
EPick: Attention-based
multi-scale UNet for earthquake
detection and seismic phase
picking

Wei Li1, Megha Chakraborty1,2, Darius Fenner1,3,
Johannes Faber1,4, Kai Zhou1,4,5, Georg Rümpker1,2,
Horst Stöcker1,4,5,6 and Nishtha Srivastava1,2*
1Frankfurt Institute for Advanced Studies, Frankfurt amMain, Frankfurt am Main, Germany, 2Institute of
Geosciences, Goethe-University Frankfurt, Frankfurt, Germany, 3Johannes Gutenberg-Universität
Mainz, Mainz, Germany, 4Institute for Theoretical Physics, Goethe-University Frankfurt, Frankfurt,
Germany, 5Xidian-FIAS International Joint Research Center, Frankfurt, Germany, 6GSI
Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

Earthquake detection and seismic phase picking play a crucial role in the travel-

time estimation of P and S waves, which is an important step in locating the

hypocenter of an event. The phase-arrival time is usually picked manually.

However, its capacity is restricted by available resources and time. Moreover,

noisy seismic data present an additional challenge for fast and accurate phase

picking. We propose a deep learning-based model, EPick, as a rapid and robust

alternative for seismic event detection and phase picking. By incorporating the

attention mechanism into UNet, EPick can address different levels of deep

features, and the decoder can take full advantage of the multi-scale features

learned from the encoder part to achieve precise phase picking. Experimental

results demonstrate that EPick achieves 98.80% accuracy in earthquake

detection over the STA/LTA with 80% accuracy, and for phase arrival time

picking, EPick reduces the absolutemean errors of P- and S- phase picking from

0.072 s (AR picker) to 0.030 s and from 0.189 s (AR picker) to 0.083 s,

respectively. The result of the model generalization test shows EPick’s

robustness when tested on a different seismic dataset.
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1 Introduction

To achieve reliable automatic phase picking, a wide spectrum of traditional automatic

pickers have been developed over the years such as short-term average and long-term

average (STA/LTA) (Allen, 1978), auto regression-Akaike information criterion (AR-

AIC) pickers (Sleeman and Van Eck, 1999), sub-band analysis and envelope-based

automated methods (Lomax et al., 2012; Álvarez et al., 2013), and the combination of

different automatic methods (Bai and Kennett, 2000; Nippress et al., 2010). STA/LTA and
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AR-AIC require intensive human involvement. For example,

STA/LTA requires experts to carefully set up parameters,

whereas the STA/LTA ratio is sensitive to the choice of long-

term and short-term windows, and the triggering is sensitive to

the detection threshold. Furthermore, they cannot take

advantage of the prior knowledge of previous picks since each

measurement in these two methods is treated individually. The

accuracy of traditional automatic pickers, when applied to real-

time seismic data, may not be satisfactory, especially in the case of

a poor signal-to-noise ratio. Additionally, the increasing number

of seismic sensors deployed for earthquake monitoring produces

a huge amount of seismic data, making data flow and processing

along with defining the manual features for traditional

automated methods more difficult and time-consuming.

Therefore, earthquake monitoring has an increasing need for

more efficient and robust tools to process large volumes of

seismic data.

Deep learning has achieved widespread success in a broad

range of applications such as image recognition, semantic image

segmentation, and computer games (Hinton et al., 2006; LeCun

et al., 2015; Silver et al., 2016). Inspired by the success of those

applications, phase picking has attracted a new wave of deep

learning applications in seismology. Unlike traditional

automated methods, where only a limited set of defined

features of seismograms is used, deep learning facilitates more

abundant feature extraction from seismic data. Recent years have

witnessed remarkable achievements in the application of deep

learning in seismic data processing tasks, especially for seismic

event detection and seismic phase picking (Pardo et al., 2019;

Wang et al., 2019; Zhou et al., 2019; Zhu and Beroza, 2019; Zhu

et al., 2019; Mousavi et al., 2020; Chakraborty et al., 2021; Li et al.,

2021; Chakraborty et al., 2022; Fenner et al., 2022; Li et al., 2022).

