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Rockburst is a complex dynamic disaster in coal mining and affected by many

factors. To accurately predict the rockburst hazard among complex influencing

factors, a prediction model of rockburst hazard based on the Gaussian process

for binary classification (GPC) was proposed after the identification of the

intrinsic relationship between multiple factors of coal mines and rockburst.

Through computerizedmachine learning and integrated intelligent analysis, the

non-linear mapping of rockburst hazard and its influencing factors was

established. The multi-factor pattern recognition model was constructed

using artificial intelligence. The prediction criteria of the rockburst hazard

probability and the hazard probability value of the prediction area unit were

determined by applying neural network and fuzzy inference methods. In

addition, the rockburst hazardous zone was classified, and the

corresponding technical scheme for the prevention was put forward. The

validity and feasibility of the regional prediction of rockburst hazard based

on GPCwere verified in the engineering practice. This method is highly targeted

and can improve the accuracy and precision of rockburst prediction, thus

contributing to the safe and efficient production of coal mines.

KEYWORDS

rockburst, machine learning, regional prediction, multi-factor pattern recognition,
prevention technology

Introduction

As a complex dynamic disaster in coal mining, rockburst is very hard to be accurately

predicted (Qiao et al., 2021; Zhu et al., 2022). The occurrence of rockbursts is influenced

by various factors and is characterized by a regional distribution (Wang et al., 2021a; Cao

et al., 2021; Chen et al., 2021). As the depth of mining deepens, the number and frequency

of rockbursts in mines increase (Yu et al., 2021; Xue et al., 2022). There are distinctive

rockburst modes under different conditions of mining areas, mines, coal seams,

structures, and stresses. Traditional linear data analysis is not accurate enough under

complex mining conditions (He et al., 2020; Zhang and Jiang, 2020; Lin et al., 2022). Based

on the non-linear relationship between rockburst hazard and its influencing factors, the
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probability prediction value of unit hazard is determined (Wu

et al., 2021a; Chen et al., 2021; Yang et al., 2021; Yang and Zhang,

2021). According to themagnitude of the risk probability value of

each cell, the engineering area is divided into four classes, and the

regional and quantitative rockburst prediction can be

significantly improved by using the multi-factor pattern

recognition method.

In the prediction of mine rockburst hazards, machine

learning methods have been proposed to predict rockburst

hazards with good results (Ullah et al., 2022; Wojtecki et al.,

2022; Xiao et al., 2022). Machine learning is a complex and cross-

cutting discipline. In the prediction of rockburst hazards in

mines, data from multiple sources are analyzed, and then

machine learning algorithms are used to continuously learn

from previous rockburst events and train computer models.

The study of “neural network + machine learning” artificial

intelligence prediction techniques allows monitoring and

predicting the likelihood of rockburst hazards in coal mines

(Wang et al., 2021b; Ke et al., 2021; Zhang et al., 2021). In order to

accurately predict rockburst hazards under complex conditions,

a rockburst hazard prediction model based on the Gaussian

process for binary classification (GPC) was proposed (Hui and

Zhang, 2020; Davis et al., 2021).

For the rockburst situation in Jixian Coal Mine, a GPC-based

rockburst hazard prediction, prevention, and control technology

system was established based on theoretical analysis (Iwata and

Tanaka, 2022), and the intrinsic relationship between multiple

influencing factors and rockburst was determined using a multi-

factor pattern identification method. By dividing the engineering

area into prediction units and determining the pattern

identification criteria and unit hazard probability values

(Gladyr et al., 2021), the rockburst hazard area of the on-site

engineering area was classified, and corresponding management

measures were proposed (Wu et al., 2021b).

Principles of the Gaussian process for
binary classification

Statistically, the Gaussian process is a stochastic process:

the distribution of any finite variable set is a Gaussian

distribution. In other words, for any integer n ≥ 1 and any

family of random variables X, the joint probability distribution

of the corresponding process state f(X) at time t obeys the

n-dimensional Gaussian distribution. All statistical

characteristics of the Gaussian process are determined by

its mean and covariance function. In the field of machine

learning, the Gaussian process refers to a machine learning

method based on the Gaussian stochastic process and Bayesian

learning theory.

The Gaussian process for binary classification (GPC)

model is a kind of classification model based on the

machine learning principle of the Gaussian process. In the

GPC model, let an input x correspond to the output value of

the binary classification mark y, y ∈ {−1,1}, and the observation
data set is D � {(xi, yi)|i � 1, . . . , m}. The GPC model aims to

predict the classification y* corresponding to the new test

input x* (Ahmad et al., 2022).

