land productivity, SOC

degradation, and land cover degradation (Figure 7). The SDG

indicator 15.3.1 revealed several land degradation hotspots in the

Amazon basin between 2001 and 2020, most of which were

located in the Brazilian states of Pará, Mato Grosso, Amazonas,

and Rondônia. This result ties well with previous studies wherein

such land degradation hotspots were identified (Anderson et al.,

2018; Arima et al., 2021; Marengo et al., 2022).

The negative trend in productivity of land without degraded

land in terms of SOC and land cover was dominant in those

regions that did not exhibit negative LCLU transitions

(Supplementary Figure S3). The states where this condition

was confirmed were Roraima and Rondônia in Brazil, Santa

Cruz in Bolivia, and Caquetá in Colombia. These locations are

characterized by large rainfed crops (e.g., rice, soybeans, corn,

cotton, and sugarcane) and pastures established before 2001 and

remaining until 2020, both of which are susceptible to rainfall

variability (Zhang et al., 2021). Consequently, the land

degradation captured by the SDG indicator 15.3.1 in these

regions may have been driven by regional climate variability,

including indirect impacts such as widespread fire-induced tree

mortality (Machado-Silva et al., 2020). These findings are

consistent with studies based on MODIS NDVI time-series

data, where phenological changes in rainfed crops and

pastures are exacerbated by climate variability. (Hilker et al.,

2014; Morton et al., 2016).

The combined negative change in all three sub-indicators was

observed over about 3.13% of the Amazon basin (187,312 km2).

In Figure 7, it can be seen that most of these degraded lands

surround croplands and pastures that only showed degradation

in land productivity. In this context, it may correspond to the

expansion of the agricultural Frontier between 2001 and 2020.

Usually, this would lead to short-term declines in rainfed crop

yields and progressive land degradation (Sims et al., 2019). This

assumption is supported by recent studies highlighting the

impacts of large monocultures and fragmented landscapes on

biodiversity in the southwestern Amazon basin (de Almeida

et al., 2020; Marengo et al., 2022).

In some cases, the land degradation processes directly related

to the LCLU transition were evident (Supplementary Figure S17).

Among them, deforestation is ranked first (i.e., from forest to

farmland; 81.79% of the Amazon basin), followed by wetland

drainage (i.e., fromwetland to grassland/cropland/artificial/other

land; 8.98% of the Amazon basin) and vegetation loss (i.e., from

forest to grassland/other land; or from grassland/cropland to

other land; 5.05% of the Amazon basin). The same land

degradation processes were recognized by Ometto et al.

(2016), Santos et al. (2020), and Souza et al. (2020). However,

a limitation of the land cover degradation sub-indicator is that, as

a consequence of the uncertainties inherent in the type of satellite

data, sensors, time window, and spatial resolution, among other

factors, the estimated degraded area was slightly different from

those reported in recent literature (Neves et al., 2020).

Furthermore, it is important to highlight that under the

traditional land degradation approach, based on LCLU

transitions, the coupling of land productivity change and land

degradation without the active presence of other degradation

drivers often goes undetected. If the driver of land degradation

triggers a long-term NDVI change followed by its slow recovery

on a multi-year time scale, such as long-term droughts, it is

particularly likely to go undetected (Asner and Alencar, 2010;

Panisset et al., 2018).

A less obvious factor influencing the SDG indicator 15.3.1 is

SOC degradation. Unlike land productivity, SOC degradation

showed a remarkable coupling to land cover degradation

FIGURE 7
Spatial pattern of dominant combined sub-indicators of SDG
indicator 15.3.1 in the Amazon basin for 2001–2020. Where “−1”
depicts Degraded, “0” is Stable, and “1” is Improvement for each
sub-indicator. All sub-indicators combinations are listed in
Supplementary Figure S10.
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(Supplementary Figure S10), reflected in a high spatial coherence

between them (Figures 3B,C). This result agrees with a few

observational studies that pointed out a decline in SOC stock

triggered by the conversion of tropical forests to cattle pastures

and agriculture in the Amazon basin (Cerri et al., 2007).

