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The Manila Trench is located at the eastern boundary of the South China Sea (SCS). It
develops through the subduction of the SCS beneath the Philippine Sea Plate (PSP) since
the early Neogene, driven by the northwestern plate motion of the PSP. The northern
segment of the Manila trench at around 18° N—21.5°N is characterized by an obvious
eastward convex in the trench shape and abrupt changes of slab dip angle, whereas the
southern segment of the Manila trench at around 15°N—18°N is featured by an almost
straight NS-trending trench line and smooth subducting slab morphology. However, the
cause for the along-strike variations along the Manila trench remains poorly understood. In
this study, we use 2-D thermo-mechanical modeling to investigate how bathymetric highs
embedded in the subducting slab affect the topography of overriding plate and the
morphology of subducting plate. Three major factors of bathymetric highs are
systematically examined: 1) the crustal properties, 2) the width, and 3) the thickness.
Geodynamic results suggest that the most important factor controlling abrupt changes in
dipping angle is the crustal properties of bathymetric highs. Also, reduction of crustal
thickness and increasing the width of continental bathymetric highs favor the abrupt
change of dipping angle, whereas thicker (≥25 km) bathymetric highs are more likely to be
blocked in the subduction zone before slab break-off. According to our numerical
modeling results, we suggest that dramatic changes in the dip angle in the northern
Manila trench and the convex shape were caused by subduction of a large thin continental
terrane, whereas the smooth morphology of subducting slab in the southern segment and
straight trench were associated with normal oceanic subduction with small seamounts.
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INTRODUCTION

Sharp discontinuities in trench shape and various morphologies of subducting slabs are often linked
with bathymetric highs subduction (Miller et al., 2004, 2005; Mason et al., 2010). For example, the
subduction of Ogasawara Plateau may have influenced the varied trench and slab morphology at the
junction of the Izu-Bonin and Mariana arcs in the West Pacific (Mason et al., 2010). Similar arcuate
plate boundary development is also found during the subduction of the Nazca Ridge beneath the
continental South American Plate (Rosenbaum et al., 2005). These bathymetric highs include terrane
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with oceanic crustal properties, such as oceanic plateaus,
seamounts, and submarine ridges, and terrane with continent
crustal properties, such as microcontinents and continental
fragments. Several studies on subduction with bathymetric
highs have been conducted, allowing scientists to better
understand its dynamic effects: 1) the transition from flat or
low angle subduction to steep-slab subduction (Van Hunen et al.,
2002, Van Hunen et al., 2004; Martinod et al., 2005; Gerya et al.,
2009; Huangfu et al., 2016; Manea et al., 2017; Leng and Huang,
2018; Dai et al., 2020; Yan et al., 2020, 2021), 2) indentation of the
trench (Dominguez et al., 1998, 2000; Morra et al., 2006), 3)
surface topography development (Li F. C. et al., 2013; Ruh, 2016)
and crustal shortening (Liao et al., 2018), 4) trench migration (Li
Z. H. et al., 2013; Yoshida, 2017; Tao et al., 2020), 5) continental
underplating (Vogt and Gerya, 2014; Magni et al., 2017). In
particular, Tetreault and Buiter (2012, 2014), Yang et al. (2018)
and Liu et al. (2021) have systematically presented how various
crustal properties of bathymetric highs (with continent versus
oceanic crustal affinity) impact the amount of accreted/subducted
crust, the distinct modes of terrane accretion/complete
subduction, and the deformation type of the overriding plate.
However, these recent studies have employed a fixed terrane size

and did not investigate the effects of terrane thickness and width
on slab subduction processes.

The South China Sea is one of the largest marginal seas of the
western Pacific (Deng et al., 2020). TheManila trench is located at
the eastern boundary of the SCS. It was created by the subduction
of the SCS plate beneath the Philippine Sea Plate (PSP) since the
early Neogene, and it was induced by the northwestern plate
motion of the PSP (Huang et al., 2006; Fan et al., 2016; Wu et al.,
2016) (Figure 1A). For the northern Manila trench at around 18°

N—21.5° N, where an obvious seaward convex is found, the
morphology of the subducted SCS plate is characterized by
dramatic changes from a horizontal subducting angle to near-
vertical (Figure 1B) (Fan et al., 2016; Wu et al., 2016; Chen et al.,
2021). A large buoyant plateau (≥300 km in width) was proposed
to explain the sharp convex in the trench line, and the crustal
property of the plateau was recently proposed as highly thinned
continental crust (12–15 km in thickness) (Eakin et al., 2014;
Lester et al., 2014; Sibuet et al., 2016; Liu et al., 2018) rather than
oceanic crust as early identified (Hsu et al., 2004). For the
southern Manila trench at around 15° N—18°N, the most
remarkable morphological relief is an almost straight trench
line and widely distributed small seamounts (≤100 km in

FIGURE 1 | (A): Tectonic setting of the Manila trench, South China Sea. Continent-ocean boundary (COB) lines indicate COB locations (modified from Liu et al.,
2018). (B) and (C): Vertical cross sections of P-wave tomography along the profiles at 20°N and 17°N, respectively. The buoyant plateau and its subducted part (the gray
shaded area), and the tomography sections are modified from Fan et al. (2016).
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width), such as the subducting Huangyan-Zhenbei seamounts
chain. Based on high-resolution P-wave tomographic images, the
morphology of the subducted SCS plate beneath the southern
segment of the Manila trench showed no abrupt change in
dipping angle (Figure 1C), whereas slab break-off might occur
at the depths between 60 and 190 km near 17°N (Cheng et al.,
2019). The trench shape and subducting slab morphology of the
northern Manila trench are distinct from the southern segment.
However, there have been few comprehensive analyses to discuss
the relationship between the subducting bathymetric highs and
the along-strike variations of the Manila trench.