For instance, EQTtransformer (Mousavi et al. (2020)) had a

multi-task structure consisting of one very-deep encoder and

three separate decoders for simultaneous detection of earthquake

signals and picking the first P and S phases, where the Gaussian

form label is used. Recently, UNet has been used in seismic phase

picking (Zhao et al., 2019; Zhu and Beroza, 2019), which was

originally proposed to perform biomedical image segmentation

(Ronneberger et al., 2015). However, bottlenecks are still

reported that impede the potential applications of the raw

UNet architecture. When feeding data into a deep neural

network, a hierarchy of features is extracted that can be

roughly classified from low-level features to high-level

features. However, the vanilla UNet fails to adequately utilize

different level features. On the other hand, previous works (Zhu

and Beroza, 2019; Liao et al., 2021) used Gaussian format with

different standard deviations to mark the phase arrival time when

training the neural network, which has the potential to introduce

a bias in the training process. For example, in PhaseNet (Zhu and

Beroza, 2019), a Gaussian distribution with zero mean and a

standard deviation of 0.1 s were used to label the arrival time,

while in ARRU (Liao et al., 2021), the Gaussian function with

standard deviations of 0.2 s and 0.3 s were used to mark the

arrival time of P-phase and S-phase, respectively.

We proposed a new deep learning-based model, EPick, for

earthquake signal detection and phase picking. Given the fact

that features generated at different stages often possess different

levels of discrimination, EPick incorporates an attention

mechanism into the raw UNet structure (details in Section 2)

since the attention mechanism (Vaswani et al., 2017) has the

potential to help neural networks focus mainly on the useful

aspects of input data, which boosts prediction performance. The

EQTtransformer (Mousavi et al., 2020) also uses the attention

mechanism for earthquake detection and seismic phase picking.

However, EPick is a comparatively shallow neural network with

simpler architecture than EQTransformer. In contrast to the

previous methods of setting labels for a time window with

different lengths (e.g., 0.2 s in PhaseNet (Zhu and Beroza,

2019) and 0.4 s for P-phase and 0.6 s for S-phase in ARRU

(Liao et al., 2021), here, only one sample is adopted to train the

neural network (Wang et al., 2019) from the STanford

EArthquake Dataset (STEAD) (Mousavi et al., 2019) that a

global seismic dataset includes local earthquakes records and

seismic noise waveforms. Moreover, in this study, pure noise data

(seismic noise waveforms in the STEAD dataset) are also

included to train the model.

2 Methods

In this study, we propose using EPick for earthquake

detection and phase picking, where the attention mechanism

is applied to deal with multi-scale features in UNet. The model

architecture is illustrated in Figure 1, which is based on the

fundamental UNet structure that can be roughly decomposed as

an encoder network followed by a decoder network. However,

unlike raw UNet, exploitation of the attention mechanism

helps EPick sufficiently use the features extracted in the

encoder part.

2.1 Vanilla UNet and attention mechanism

UNet was originally proposed to perform biomedical image

segmentation (Ronneberger et al., 2015). It mainly consists of a

contracting path and an expanding path, which shares a similar

spirit with the encoder–decoder architecture. The encoder

comprises several convolution modules to encode the input

with feature representations of multiple different levels, where

each convolution module is followed by a max pool down-

sampling operation. The decoder is comprises several

deconvolutional modules to perform upsampling associated

with concatenation operations and aims to semantically

project the higher-resolution features extracted by the encoder

into upsampled feature space to perform a dense classification.
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The attention mechanism was first developed and extensively

applied in the area of natural language processing to enhance the

performance of the encoder–decoder-driven machine translation

system (Vaswani et al., 2017). It succeeds in splitting complex tasks

into small regions of attention and then processing those small tasks

sequentially. Recently, this mechanism (including its variants) has

achieved superior performance in a wide range of applications,

including computer vision and speech processing. The two most

common attention techniques used are self-attention and multi-

head attention.