4.2 Influence of the drought variability on
land degradation in the Amazon basin

From the brief discussion above, it can be argued that

drought has an obvious implication on land degradation. At

first, by comparing Figures 2, 5C, 6, one can see that these metrics

may reasonably capture the influence of drought variability on

NPP through annualized NDVI. The Amazon basin was exposed

to prolonged and severe droughts between 2001 and 2020

(Figure 4), which is directly in line with previous findings

(Lima and AghaKouchak, 2017; Sorí et al., 2017; Anderson

et al., 2018; Paredes-Trejo et al., 2021). As mentioned,

prolonged rainfall deficits may have partially contributed to

the downward trend in land productivity without a negative

signal in other sub-indicators (Figure 7). This singularity, in turn,

would allow the propagation of the drought signal to the land

productivity sub-indicator, favouring the classification of those

pixels exposed to drought as degraded land, as suggested in

Supplementary Figure S8.

The results also revealed one interesting feature regarding the

concomitant action between the long-term dryness and LCLU on

the SDG indicator 15.3.1. Among the benchmark sites, the artificial

lands tended to be classified as degraded (90% of them), followed by

croplands (86% of them) and other lands (40.33% of them). In

contrast, although the tree-covered lands were exposed to high

drought severity (0.309), these showed a relatively low incidence of

degradation (19.34% of them). This result implies that the forested

regions exhibit greater resilience than other types of LCLU to multi-

annual droughts in terms of change in annualized NDVI (see

Supplementary Figure S18). Previous research suggests that

during prolonged droughts, the tropical forest phenology is

mainly driven by soil water availability and adaptation strategy to

avoid excessive loss of water used by plants (e.g., the stomatal

closure) (Betts et al., 2004; Fisher et al., 2006). These

mechanisms can help to explain their high resilience to drought.

Overall, our results provide strong evidence that a multi-year

drought can favour the identification of false negatives, where land

productivity may be declining due to climate conditions rather than

anthropogenic or biological factors. However, while long-term

drought alone does not cause land degradation, it may exacerbate

the susceptibility of land to human-induced changes. In this context,

the rainfed croplands are most likely to be classified as degraded by

the UNCCD approach (Anderson et al., 2018; Bullock et al., 2020).

It is important to emphasize that the land degradation

processes identified here are heavily dependent on scale,

spatial resolution, and uncertainties inherent to each dataset

used in this study. Naturally, these restrictions could have

masked some degradation land processes that are only evident

at a finer scale (e.g., invasion of woody plants in grasslands).

Regardless of those technical barriers, the operational

implementation of the UNCCD approach to land degradation

monitoring in the Amazon basin should consider the effect of

long-term drought on the metrics behind the land productivity

sub-indicator tominimize themisidentification of degraded land.

5 Conclusion

The Amazon basin has experienced recent extreme droughts.

Three satellite-based drought indices and the SDG indicator

15.3.1 adopted by the UNCCD were used to assess land

degradation and better understand how drought variability

affects the detection of land degradation processes in the

Amazon basin. The newest version of the CHIRPS-based SPI

and the SPEI and scPDSI derived from the CRU TS dataset were

used as drought indices. The SDG indicator 15.3.1 was calculated

using the procedures described in the second version of the Good

Practice Guidance for SDG Indicator 15.3.1 (Sims et al., 2019).

The annual LCLU maps from the MapBiomas project at 30 m

spatial resolution and the 16-day MOD13Q1 NDVI and

SoilGrids dataset at 250 m spatial resolution were used as

inputs. The following conclusions can be drawn from this study:

• TheUNCCD approach estimated 757,704 km2 (12.67% of the

basin) as degraded land for 2001–2020, mainly reflected by a

significant decline in land productivity dynamics, followed by

the combined downward trend in land productivity, SOC

degradation, and land cover degradation.

• The most significant land degradation hotspots were

localized in the southern, southwestern, and eastern

portions of the Amazon basin, where large

monocultures and pastures dominate.

• The drought severity measured using the scPDSI showed

greater spatial consistencywith SDG indicator 15.3.1 than that

with the SPI and SPEI.

• The results provide strong evidence that the detection of

degraded land via the SDG indicator 15.3.1 is sensitive to

long-term drought conditions. Under severe drought

conditions, the indicator tended to assign a higher

percentage of degraded land than under non-drought

conditions, particularly on rainfed cropland.

Currently, several climate correction methods have been

incorporated in the latest version of the UNCDD approach to

minimize the effect of climate variability on land productivity

dynamics (Sims et al., 2019). They are the rainfall use efficiency

(Le Houérou, 1984), residual trends (Evans and Geerken, 2004),

and Relative RUE (Evans and Geerken, 2004). However, this

study did not explore their abilities to improve the detection of
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land degradation under long-term drought conditions, so it

remains an open topic that will be assessed in future works.
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