In this study, we have undertaken a series of 2-D numerical
thermomechanical experiments to investigate 1) the potential
crustal properties of the northeastern SCS near the Manila
trench at around 20° N and 2) the key physical parameters
controlling the subducting slab morphology variations
between the northern and southern Manila trench. Based
on our systematic numerical results, we demonstrate that
dramatic changes in the dip angle in the northern Manila
trench and the convex shape were caused by subduction of a
large thin continental terrane, whereas the smooth
morphology of subducting slab in the southern segment
and straight trench were associated with normal oceanic
subduction with small seamounts.

GEOLOGICAL BACKGROUND

The South China Sea is located in an important geodynamic
intersection zone surrounded by Eurasian plates and the Pacific
and Indian oceans. The partial subduction of the SCS along the
Manila trench represents the last phase of a near-complete
Wilson cycle, following continental rifting, breakup, and
seafloor spreading. Based on deep-tow magnetic anomalies,
multi-channel seismic data, the results of microfossils from
IODP Expeditions and 39Ar/40Ar data, the SCS has undergone
multiphase rifting events since the Late Cretaceous to Paleogene
(Sun et al., 2009; Franke et al., 2014; Li et al., 2015; Sibuet et al.,
2016; Ding et al., 2020; Zhang et al., 2020; Zhao et al., 2021),
leading to the opening of the SCS basin at ~32–33 Ma, and
stopped spreading at ~15 Ma in the east subbasin and ~16 Ma
in the southwest subbasin, followed by eastward subduction
under the Philippine Sea Plate (PSP) along the Manila trench
(Li C. F. et al., 2013, 2015; Chen et al., 2017, 2021; Jian et al., 2018;
Sun et al., 2018; Deng et al., 2020; Hung et al., 2020). Large
amounts of magmatism persisted for nearly 10 Ma after the
cessation of seafloor spreading and generated the Zhenbei-
Huangyan seamount chain (Sibuet et al., 2016; Hung et al., 2020).

There is a wide discussion on the geometry of the Manila
trench (Yang et al., 1996; Bautista et al., 2001; Eakin et al., 2014;
Fan et al., 2015, 2016), which forms a broad bend to the east at
around 21°–18° N, trends N-S almost in a straight line from 18° to
13°N, and swerves abruptly to the ESE at its southern terminus at
13°N. Several models have been proposed to explain the sharp
bend in the trench line. For example, Bautista et al. (2001)
interpreted these as a collision and subsequent partial
subduction of a large buoyant plateau (Figure 1). Despite its

implications to the buoyancy effect, the crustal properties of this
plateau in northeastern SCS remain controversial.

Geophysical studies on the deep lithospheric structures of the
northeastern SCS near the northern Manila trench contribute to
defining the continent-ocean boundary (COB) locations in the
SCS. The crust located west of the Manila trench and north of the
COB is thinned continental crust rather than thickened oceanic
crust (Liu et al., 2018). Early studies defined COB1 (Figure 1) and
suggested that the northeastern SCS was composed entirely of
ocean crust up to 21.5°N (Hsu et al., 2004), based on E-W
trending magnetic anomalies. Controversially, later evidence
from refraction and multi-channel seismic (MCS) reflection
data (Wang et al., 2006; Yeh et al., 2010, 2012; Lester et al.,
2013, 2014; McIntosh et al., 2013, 2014; Eakin et al., 2014; Sibuet
et al., 2016) defined the COB location as being more
southeastward (COB2 in Figure 1). For example, Eakin et al.
(2014) showed evidence for extended to hyper-extended
continental crust subducting along the Manila trench,
underplated to the accretionary prism at 21.5°N. Sibuet et al.
(2016) has presented several features on MCS profiles suggesting
that the crust of the northeastern part of the SCS is thinned
continental crust intruded by post-rift volcanism. Most recently,
an E-W oriented ocean bottom seismograph wide-angle
refraction profile (21° N) is constructed in the northeastern
SCS in 2015 (Liu et al., 2018) to further define the COB
location (COB3 in Figure 1). Abundant Moho interface was
shown, and a 12–15 km thick continental crust was further
identified. Additionally, dramatic changes in the dipping angle
of the subducted SCS plate are revealed from the northern Manila
trench (20°–21.5°N). According to seismic and tomography data
in this area (Fan et al., 2016), at 20°N, the SCS plate initially
subducts along the Manila trench to a ~250 km depth at a low
angle of ~25°. Then, it changes abruptly to a higher dip angle of
~75° to a depth of ~500 km. Further tomography studies and slab
unfolding estimated the subducted portion of the SCS slab
extended 400–500 km east of the present Manila trench (Wu
and Suppe, 2018).

Compared to the controversial crustal properties near the
northern Manila trench, the SCS plate near the southern
Manila trench (at ~15–17°N) is a typical or thickened oceanic
crust, subducting with numerous seamounts. As these seamounts
are formed after SCS seafloor spreading cessation, the dating
results of seamount ages range from 15–6.64 Ma (Tu et al., 1992;
Yan et al., 2008; Wang et al., 2009; Zhang et al., 2020) based on
petrological samples. Huangyan-Zhenbei seamounts chain,
located in the center of the east subbasin, is an E-W trending
chain of seamounts oriented obliquely to the surrounding
N055°seafloor expansion trends (Zhao et al., 2018) (Figure 1).
It consists of Zhenbei seamount in the westmost (9.1 ± 0.2–10.0 ±
1.8 Ma, basalts isotopic age) (Wang et al., 2009), the Huangyan
seamount in the middle, and a further east one with NEE-
trending that reaches the Manila trench (Cheng et al., 2019).
The crustal thickness beneath the Huangyan and Zhenbei
seamounts is generally between 12 and 13.2 km based on
wide-angle seismic refraction data (He et al., 2016; Zhao et al.,
2018). High-resolution regional tomographic studies show that
the SCS slab subducts along the southern Manila trench (at
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16–17°N) at an angle of ~45°–300 km depth, and the slab
morphology is smooth without dramatic changes in the
dipping angle (Figure 1C).