• Self-attention relates different positions of a single

sequence to compute a representation of the sequence

(Vaswani et al., 2017). It enables the input to interact

with itself, calculate the attention scores, and finally

achieve the aggregated output by using these

interactions and attention scores. The attention scores

are calculated by the dot-product attention module

where the input interacts with each other. As

illustrated in Vaswani et al., (2017), given a query Q,

a key K, and a value V, the scaled attention is formulated

as follows, where dk is the key’s dimension.

Attention Q,K,V( ) � softmax
QKT��
dk

√( ). (1)

• Unlike self-attention, where attention is only computed

once, in the multi-head mechanism, the process of the

scaled dot-product attention runs multiple times in parallel

to improve the performance of the self-attention layer

(Han et al., 2020). Those independent attention outputs

are simply concatenated and linearly transformed into the

expected dimensions (Vaswani et al., 2017), which can be

mathematically formulated as the following equation.

MultiHead Q,K ,V( ) � Concat head1, . . . , headh( )WO, (2)

where headi � Attention(QWQ
i ,KW

K
i ,VWV

i ) and WO denotes

the parameter matrices learned by the model.

In general, convolutional neural networks (CNNs) use an

aggregated function over the receptive field according to the

shared kernel values in the whole feature map. In contrast to

CNNs, the self-attention block utilizes a weighted average

operation using the learned attention weights. Hence, the

flexibility enables the attention module to focus on different

regions adaptively and capture more informative features. As

reported in (Cordonnier et al., 2019), a multi-head self-attention

layer with a sufficient number of heads can be at least as

expressive as any convolutional layer.

2.2 Architecture

Figure 1 shows the three-channel waveform represented by a

three-channel 1-dimensional vector, which is fed as the input to

EPick, which classifies each input data sample as one of the three

classes: noise, first P-arrival, and first S-arrival. Here, each

channel of the seismic waveform is sampled at 100 Hz for a

FIGURE 1
EPick model architecture. The model inputs are three-component seismic waveforms of 1-min duration with a sampling rate of 100 Hz, so the
input size is 6,000*3. The colored blocks represent different layers of the neural network, where the extracted features will go through sets of
transformations. The whole architecture can be broadly divided into an encoder and a decoder. The encoder consists of several down-sampling
operations (including a 1D convolution block and max pooling). For the encoder blocks, we adopt 32, 32, 32, 64, 64, 128 feature maps with a
stride of 1 and padding, where the rectified linear unit (ReLU) is used as an activation function. Then, each of the first four blocks is followed by the
max pooling operation with a stride of 2, 4, 4, 4, and a dropout of 0.2. The decoder contains several up-sampling processes conducted by 1D-
deconvolution layers to recover the feature length of the previous stage, in which each block has the same size as the block in the encoder. The skip
connection after the attention mechanism at each stage enables the network to concatenate the low-level features to the right block, where the
built-in attention block in TensorFlow (Abadi et al., 2016) is used. Here, the skip connection directly copies the output of the attention mechanism
(denoted as blue modules) to the right layer. The last layer adopts the classical softmax function to scale the probabilities of noise, first P-pick, and
first S-pick per sample within 0–1 that are labeled as different color lines from left to right, which also has a size similar to the input.
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60-s time length. We label the output of our model as

Yi′(i � 1, 2, 3) to indicate the three class labels of “noise,” “first

P-arrival,” and “first S-arrival.” It should be noted that here the

“noise”, which would be identified as class Y1′, refers to data

samples that are not the first arrivals of P or S waves in the

metadata. Class Y2′ and class Y3′ correspond to the provided first

arrivals of P phase and S phase in the metadata, respectively. In

the training process, these discrete classes are embedded as one-

hot encoding per sample, which maps the variable to a binary

vector. Here, the length of the binary vector equals the number of

categories. For instance, for the label i (i is the ground truth class),

its one-hot encoding label can be represented as the vector whose

element is 1 at index i and 0 for remainders. Therefore, in this

work, the one-hot encoding for the defined categories is formed

as follows:

Yi′ � {Y1′: [1, 0, 0], Y2′: [0, 1, 0], Y3′: [1, 0, 0]}.
When seismic data are fed into the neural network, it

undergoes several downsampling and upsampling modules.