For a given x, the p (y|x) distribution is the Bernoulli

distribution, and the probability of y = 1 is p

(y � 1|x) � Φ(f(x)), where f(x) is the potential function, and

Φ(•) is the cumulative probability density function of the

standard Gaussian distribution. Generally, the sigmoid

function is taken as Φ(z) = 1/(1 + e−z). The function of the

sigmoid function is to convert the f(x) constrained by intervals

into the value of [0,1], so as to ensure that the probability value

ranges in [0,1]. For simplicity, let fi= f(xi),f = [f1,. . .,fm]
T,y =

[y1,. . .,ym]
T, X = [x1,. . .,xm]

T.

For a given potential function, the observed value is an

independent Bernoulli distribution variable, whose likelihood

function is

p(y∣∣∣∣f ) � ∏m
i�1

p(yi

∣∣∣∣f i) � ∏m
i�1

Φ(yifi). (1)

The prior distribution of potential functions is

beip(f ∣∣∣∣X, θ) � N(0,K), (2)

whereK is a covariance matrix of order m ×m,Kij = k(xi,xj,θ), k()

is a positive definite covariance function related to θ, and θ is a

hyper-function.

The covariance function of the Gaussian process model

needs to be satisfied: a non-negative positive definite

covariance matrix can be generated for any point set. The

commonly used covariance function is the squared

exponential function, namely,

ky(xp, xq) � σ2f exp(− 1
2l2

(xp − xq)2), (3)

where the hyper-function θ = {σf,l}; the optimal hyper-

parameters can be estimated by the maximum likelihood

method, as described in the literature.

According to Bayes’ rule, after obtaining the actual

observation value, a posterior distribution of the potential

function f is obtained as follows:

p(f ∣∣∣∣D, θ) � p(y∣∣∣∣f )p(f ∣∣∣∣X, θ)
p(D|θ) � N(0,K)

p{D|θ} ∏m
i�1

Φ(yifi). (4)

The aforementioned equation is the learning process of GPC,

and the following is the prediction process of GPC. The

conditional probability of the potential function value f*
corresponding to x* is

p(f p∣∣∣∣D, θ, xp) � ∫p(f p∣∣∣∣f ,X, θ, xp)p(f ∣∣∣∣D, θ)df . (5)

The prediction probability of y* is

Frontiers in Earth Science frontiersin.org02

Lan et al. 10.3389/feart.2022.959232

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.959232


p(yp∣∣∣∣D, θ, xp) � ∫p(yp∣∣∣∣f p)p(f p∣∣∣∣D, θ, xp)df p. (6)

When the predicted probability value of Y* is greater

than 0.5, then y* = 1; otherwise, y* = −l. Eqs 5 and 6

have no analytical solutions. Approximate solutions can

be obtained by using Laplace’s method and

expectation propagation method (Villacampa–Calvo and

Hernández–Lobato, 2020; Chakir et al., 2022). Let m

and A be the mean and variance of the approximate

solutions, respectively, and the approximate Gaussian

distribution of the posterior distribution of the potential

function f is

p(f ∣∣∣∣D, θ) ≈ q(f ∣∣∣∣D, θ) � N(m,A). (7)

Similarly, the posterior distribution of f* can be set as an

approximate Gaussian distribution:

q(f p∣∣∣∣D, θ, xp) � N(μp, σ2p). (8)

The mean and variance are

μp � KT
pK

−1m, (9a)
σ2p � k(xp, xp) − kTp (K−1 − K−1AK−1)kp, (9b)

where k* = [k(x1,x*),. . .,k(xm,x*)]
T represents the prior covariance

vector between x* and training input X. x* belongs to

classification 1 of the prediction probability:

q(yp � 1
∣∣∣∣D, θ, xp) � Φ( μp�����

1 + σ2p
√ ). (10)

Gaussian process for binary
classification-based predictionmodel
for rockburst hazard

Main influencing factors of rockburst

The mechanism of rockburst in coal mines is complex. The

occurrence of rockburst is controlled by n influencing factors,

such as mining depth, stress, geological structure, coal body

structure, mining layout, and advancing strength. When n

factors are studied, each factor is regarded as an element of a

vector, and then n factors constitute an n -dimensional vector.

Each combination of n factors is a pattern, which corresponds

to a single position in the n-dimensional feature space.

Through the study of training samples, the non-linear

mapping relationship between rockburst hazard and its

influencing factors was established, and a multi-factor

pattern recognition model was constructed. The similar

patterns were very close together in the feature space, while

the different patterns were far apart in the feature space. The

task of pattern recognition is to divide the feature space by

certain methods, so that similar patterns can be located in the

same region.