The 1,200 km long NS-trending Luzon island arc, stretching from
24°N to 13°N, resulted from the subduction of the SCS plate beneath
the PSP along the Manila trench (Fan et al., 2016; Liu et al., 2021),
which was induced by continuous NNWmovement of the PSP since
25Ma. The average plate convergence rate between the PSP and SCS
was given as 7 cm/yr (Seno et al., 1993; Kreemer et al., 2003; Simons
et al., 2007; Hsu et al., 2012). TheMoho discontinuity is identified at a
depth of 18–34 km in Luzon inferred from receiver function analysis
(Besana et al., 1995). The results agree with a more recent gravity
model by Manalo et al. (2015), reflecting a ~21–31 km thick crust
across the Central Philippines.

NUMERICAL IMPLEMENTATION AND
MODEL SETUP

Governing Equations
The momentum, continuity, and heat conservation equations for
the two-dimensional creeping-flow, accounting for thermal and
chemical buoyancy, were solved using modified I2VIS code
(Gerya & Yuen, 2003, 2007). The incompressible continuity
equation approximated conservation of mass:

zvx
zx

+ zvz
zz

� 0

Two-dimensional Stokes equations:

zσ′xx
zx

+ zσ′xz
zz

� zP

zx
zσ′zz
zz

+ zσ′xz
zx

� zP
zz

− gρ(T, P, C)
and a heat conservation equation:

ρCp(DT

Dt
) � −zqx

zx
− zqz

zz
+Hr +Ha +Hs

qx � −k(T, P, C) zT
zx

, qz � − � −k(T, P, C) zT
zz

Hr � constant (C), Ha � Tα
DP

Dt
,

Hs � σ′xx _εxx + σ′zz _εzz + 2σ′xz _εxz

are used, where D/Dt is the substantive time derivative
; k(T, P, C) is the thermal conductivity as a function of
temperature (T), pressure (P), and composition (C)
(Hofmeister, 1999); Cp is the effective isobaric heat capacity,
incorporating latent heat; Hr, Ha, and HS denote radioactive heat
production, the energetic effect of isothermal (de)compression
(i.e., adiabatic heating/cooling), shear heating, α is the thermal
expansion coefficient, σ′xx, σ′zz, σ′xz are deviatoric stress
components and _εxx, _εzz, _εxz are strain rate components.

Rock Rheology Implementation
Viscosity, dependence on strain rate, pressure, and temperature
were defined in terms of deformation invariants:

ηdiffusion �
AD

2σn−1cr

exp(Ea + VaP

RT
)

ηdislocation �
1
2
( _EII)

1−n
n

(AD)−1
n exp(Ea + VaP

nRT
)

1
ηductile

� 1
ηdiffusion

+ 1
ηdislocation

where _EII is the second invariant of the strain rate; σcr denotes
critical stress between dislocation creep and diffusion; AD, Ea,
Va, and n are material constant, activation energy, activation
volume, and stress exponent, respectively (Gerya, 2019; Tang
et al., 2020). These material properties were determined from
laboratory flow experiments and are provided in Table 1.

Plasticity was implemented using the Druker-Prager yield
criterion (Ranalli, 1995). The calculated creep viscosity is
therefore limited as follows:

σyield � C + P sin(φeff)
ηplastic �

σyield

2 _εII

σyield is the yield stress. C is the residual rock strength. P is the
dynamic pressure. φ is the internal frictional angle. φeff can be
illustrated as the effective internal frictional angle.

With the ηplastic and ηductile, visco-plastic rheology is
employed to the model where the rheology behavior depends
on the minimum viscosity (Ranalli, 1995):

1
ηeff

� 1
ηductile

+ 1
ηplastic

Model Setup
The initial configuration of reference 2D numerical model is
shown in Figure 2. The numerical model box with 1,361 by 351
nodal points is non-uniform and corresponded to 4,000 by
1,400 km physical dimension. The rectangular grid contain a
1,000 km wide high-resolution area of 1 by 1 km grid step size in
the center of the domain. The rest of the model is at a lower
resolution (up to 10 by10 km grid step size). Over 5.7 million
Lagrangian markers randomly distribute in the whole model
domain.

The oceanic crust contain a thin continental terrane, fated to
collide with the seaward-moving overriding continental plate.
The oceanic crust is composed of 2-km-thick upper crust of
hydrothermally-altered basalt, underlain by 5-km-thick lower
crust of gabbroic rocks that covered 2,500 km horizontally.
The continental crust is felsic and has a total thickness of
30 km, composed of 15 km upper and 15 km lower crust that
extend over 1,500 km. The large 300 km wide and 15 km thick
continental terrane is defined 200 km from the trench on the
oceanic plate. Oceanic plateau (Figure 2B) paired numerical
experiments with similar parameters differing only by the
crustal property of the terrane are run in parallel to compare
the different dynamic effects with continental terrane.
Lithosphere yield stress profiles comparing the properties of
continental terrane and oceanic plateau are shown in Figures
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2C,D. Both the asthenosphere and upper mantle are composed of
anhydrous peridotite and are defined by the temperature profile.
The rheological parameters used in the reference model are
summarized in Table 1. We keep our model with a far-field
push on the overriding plate (7 cm/yr) to be similar to the average
plate convergence rates of the Manila trench (Seno et al., 1993;
Kreemer et al., 2003; Simons et al., 2007; Hsu et al., 2012) while
simultaneously as simple as possible to test different model
parameters. It is also important to note that prescribing
velocity of overlying rather than subducting plate enhances
tendency of slab flattening (van Hunen et al., 2004).