Each module comprises a 1D convolutional block associated

with a rectified linear unit (ReLU) activation function. These

extracted features are forwarded to the upsampling stage such

that at each moment, one can obtain the corresponding

probability distribution over three classes.

A skip connection involving an attention block at each stage

enables the concatenation of the features learned from the

encoder part to the upsampling stage. Here, the attention

blocks serve to allow the decoder to flexibly use the most

relevant parts of the encoder’s hidden states by a weighted

sum over those encoded input.

Similar to Zhu and Beroza, (2019), the deconvolution

operation (Noh et al., 2015) is used to achieve upsampling to

recover the previous feature size. Furthermore, padding

operations are also performed before and after convolutions

to keep the output size the same as the input size.

To output the probability distribution over three classes at

each component for each sample, a softmax function

(Goodfellow et al., 2016) is used as the final layer in the

network. The fundamental process of the softmax module is

to convert the output representation of the decoder part into

probability between the intervals of (0, 1). Here, the detection

process is regarded as a multiple classification problem. Hence,

the results of EPick on each data sample are mapped into the

probability by using a softmax function as

qi � ezi x( )/∑3
k�1

ezk x( ), (3)

where i = 1, 2, 3 denotes the noise, first P-arrival, and first

S-arrival, respectively; and zi(x) represents the unscaled output of

EPick before using the softmax function for the ith class.

Meanwhile, the cross-entropy (Murphy, 2012) between the

ground truth probability p(x) and the predicted distribution

q(x) is utilized to compute the loss

L p, q( ) � −1
n
∑3
i�1

∑n
j�1

pi j( ) · log qi j( )( ). (4)

pi(j) and qi(j) denote the true and predicted probability

distribution of the ith class and jth sample point, respectively,

where i = {1, 2, 3} indicates the class label and j = {1, 2, . . . , n}

denotes the sampling number.

Considering that the data used in this work have a class

imbalance problem (Kaur et al., 2019), i. e., the class “noise” far

exceeds the other two classes, which poses a challenge to building

a reliable classification model statistically. In order to resolve this,

a weight is introduced for each class, which helps the model place

more emphasis on the minority classes during the model training

process. It aims at ensuring a classifier that is capable of learning

equally from all categories. Hence, the loss function is rewritten

as L � W*L(p, q), where W denotes the weight vector for the

classes. Furthermore, to avoid overfitting, weight decay (Xie et al.,

2020), a popular regularization technique, is adopted in the

model training. Here, L2 regularization (Cortes et al., 2012),

the default implementation of weight decay, is added to the loss

function. Eventually, the total loss function is given as

L � WpL(p, q) + wdpL2
where wd denotes the weight decay factor.

3 Results

3.1 Data and experiment setting

For this study, several subsets of the STanford EArthquake

Dataset (STEAD) (Mousavi et al., 2019) are used to train and test

the architecture of the EPick neural network. About

100,000 three-component waveforms, including both

earthquake and noise waveforms, are used to train the

proposed model. Here, the seismic event data are selected

based on the unique source ID in the STEAD dataset. It

should be noted that in contrast to previous studies such as

(Zhu and Beroza, 2019; Liao et al., 2021), we do not use a time

window format to mark the arrival times of P- and S-phases to

train the model. The ratio between training and testing data is

approximately 4 : 1. To evaluate the earthquake detection and

phase picking performance of EPick, 25,000 seismic waveforms

(including 20,000 earthquake and 5,000 pure-noise examples) are

used as a test dataset, wherein a comparison is made between

EPick and the baseline methods, including UNet without

attention modules and AR picker (Akazawa, 2004). It should

be noted that for comparison, the baseline model, UNet, is

trained on the same training set and then applied to a

common test set from STEAD. Figure 2A shows the

earthquake magnitude distribution of the training and testing

datasets, and Figure 2B gives an example of seismic data marked

with phase arrival time. Figure 3 is used as an example of training
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FIGURE 2
Data visualization in the analysis. (A) shows the frequency–magnitude distributions of earthquake events in the training dataset. (B) gives an
example of a seismic data (Mousavi et al., 2019), where the plots in the figure from the top to the bottom represent the three-component seismic
recordings (including east–west, north–south, and vertical directions), respectively. In (B), the colored vertical lines denote the first arrival times of
picked P and S phases from the earthquake catalog, respectively.