All mechanical boundary conditions are free slip, and only the
lower boundary was permeable, satisfying an external free slip
boundary condition (Gorczyk et al., 2007; Ueda et al., 2008). In
addition, on the top of the rocky portion of the model is treated as
an internal free surface (Schmeling et al., 2008) by using a top
layer (of 20 km thickness) with low viscosity (1018 Pas) and low
density (1 kg/m3 for air, 1,000 kg/m3 for sea water) to allow for
the surface topographic evolution.

The initial temperature field of the oceanic plate is defined by
its oceanic geotherm for a specific lithospheric cooling age of
20 Ma, according to the subducting slab age of the Manila trench
(Wu et al., 2016). The oceanic plateau embedded into the oceanic
crust is assumed to have the same thermal structure as the oceanic
lithosphere. Therefore, the initial temperature field of the
continental plate is increased linearly from 0°C at the surface
to 1,344 °C at the lithosphere-asthenosphere boundary (140 km
depth). For the asthenospheric mantle (>140 km), a thermal
gradient of 0.5°C km−1 is used.

SUBDUCTION OF THIN CONTINENTAL
TERRANE

A series of models (Model-C100, Model-C200, Model-C300,
Model-C400) are conducted to test the influence of a
bathymetric high with continental affinity. We focus on the
thickness and width of the terrane. Four groups of
experiments with fixed terrane width (100 km, 200 km,
300 km, and 400 km for each group) are examined by
changing the terrane thickness (10 km, 15 km, 20 km, 25 km,

and 30 km in thickness for each group). A representative selection
of the models is shown in Table 2 to discuss how different size
terranes embedded in the subducting slab affect the subduction
process.

Reference Model
The numerical evolution of the reference model (Model-C300-
15) is shown in Figure 3. In this model, a thin continental terrane
(15-km thick, 300-km wide) is embedded in the oceanic plate.
The slab initially subducts with a smooth morphology, and the
thin continental terrane passes through the subduction channel
(Figure 3A). A small part of the upper crust of the terrane is
accreted to the overriding continent margin. This leads to an
uplift in the accretionary wedge (Figure 3B1). Then the terrane is
subducted into the deep mantle creating a shallower slab angle at
a depth of ~100 km. The downgoing oceanic plate is substantially
narrowed at a depth of ~250 km and shows a rheologically weak
gap in the narrowed part (Figure 3C2), leading to an abrupt
change in the dipping angle (from ~20° to ~58°) (Figure 3C1).
Finally, the slab pull causes the occurrence of slab break-off
(Figure 3D). This model illustrates that the subduction of a
large (300-km wide) terrane with thin continental (15-km thick)
affinity leads to an abrupt change in the dip angle and an uplift in
the accretionary prism.

Variations in Thickness of Large-Size
Terranes (≥300km in Width)
Model-C400 differs from Model-C300 only because the
continental terrane has a larger width (400-km wide
continental terrane). The evolution of Model-C400 is similar
to Model-C300. Figure 4 shows the morphology of the subducted
plate right before breaking off.

For terranes with thin continent crust (≤15 km in thickness)
(Liu et al., 2018; Deng et al., 2020), abrupt changes in dipping
angle are shown in Figures 4A,B,F,G, and the plates narrow at a
depth of 200–300 km. Figures 4A,B show that the significant
change in the dip angle happens after the terrane pushes into the
mantle in Model-C300, whereas part of the terrane is still going
through the subduction channel in Model-C400 due to a
larger width.

TABLE 1 | Material properties used in the numerical experiments.

Material State ρ0 (kg m-3) k (W m−1 K−1) Hr (μWm−3) Plastic
Sin(ϕeff)

Viscous Flow law η0 (pan s) Ea (kJ mol−1) Va (J bar−1) n

CUC Solid 2,700 0.64 + 807/(T + 77) 1.0 0.15 Wet Quartzite 1.97 × 1017 154 1.2 2.3
CLC Solid 2,800 0.64 + 807/(T + 77) 0.25 0.15 Plagioclase_An75 4.8 × 1022 238 0.8 3.2
OUC Solid 3,000 1.18 + 474/(T + 77) 0.25 0 Wet Quartzite 1.97 × 1017 154 0.8 2.3
OLC Solid 3,000 1.18 + 474/(T + 77) 0.25 0.6 Plagioclase_An75 4.8 × 1022 238 0.8 3.2
Mantle Dry 3,300 0.73 + 1293/(T + 77) 0.022 0.6 Dry_olivine 3.98 × 1016 532 0.8 3.5

470 0.8 4.0Wet 3,200 0 Wet_olivine 5.01 × 1020

References — 1,2 3 1 — 4 4 4 4 4

References: 1, Turcotte and Schubert, 2002; 2, Bittner and Schmeling, 1995; 3, Clauser and Huenges, 1995; 4, Ranalli, 1995. CUC, continental upper crust; CLC, continental lower crust;
OUC, oceanic upper crust; OLC, oceanic lower crust.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9431475

Ma et al. Bathymetric Highs Subduction

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


In the case of a normal-thickness continental terrane
(25–30 km in thickness), most of the terrane is blocked in the
subduction zone before the slab breaks off, and only smaller parts
are sheared off and dragged down into the mantle (Figures
4D,E,I,J). For both Model-C300 and Model-C400, the oceanic
slab subducts at a shallow angle at an early stage and gradually
steepens to nearly vertical. The morphology of the downgoing
plate remained smooth and showed no abrupt change in the
dipping angle before the slab broke off. Most parts of the thick
continental terrane were blocked due to its buoyancy (Cloos,

1993), and terrane collision and lateral accretion occurred to
accommodate the constant convergence (Figure 5). A
“subduction zone jump” (Yan et al., 2021) after the collision is
shown in Figure 5, whichmay be caused by the detachment of the
buoyant crust of the terrane (Zhang et al., 2020).

Terranes with thin continent crust (20 km in thickness) act as
a transition from thin terrane subduction with an abrupt
morphology change to normal-thickness terrane collision. The
oceanic plate is subducted at a gradually deeper angle, and there is
no abrupt change in slab morphology before the slab breaks off

FIGURE 2 | Initial setups of the numerical models (A) Full box initial geometry (4,000 × 1,400 km). The orange arrow denotes the right overthrusting velocity. (B)
Zoomed area of the collision domain (900 × 200 km). The white solid lines are isotherms with an increment from 100 to 1,300°C. Composition color codes: 0, stick air; 1,
water; 2, sediments; 3 and 4, upper and lower continental crust, respectively; 5 and 6, upper and lower oceanic crust, respectively; 7, lithospheric mantle; 8,
asthenosphere mantle; 9. hydrated mantle (weak zone). (C) and (D) Lithosphere yield stress profiles for continental terrane and oceanic plateau, respectively. See
Table 1 for the rheological parameters. UC, upper crust; LC, lower crust.
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(Figures 4C,H). Most of the upper crust of the subducting thin
continental terrane is accreted to the leading edge of the overriding
plate. In contrast, the lower crust and minor part of the upper one
bypass the accretionary prism and is lost by subduction. As a result,
crustal thickening accumulate in the downgoing plate and
propagate toward the accretionary wedge. The depth at which
part of the terrane detached from the subducting slab is as shallow
as 30 km. Thickened upper crust contributes to a vertical increase
of accretionary prism (Figures 4C1,H1), which is similar to the
uplift in the reference model (Figure 3B).

The Model-C300 and Model-C400 sets demonstrate that the
thickness of a large continental terrane plays a vital role in slab
morphology during the subduction process. A thin continental
terrane causes an abrupt change in dipping angle before slab
breakoff, while a normal-thickness continental terrane resists
subduction and encourages “subduction zone jump” (Figure 5).

Variations in Thickness of Moderate/
Small-Size Terranes (200 km/100 km in
Width)
Model-C100 and Model-C200 are identical to the reference
model except for the terrane width. Model-C100 has a small-
size continental terrane (100-km wide) (Yan et al., 2021), and
Model-C200 has a moderate-size continental terrane (200-km
wide) (Gerya et al., 2009). Figure 6 shows the morphology of the
subducting plate right before breaking off.

A small and thin continental terrane (100 km in width and ≤
15 km in thickness) leads to complete terrane subduction. As the
whole terrane is dragged down into the deep mantle, the downgoing
plate show no change in the dipping angle (Figure 6A) or a relatively
slight change from 29° to 44° (Figure 6B). The change in slab
morphology is more obvious in the moderate-size continental
terrane subducting process (Figures 6F,G). When the small/

moderate-size terrane has a thicker crust (20–30 km thick), the
model evolution is similar to Model-C300 and Model-C400,
which present the large continental terrane subduction. The
subducting slab show no abrupt change in the dipping angle
before breaking off (Figures 6C–F, H–J), with blocked terrane
and subsequent “subduction zone jump” in normal-thickness
continental terrane models (25–30 km thick), and partial terrane
accretion in thin continental terrane model (20 km thick).

Model-C100 and Model-C200 illustrate that the width of the
continental terrane is also a controlling factor on the subducting
slab morphology. Thus, the moderate-size continental terrane or
wider ones are more likely to form the abrupt change of dipping
angle during the subducting process.

SUBDUCTION OF OCEANIC PLATEAU

We test the effect of oceanic plateau subduction to clarify its
different influence on slab morphology from continental terrane
subduction. Figure 7 show the evolution of Model-O300-15 with
an oceanic plateau (15-km thick, 300-km wide) embedded in the
subducting plate. The oceanic plate begin to subduct along the
weak zone. Once the oceanic plateau enter the subduction zone, a
large part of the upper crust of the plateau is sheared off and
accreted into the accretionary prism (Figures 7A1,B1). When the
oceanic plateau bypass the subduction channel, the downgoing
oceanic plate show no abrupt change in dipping angle (Figures
7A1, B1, C1). Materials of the forearc region of the overriding
plate do not show obvious uplift. The slab break-off occur before
the whole plateau is dragged down into the subduction channel
(Figure 7C1). Significant flexural stresses are generated in the
subducting plate before breaking off (Figure 7B2).

A series of oceanic plateau models (Model-O100, Model-
O200, Model-O300, and Model-O400) are performed to
compare their influence on subducting slab morphology and

TABLE 2 | Parameters and results of representative experiments.