FIGURE 3
Visualization of training examples including one earthquake event and non-earthquake signal of the STEAD dataset (Mousavi et al., 2019). The
three plots at the top of each subfigure in black color represent the normalized three-component seismograms, where the colored vertical lines
denote the picked arrival time of P- and S-phase from the recorded earthquake catalog of the STEAD dataset (Mousavi et al., 2019). The bottom three
plots denote the label information, where the label of each sample is encoded as a one-hot vector.
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instance visualizations of the earthquake and non-earthquake

signals with their corresponding labels.

In the model testing phase, a time interval centered on the

true phase picking time is employed to locate the predicted phase

pick. The time interval for the first P arrival is ±0.1 s from the true

label, while for the first S arrival, it is ±0.2 s. It should be noted

that a larger time interval is chosen for first S arrival picking since

the interference of P-wave signals with the later arriving shear

waves makes it more difficult to pick first S arrival than first P

arrival (Diehl et al., 2009). To test its robustness and

generalization, EPick is also compared with previous methods

on the INSTANCE dataset (Michelini et al., 2021). To evaluate

the model performance, the confusion matrix (Sammut and

Webb, 2011), a powerful analytical tool in deep learning and

data science, is used, which is capable of displaying detailed

information about how a deep learning classifier has performed

with respect to the target classes in the dataset. Then, the

following metrics, i.e., precision, recall, and F1-score, are defined.

Precision � TP/ TP + FP( )
Recall � TP/ TP + FN( )
F1 � 2p

PrecisionpRecall

Precision + Recall

, (5)

where TP, TN, FP, and FN are the numbers of true-positive

samples, true-negative samples, false-positive samples, and false-

negative samples, respectively. In addition, picking error,

referring to the time residuals t (also called “time difference”)

between picks of the deep learning model and ground truth, is

also used to evaluate arrival time picking error. In this work,

EPick is constructed and implemented in TensorFlow (Abadi

et al., 2016) and is trained and tested on an Nvidia A100 GPU.

The Adam optimizer is used for optimizing the method. A

dropout rate of 0.2 for the dropout layers is used in the

training phase.

3.2 Model performance

The overall detection performance for earthquake events is

shown in Table 1. Both EPick and UNet are trained on the same

dataset;whereas the recursive STA/LTA approach (Withers et al.,

1998) requires no training process. Table 1 shows that EPick

outperforms the traditional STA/LTA method and is slightly

better in all categories than UNet (without using the attention

mechanism).

Table 2 lists the experimental results of EPick, UNet, and AR

picker (Akazawa, 2004) tested in this study for seismic phase

arrival time picking. The mean (μ) and standard deviation (σ) of

arrival-time residuals between model-detected picks and ground

truth picks are computed in seconds for model performance

evaluation. The statistics described in Eq. 5 suggest that EPick

achieves better performance over both UNet and AR picker when

dealing with seismic phase picking.

Figures 4A,B visualizes the earthquake event detection

performance with the help of confusion matrices for UNet

and EPick, respectively, where we can find that EPick has a

low ratio for misclassification of noise events. Figures 4C,D

display the distribution of picking errors between the

predicted and ground truth first P and first S picks for EPick

and UNet, respectively.

In summary, from the abovementioned figures and tables, we

can interpret that 1) the attention mechanism contributes to

improving the performance of earthquake detection, and 2) for

seismic phase picking, it helps the neural network focus more on

the features related to phase picking, resulting in performance

enhancement.