Model name Terrane Terrane Width (km) Terrane Thickness (km) Results

Model-C300-10 Continent (large) 300 10 Figure 4
Model-C300-15 (Reference model) Continent (large) 300 15 Figure 3
Model-C300-20 Continent (large) 300 20 Figure 4
Model-C300-25 Continent (large) 300 25 Figure 4
Model-C300-30 Continent (large) 300 30 Figure 4
Model-C100-10 Continent (small) 100 10 Figure 6
Model-C100-15 Continent (small) 100 15 Figure 6
Model-C100-20 Continent (small) 100 20 Figure 6
Model-C100-25 Continent (small) 100 25 Figure 6
Model-C100-30 Continent (small) 100 30 Figure 6
Model-O300-15 Oceanic (large) 300 15 Figure 7
Model-O100-10 Oceanic (small) 100 10 Figure 8
Model-O100-15 Oceanic (small) 100 15 Figure 8
Model-O100-20 Oceanic (small) 100 20 Figure 8
Model-O100-25 Oceanic (small) 100 25 Figure 8
Model-O100-30 Oceanic (small) 100 30 Figure 8
Model-O400-10 Oceanic (large) 300 10 Figure 8
Model-O400-15 Oceanic (large) 300 15 Figure 8
Model-O400-20 Oceanic (large) 300 20 Figure 8
Model-O400-25 Oceanic (large) 300 25 Figure 8
Model-O400-30 Oceanic (large) 300 30 Figure 8
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FIGURE 3 | Evolution of the reference model (Model-C300-15), with thinned continental terrane (15-km thick, 300-km wide). Left: Evolution of composition in
Model-C300-15. The composition code shown here is the same as in Figure 1. Right: Evolution of viscosity in Model-C300-15. Black arrows in (A1), (B1), (D1) and (C2)
indicates the partially subducted continental terrane, the uplift in the accretionary wedge, the slab break off, and the rheologically weak gap in the mantle, respectively.
Red box in (B1) indicates the uplift in the accretionary wedge. The magnitude of angle in Figure C1 shows the abrupt change of dipping angle.
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FIGURE 4 |Comparison of large-size terrane models with varied terrane thickness, showing the slab morphology right before breaking off. (A–E) Slab morphology
of Model-C300, in which the terrane is 300 km wide. The terrane thickness is 10–30 km from A to E, respectively. (C1) Topography result of Figure (C) (F–J) Slab
morphology of Model-C400, in which the terrane is 400 km wide. The terrane thickness is 10–30 km from F to J, respectively. (H1) Topography result of Figure (H) and
The black arrows in (A), (B), (F), and (G) indicate the change in dipping angle. The black arrows in C and H refer to no abrupt change in dipping anlge before slab
break off. The red boxes and arrows indicate the uplift in the accretionary wedge. The black arrows in (D), (E), (I), and (J) show the blocked terranes.
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corresponding thicknesses to continental terrane models (Model-
C100, Model-C200, Model-C300, and Model-C400). Here a
selection of the models performed is shown in Figure 8 to
compare models with small/large-size oceanic plateaus
(100 km/400 km in width). In Figure 8, it is clear that neither
a small oceanic plateau nor a large one favored the abrupt change
in the dipping angle, irrespective of how thick the oceanic plateau
is. For plateau thicknesses no more than 20 km, part of the upper
crust is accreted into the accretionary wedge, and the rest of the
plateaus subduct into the deep mantle (Figures 8A–C,F–H). For
plateau with an over-thickened crust (25 km or 30 km in
thickness), most part of the plateau is blocked in the
subduction zone before slab break-off (Figures 8D,E,I,J).
According to our model results, a thicker oceanic plateau on
the subducting plate favor a faster break-off event.

These model results indicate that the oceanic plateau
subduction is more likely to form a smooth slab morphology,
differing from the abrupt change in the dipping angle in thin
continental terrane subduction models.

DISCUSSION

The Role of Crustal Properties and Size of
Bathymetric Highs in Subducting Slab
Morphology
Figure 9 summarizes the model results from varied terrane
crustal properties, width, and thickness. The reference model
has a 300 km wide and 15 km thick continental terrane. It is
characterized by deep continental crust subduction and by an
abrupt change in subducting slab morphology (Δθ > 20°,
Figure 9). Additional tests show that: 1) terrane width or
thickness variation has no significant effect on subducting slab
morphology of oceanic plateau models (Model-O100, Model-
O200, Model-O300, and Model-O400). No change in the dipping
angle is observed (Δθ = 0°) before slab break-off occurs (Figures
8, 9). 2) continental terrane models with a terrane thickness
≥20 km (Figures 4C–E, H–J, Figures 6C–E, H–J and Figure 9)
showed no abrupt change in the dipping angle before shallow slab

FIGURE 5 | Evolution of Model-C300-30, with normal-thickness continental terrane (30-km thick, 300-km wide). Left: Evolution of composition in Model-C300-30.
The composition code shown here is the same as in Figure 1. Right: Evolution of viscosity in Model-C300-30. Black arrows in (A1), (B1), and (C1) indicate the slab
break-off, the blocked terrane and the initiation of a new subduction zone behind it, and the location of the new subduction zone, respectively.
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FIGURE 6 |Compared small/moderate-size continental terrane models with varied terrane thickness, showing the slabmorphology right before breaking off. (A–E)
Slab morphology of Model-C100, in which the terrane is 100 km wide. The terrane thickness is 10–30 km from A to E, respectively. (F–J) Slab morphology of Model-
C200, in which the terrane is 200 km wide. The terrane thickness is 10–30 km from F to J, respectively. The black arrows in (A), (B), (F) and (G) indicate the change in
dipping angle and the subducted terrane. The black arrows in (C), (D), and (H) indicate the partially accreted terrane crust. The red boxes in (C), (D), and (H)
indicate the uplift in accretionary wedge. The black arrows in (E), (I), and (J) indicate the blocked terranes.
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FIGURE 7 | Evolution of Model-O300-15, with oceanic plateau (15-km thick, 300-km wide). Left: Evolution of composition in Model-O300-15. The composition
code shown here is the same as in Figure 1. Right: Evolution of viscosity in Model-O300-15. Black arrows in (A1), (B1), and (C1) indicate the subducting oceanic
plateau, the partially accreted plateau crust and the smooth subducting slab morphology, and the slab break-off, respectively.
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FIGURE 8 | Compared small/large-size oceanic plateau models with varied plateau thickness, showing the slab morphology right before breaking off. (A–E) Slab
morphology of Model-O100, in which the oceanic plateau is 100 kmwide. The plateau thickness is 10–30 km from A to E, respectively. (F–J) Slabmorphology of Model-
O400, in which the oceanic plateau is 400 km wide. The plateau thickness is 10–30 km from F to J, respectively. All the model results in this figure show no abrupt
change in dipping angle.
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break off, whatever how wide the terrane is. 3) in the context of
thin continental terrane models (terrane thickness = 10 km or
15 km) (Figures 4A,B, F–G), Figure 6A,B, F–G and Figure 9),
large-size terrane (Model-C300 and Model-C400) favors for the
abrupt change of dipping angle (Δθ > 20°, Figure 9) during the
subducting process. In contrast, small-size terrane (Model-
C100) is more likely to result in a slight change in dipping
angle (Δθ < 20°, Figure 9) or no change (Δθ = 0°, Figure 9)
before slab break-off. Moderate-size terrane (Model-C200)
is a transition type from abrupt change to slight change, and
its Δθ = 20° (Figure 9).

Our oceanic plateau models show no abrupt change in the
dipping angle before slab break-off, consistent with the results of
Cheng et al. (2019), who showed that seamount subduction
promotes the break-off process, and Gerya et al. (2009), who
showed smooth morphology of slab position lines. Other
previous numerical models with bathymetric highs, including
continental fragments, seamounts, oceanic plateaus, and island

arcs, focus on various types of accretion (Tetreault and Buiter,
2012, 2014; Li Z. H. et al., 2013; Vogt and Gerya, 2014; Yang et al.,
2018). This partially compares well with our numerical
experiments. Part of the upper crust of the subducting thin
continental terrane/oceanic plateau is accreted to the leading
edge of the overriding plate. The above models are 20 km thick
and 100–200 km wide (small to moderate-size) bathymetric
highs, consistent with the average thickness of global thin
continental fragments/oceanic plateaus. Recent numerical
modeling studies test small to large-size oceanic plateaus (Tao
et al., 2020; Yan et al., 2021; Almeida et al., 2022; Wang et al.,
2022) to investigate how buoyant plateaus contribute to dip angle
change, subduction polarity reversal, and subduction zone
jumping. Previous analogue models investigate the effects of
seamount subduction on the structural deformation of the
accretionary wedge, especially the evolution of faults in the
wedge (Dominguez et al., 1998, 2000; Li F. C. et al., 2013;
Wang et al., 2021). Li F. C. et al. (2013) investigates the

FIGURE 9 |Regime diagram showing the effect of terrane thickness and width on slab morphology. Each colored solid line and dot indicate one set of model with a
fixed width (e.g., the green line, model C-100, represents continental terrane model with a terrane width of 100 km; the purple hollow circle, model O-200, represents
oceanic plateau model with a terrane width of 200 km). It is worth noting that oceanic plateau models (O-100, O-200, O-300, O-400) are all with Δθ = 0°, so only colored
dots are shown on horizontal axis rather than lines. Three distinct modes of subducting slab morphology are observed: abrupt change in dipping angle (Δθ > 20°),
slight change in dipping angle (Δθ < 20°), no change in dipping angle before slab break-off (Δθ = 0°). The horizontal axis depends on terrane thickness. The vertical axis
depends on Δθ. Δθ = θ2—θ1. “C” and “O” represent continental terrane model and oceanic plateau model, respectively.
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seamount subduction along the Manila trench by combining
analog and gravity modeling, and suggests that the dip anlge of
subducting plate may be associated with extict mid-ocean ridge
subduction. However, as most of the analogue models focus on
seamount or oceanic ridge subduction, the effects of continental
terrane subduction are rarely to be compared with in analoge
modeling. Our models systematically investigate the subduction
process of different bathymetric highs with varied crustal
properties, width, and thickness and further illustrate that the
abrupt change of subducting slab morphology is not only
controlled by the crustal properties of bathymetric high but
also by its thickness and width.

Sharp changes in subducting slab angle imply localized slab
bending, which is driven by combined effects of rheological
weakness and positive buoyancy of subducted continental
crust. Similar localized bending process (segmentation) of
purely oceanic subducting slabs has been recently suggested by
Gerya et al. (2021), which is primarily driven by strain weakening
of outer-rise normal faults, and grain-size reduction (ductile
damage) of the lithospheric mantle. However, our models do
not consider the grain-size reduction in the slab, which prevents
us from directly comparing our models with seismic tomography
data beneath the Manila trench. Such comparison also requires
(cf. discussion in Gerya et al., 2021) better resolution of seismic
data in Manila subduction zone, which is currently unavailable.

Implications for the Subduction Along the
Manila Trench
The Manila trench is characterized by distinct trench shape and
subducting slab morphology between the northern and southern
segment. Here, we apply our results to understand the
relationship between the subducting bathymetric highs and the
along-strike variations of the Manila trench. This study
performed an overriding plate push at the rate of 7 cm/yr
(Seno et al., 1993; Kreemer et al., 2003; Simons et al., 2007;
Hsu et al., 2012), a relatively young subducting oceanic plate
(20 Myrs) (Wu et al., 2016), and a thin continental terrane (15 km
thick in the reference model) (Wang et al., 2006; Yeh et al., 2010,
2012; Lester et al., 2013, 2014; McIntosh et al., 2013, 2014; Eakin
et al., 2014; Sibuet et al., 2016; Liu et al., 2018) to compare with the
geological settings of the Manila trench.