Moreover, PhaseNet (Zhu and Beroza, 2019) is retrained and

tested on the same data from the STEAD dataset, where the

parameter setting is kept the same as in the original article (Zhu

and Beroza, 2019). In PhaseNet, a mask with the shape of a

Gaussian distribution around the manual picks is used to label

the P- and S- phases such that ground-truth arrival times could

be centered on the manual picks with some uncertainty.

In contrast to PhaseNet (which picks the first arrivals of

P-phase and S-phase), EPick is trained on noise signals as well,

which makes it capable of detecting the earthquake and

TABLE 1 Earthquake detection performance on the test data of the
STEAD dataset (Mousavi et al., 2019). Acc is the overall
classification accuracy. Pr, Re, and F1 are precision, recall, and F1-
score respectively. Here, the recursive STA/LTA algorithm is utilized.

Metric EPick UNet STA/LTA

Acc 0.9880 0.9875 0.8000

Pr 0.9853 0.9846 0.8000

Re 1.0 1.0 1.0

F1 0.9926 0.9923 0.8889

The bold values represent the best performances on the used data.

TABLE 2 First phase arrival-time picking on the test dataset from the
STEAD dataset (Mousavi et al., 2019). μ and σ are the mean and
standard deviation of the arrival time errors (prediction-ground truth)
in seconds, respectively. Pr, Re, and F1 are precision, recall, and F1-
score, respectively.

Metric (a) First P-phase picking (b) First S-phase
picking

EPick UNet AR picker EPick UNet AR
picker

μ 0.017 0.020 -1.233 0.011 0.015 -0.775

σ 0.134 0.716 3.254 0.662 0.845 3.314

Pr 0.9568 0.9632 — 0.9510 0.9416 -

Re 0.9700 0.9709 — 0.9536 0.9498 -

F1 0.9633 0.9670 — 0.9523 0.9457 -

The bold values represent the best performances on the used data.
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performing phase picking. It should be noted that the arrival-

time residuals that are less than 0.1 s are regarded as true positives

in PhaseNet. In this study, arrival-time residuals that are less than

0.1 s and 0.2 s are regarded as true positives for P-phase and

S-phase, respectively. The same method used in PhaseNet is

adopted to calculate precision, recall, and F1-score. Accordingly,

the results are as follows: 1) for the first P-phase picking, the

precision, recall, and F1-score and the mean and standard

deviation of the arrival time errors of the PhaseNet are 0.981,

0.966, 0.973, -0.000 , and 0.088 s, respectively. The precision,

recall, and F1-score and the mean and standard deviation of the

arrival time errors of the EPick are 0.976, 0.970, 0.973, 0.011, and

0.019 s, respectively; 2) for the first S-phase picking, the precision,

recall, and F1-score and the mean and standard deviation of the

arrival time errors of the PhaseNet are 0.989, 0.968, 0.978, -0.009,

and 0.114 s, respectively. The precision, recall, and F1-score and

the mean and standard deviation of the arrival time errors of the

EPick are 0.961, 0.954, 0.957, 0.000, and 0.053 s, respectively. The

results show that 1) EPick has a lower standard deviation for the

first P-phase picking than Phasenet for arrival-time error,

whereas it achieves a comparable result in precision, recall,

and F1-score, and 2) for the first S-phase picking, PhaseNet

shows slightly better performance in precision, recall, and F1-

score than EPick, while EPick has a lower mean and standard

deviation for the arrival-time errors.