As shown in Figure 1, at around 20°N, where the maximum
seaward convex of the Manila trench is found, the crustal
property of the northeastern SCS was initially characterized as
the oceanic crust (Hsu et al., 2004), whereas later studies
suggested that it is thin continent crust with a thickness of
~12–15 km (Wang et al., 2006; Yeh et al., 2010, 2012; Lester
et al., 2013, 2014; McIntosh et al., 2013, 2014; Eakin et al., 2014;
Sibuet et al., 2016; Liu et al., 2018). Additionally, dramatic
changes in the dipping angle of the subducted SCS plate are
revealed from the northern Manila trench (20° N) (Fan et al.,
2016;Wu et al., 2016; Chen et al., 2021). According to seismic and
tomography data in this area (Fan et al., 2016), at 20° N, the SCS
plate subducts initially along the Manila trench to ~250 km depth
at a low angle of ~25°. Then, it abruptly changes to a higher dip
angle of ~75° to a depth of ~500 km (Figure 10A2). In our model

results, the thin continental terrane was initially subducted along
the subducting channel at a low angle. Then, it changed abruptly
to a much higher dip angle (Figure 10A1), whereas all oceanic
plateau models do not result in an abrupt change in the dipping
angle. Thus, our continental terrane model result is consistent
with the tomographic profile at the northern Manila trench
(20°N), and further support that the crust located west of the
Manila trench and around 20°N is a thin continental crust, rather
than oceanic plateau.

In contrast, the southern Manila trench is characterized by
widely distributed small-size seamounts (<100 km in width), e.g.,
Huangyan-Zhenbei seamounts chain with a crustal thickness
between 13 and 14 km (He et al., 2016; Zhao et al., 2018;
Cheng et al., 2019). Thus, our model with a 15 km-thick and
100 km-wide oceanic plateau is suitable for this area. This model
does not result in an abrupt change in dipping angle
(Figure 10B1), which is also compared well with the smooth
slab morphology in the tomographic profile of the southern
Manila trench (17° N) (Figure 10B2). Futher investigation of
lateral slab morphology variations will require application of 3D
thermomechanical modelling approaches. Also, the model results
indicate that the most important factor controlling the
occurrence of an abrupt change in dipping angle is the crustal
properties of bathymetric high along the Manila trench. Only
subducting plate with continental terrane may initially subduct
along the trench at a low angle and then changes abruptly to a
higher dip angle, while comparable size oceanic plateau
subduction favors for smooth subducting slab morphology.

Our model results exhibit that the second-order factor
controlling the subducting slab morphology is the thickness
of continental terrane. A thin continental terrane (10 km or
15 km thick) has a strong ability to result in an abrupt change
in dipping angle before slab breakoff (Figures 4, 6, 9). In
comparison, a thicker continental terrane (≥25 km thick) is
more likely to be blocked in the subduction channel (Figures
4, 6), and favors for “subduction zone jump.” The latter point
is similar to the ‘subduction zone jump’ phenomenon in Tao
et al. (2020) and Yan et al. (2021), which is beyond the focus of
this paper. In addition, the continental terrane width also has
implications for affecting the downgoing slab morphology.
According to our model results, the moderate-size continental
terrane or wider ones (≥200 km in width) are more likely to
form the abrupt change of dipping angle during the
subducting process (Figures 4, 6, 9). These results are
comparable with geological observations of the Manila
trench, where large-size (≥300 km in width) and thin
(≤15 km in thickness) continental terrane subduction leads
to an abrupt change in the dipping angle in the northern
segment, and small-size (≤100 km in width) seamounts
subduction results in a smooth subducting slab morphology
in the southern segment.

The geophysical studies of northern Manila trench indicate
that the accretionary wedge shows an vertical volume increase,
and it may be due to the accreted crustal material from the thin
continental terrane (Eakin et al., 2014). According to our models,
Figures 10A3, B3 compare the topography evolution of large thin
continental terrane subduction with small oceanic plateau
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subduction. The former contributes to a relatively evident vertical
increase in the accretionary wedge volume (Figure 10A3), which
is similar with the topographic uplift in Figures 4C1, H1. These
topographic results of continental terrane models agree with the
geophysical observations from Eakin et al. (2014).

CONCLUSION

We test a series of 2-D geodynamic models to investigate
subduction processes involving thin continental terrane and
oceanic plateau and provide insights from numerical
modeling on properties of the subducted crust of the South
China Sea along the Manila trench. There are three key
findings of the study.

1. The first-order factor controlling an abrupt change in the
dipping angle is the crustal properties of bathymetric highs.
Subducting plate with continental terrane initially subducts

along the trench at a low angle and then changes abruptly to a
higher dip angle. In contrast, comparable size oceanic plateau
subduction does not result in the abrupt change in the
dipping angle.

2. For continental terranes, the crustal thickness and terrane
width affect the subducting slab morphology. The subduction
of a wide continental terrane (≥300 km) with thin crust
(≤15 km in thickness) favors the abrupt change in dipping
angle. Overthickened terranes (≥25 km in thickness) are more
likely to be blocked in the subduction zone.

3. The model results explain the differences in subducting slab
morphology between the northern (around 20° N) and
southern (around 17°N) segments of the Manila trench. For
the northern Manila trench, numerical models with large thin
continental terrane (≥300 km in width and ≤15 km in
thickness) lead to an abrupt change in dipping angel, which
corresponds to tomography profile at 20°N. On the other
hand, for the southern Manila trench, models with small
(≤100 km in width) oceanic plateaus (seamounts) are

FIGURE 10 | Comparison of modeled and observed subducting South China Sea (SCS) slab morphology along the Manila trench. (A1) Model results of thin
continental terrane subduction. The red arrow indicates an abrupt change in the dip angle. (A2) Vertical cross section of P-wave tomography along the profile at northern
Manila trench (20° N). Modified from Fan et al., 2016. (A3) Topography evolution of thin continental terrane subduction. (B1) Model results of oceanic plateau subduction.
(B2) Vertical cross section of P-wave tomography along the profile at southern Manila trench (17° N). Modified from Fan et al., 2016. (B3) Topography evolution of
oceanic plateau subduction. The red circle indicates the vertical increase in the accretionary prism volume.
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characterized by smooth subducting slab morphology, which
corresponds to the tomography profile at 17°N.
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