3.3 Model generalization

In deep learning, model generalization describes how well a

trained model performs on unseen data. This is regarded as one

of the most important criteria in practical applications. To

investigate the generalization abilities on a separate dataset,

the trained model is tested on a subset of the INSTANCE

dataset (Michelini et al., 2021), where seismic waveform data

are collected from weak and strong motion stations that have

been extracted from the Italian EIDA node. Meanwhile, in the

INSTANCE dataset, the arrival times of P-phase and S-phase are

picked manually. Considering that the time interval of ±0.1 s is

used in the PhaseNet model (Zhu and Beroza, 2019) for first P

and S arrival picking, and in ARRU (Liao et al., 2021), the

standard deviation of the target Gaussian function is 0.2 s for the

P picks and 0.3 s for the S picks, which are used to label phase

arrival time. In this study, we use the same time interval ±0.1 s for

FIGURE 4
Result analysis for earthquake detection and phase arrival-time picking. (A,B) are confusion matrices for earthquake event detection in the
testing data for UNet and EPick. During testing, EPick misclassifies less noise as earthquake events. (C,D) are the distributions of time residuals (also
called time difference, Δt) for the first P and S picks of UNet and EPick on the test data set. Here, the histogram color under the overlap area of two
distributions is different from that of the legend in (C,D).
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the P and S phases to denote the uncertainty interval in our

model for evaluation of the model’s generalization on the

INSTANCE dataset. It is worth noting that in the model

training phase, single corresponding samples with the largest

probability for each class are utilized as the ground truth arrival

times for P and S waves in EPick, respectively, whereas the label

in Gaussian format is used in both PhaseNet (Zhu and Beroza,

2019) and ARRU (Liao et al., 2021) during the model training

phase.

Figure 5A shows the magnitude distribution of the used

subset of INSTANCE data, and Figure 5B gives the example of

one seismic event signal of different lengths, where dashed lines

represent the length of the input fed into different models. It

should be noted that, on one hand, seismic data with different

time durations are used in ARRU, PhaseNet, and EPick, for

example, 20-s data are used in ARRU (Liao et al., 2021), 30-s data

are used in PhaseNet (Zhu and Beroza, 2019), and 60-s data are

adopted in EPick. Hence, for this comparison, only the seismic

data whose P and S arrival times are within the 20-s limit are

considered. On the other hand, each raw seismic trace from the

INSTANCE dataset has a length of 120 s. Therefore, the

consecutive waveform within the duration time (e.g., 20 s,

30 s, and 60 s) after the trace starting time of each trace is

selected for ARRU, PhaseNet, and EPick, respectively. Then, the

clipped trace is further labeled by these three models. In addition,

here, the used PhaseNet model (Zhu and Beroza, 2019) is directly

cited from their saved trained models without re-training in

this work.

The model comparison results are shown in Table 3. The

results demonstrate that EPick obtains better results in the first

P-phase arrival picking on the INSTANCE dataset than AR

picker (Akazawa, 2004) and PhaseNet (Zhu and Beroza, 2019),

and it also achieves a comparable result with PhaseNet in the first

S-phase picking. On the first S-phase arrival picking, the mean

error and standard deviation of EPick are comparatively larger

than the picking result of the first P-phase picking. The reason

might be that a large weight is assigned to the first S-phase arrival

pick during the model training. We also observed that by using

similar weights for both the first P-phase and S-phase, the model

performance on picking the first S-wave arrival worsens without

FIGURE 5
Magnitude distribution and seismic signal visualization of the used subset of the INSTANCE dataset (Michelini et al., 2021). (A) shows the
frequency distribution of the test datamagnitude, and (B) visualizes one 3-component seismic waveformmarkedwith different time intervals. Here, a
60-s seismic waveform is sampled at 100 Hz. The evaluated models use different lengths of the same seismic event, marked with different dashed
lines.

TABLE 3 Seismic phase picking on the INSTANCE dataset (Michelini et al., 2021). MAE and RMSE are the mean absolute error and root mean squared
error of the arrival time errors (prediction-ground truth) in seconds, respectively. Here, the absolute arrival-time error below 0.5 s is considered.

Method (a) First P-phase picking (b) First S-phase picking

MAE(s) RMSE(s) MAE(s) RMSE(s)

AR picker 0.072 0.064 0.189 0.139

PhaseNet 0.034 0.051 0.086 0.089

EPick 0.030 0.043 0.083 0.090
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any significant improvement in the P-phase picking error. Unlike

PhaseNet, our proposed model is trained on non-earthquake

signals, which leads to more robust performance.

4 Discussion

4.1 Example visualization

In general, the visualization of representative results is

useful for model analysis. To that end, one correctly

classified example and three misclassified examples from the

test dataset are plotted in Figure 6. Figure 6A shows an

earthquake waveform that has been correctly classified as an

earthquake; the peaks of the predicted probability distribution

of EPick are very close to the manually picked first arrival times

of P- and S-phases. The three misclassified examples are

marked as ‘noise’ in the STEAD dataset (Mousavi et al.,

2019) but are identified as earthquakes by the model. Figure

6B shows that EPick only picks a P-arrival and no S-arrival, this

happens in case of 81.61% of noise waveforms misclassified as

earthquakes, while in 7.69% of cases, only the S-arrival is

picked. Thus, only for 10.70% of noise waveforms

misclassified as earthquakes, both P- and S-arrivals are

picked; two such examples are shown in Figures 6C,D.

While the former actually resembles seismic noise, the latter

appears to be very similar to a teleseismic event. It is worth

noting that for each earthquake waveform, the model picks both

P- and S-arrivals.

4.2 Data filtering

The proposed model, EPick, is trained on the STEAD dataset

that is band-pass filtered from 1.0 to 45.0 HZ (Mousavi et al.,

2020). To investigate the impact of the denoising technique on

model performance, a raw trace of low signal-to-noise ratio

(SNR) from the INSTANCE dataset (Michelini et al., 2021)

before and after filtering is fed into EPick for performance

evaluation. Here, the band-pass filter from obspy. signal.filter

FIGURE 6
Visualization of a prediction example in the test dataset. (A) shows an earthquake waveform, correctly classified as an earthquake waveform.
(B–D) show three misclassified examples, where the ground truth (according to the metadata) is non-earthquake, but the model classifies them as
earthquake signals. In (B), only the P-phase is detected, while in (C,D), both P- and S-phases are detected. The first three sub-figures represent the
three-component seismic recordings, namely, “E” (east–west), “N” (north–south) and “Z” (vertical direction), respectively. The bottom sub-
figure plots the predicted probability corresponding to the three classes: “noise,” “Pwave,” and “Swave.” The two colored vertical lines in the top sub-
figures of (A) denote the first arrival times of P- and S-phases from the test dataset provided in the metadata.

Frontiers in Earth Science frontiersin.org09

Li et al. 10.3389/feart.2022.953007

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.953007


(Beyreuther et al., 2010) is used with a frequency ranging from

1.0 to 40.0 Hz, and more details can be found in Figure 7 caption.

Figure 7 shows the prediction result, for which it could be hard

for experts to manually pick the first P-phase and S-phase arrival

times. Figure 7 shows that EPick achieves good arrival time

picking results with high probabilities. It further demonstrates

that this kind of pre-processing procedure could not impact the

performance of phase arrival time picking.

5 Conclusion

In this study, we investigate the combination of raw UNet

and attention mechanisms involving self-attention and multi-

head attention for seismic phase picking. To fully leverage the

power of the attention mechanism, a simple neural network

architecture, EPick, is proposed, which not only completes the

task of seismic event detection but also well-utilizes the low-level

extracted features by using the UNet architectural design to

achieve phase arrival time detection. As an alternative

framework for seismic phase picking, EPick achieves superior

performance compared to previously published methods for first

S-phase arrival picking, whereas the performance is more robust

in the case of the P-phase. The experimental results well-

demonstrate the generalization ability of the proposed model

in S-phase picking. In addition, the result with or without using

the denoising technique shows that the model’s performance

does not mainly rely on data filtering. This model can be used in

tasks that require fast seismic data processing, as well as in

dealing with big data. EPick can further be developed by

monitoring real-time seismic signals.

In this work, the proposed model, EPick, mainly focuses

on studying the important role of the attention mechanism in

seismic phase picking by using a simple neural network

architecture. In the future, EPick could be further extended

to develop a more advanced model to circumvent the

challenge of imbalanced data distribution with the use of a

robust loss function, which aims at achieving better

performance for both P-phase and S-phase arrival time

picking.
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Output visualization of a low SNR data including (A) raw data and (B) data processed with a band-pass filter. For this trace example, the mean
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