Establishment of the Gaussian process for
binary classification model

The establishment of the GPC model for the rockburst

hazard prediction and the visualization of prediction results

are shown in Figure 1.

(1) Rockburst cases were collected as training samples. It was

assumed that there were several rockburst cases (xi, yi)

(i=1,2,. . .,k), where xi is the n-dimensional vector of

influencing factors of rockburst and yi represents the

grade of the rockburst hazard.

(2) Through learning the training samples, the optimal hyper-

parameters of the covariance function were obtained by the

maximum likelihood method.

(3) According to the theory of the Gaussian process and the

Bayesian rule, the training samples were studied by inductive

inferencing. The posterior approximate Gaussian

distribution of the potential function f* of the predicted

samples was obtained by Eq. 8.

(4) According to Eq. 10, the hazard probability prediction

criteria of rockburst and the hazard probability value of

the predicted regional unit were obtained. When the

predicted probability value was in a certain critical

interval, the rockburst hazard and the range of the

hazardous zone were determined.

(5) Based on the aforementioned modeling steps, the MATLAB

program was compiled, and the regional prediction

management system was established to visualize the

prediction results.

Rockburst hazard classification

According to Article 228 of Coal Mine Safety Regulation

(2022 Edition), the following provisions shall be observed in the

prevention and control of rockburst in mines: when coal seams

with potential rockburst are mined, comprehensive prevention

and control measures must be taken, such as prediction of

rockburst hazard, monitoring and early warning, prevention

governance, validity inspection, and safety protection. The

hazard prediction of rockburst is the primary task in

implementing comprehensive prevention and control measures.

According to the Detailed Rules and Regulations for Prevention

of Rockburst in CoalMines (2018 Edition), the probability prediction

values of rockburst hazard were used to classify the regional hazard

in the proposed classification method. Four grades of the regional

rockburst hazard were obtained: non-rockburst hazard, weak

rockburst hazard, medium rockburst hazard, and strong
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rockburst hazard. In the actual mining, when excavation roadways

or working faces enter different prediction units, the risk of the areas

can be determined in advance, and the corresponding preventive

measures can be taken in advance.

Cases in the mining project

Introduction of rockburst in Jixian Coal
Mine

Jixian Coal Mine was put into operation in 1968. It is currently

mined at a depth of 578–733 m and is a deep mining pit. The main

coal seams are coal seams 3, 9, and 16. In the backstopping process

of Coal Seam 9, rockburst has occurred many times. At present,

more than 50 rockbursts have occurred, and the maximum energy

released by rockburst was 2.7 × 107 J (Figure 2). With the extension

ofmining excavation, the threat of rockburst is further strengthened.

Rockburst can destroy roadways and mechanical equipment and

seriously restrict the safe and efficient production of coal mines. It

has become an important scientific problem to be solved urgently.

Establishment of the rockburst hazard
prediction model in Jixian Coal Mine

The mining geological and technical conditions of

rockburst in Jixian Coal Mine were analyzed. The main

influencing factors of rockburst included fracture structure,

tectonic stress, roof lithology, mining depth, and mining

intensity. According to the different effects of different

factors on the rockburst, the Gaussian process for binary

classification was applied to analyze the training samples

and determine different weights. Then, quantitative analysis

was carried out, and the probability prediction model of multi-

factor pattern recognition for rockburst hazard was

established. The multi-factor pattern recognition technology

was applied for the comprehensive intelligent analysis, and

then the neural network and fuzzy reasoning method were

used to determine the hazard probability of each unit in the

prediction zone. The studied zones were divided into finite

units, and the impact of each single factor index on the unit

was analyzed, and the probability value of rockburst hazard for

each unit was predicted.

FIGURE 1
Prediction of rockburst hazard based on GPBC.
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FIGURE 2
Rockburst distribution in working faces of Jixian coal mine.

FIGURE 3
Classification results of hazardous zone of rockburst Section A is non-rockburst zone; Section B is weak rockburst zone, Section C is medium
rockbur.
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Prediction of rockburst hazard in Jixian
Coal Mine

According to the risk prediction results of rockburst, Jixian

Coal Mine was divided into a total of 4,553 units with a cell grid

of 100 m × 100 m. The influencing factors, such as fracture

structure, tectonic stress, roof lithology, mining depth, and

mining intensity, were mapped to the unit grid. The

comprehensive influence of each factor on the prediction unit

was expressed by the probability value, and the hazard

probability of rockburst of each unit was obtained by the

method of pattern recognition.

The probability values of rockburst hazard in Jixian Coal

Mine of 0.25, 0.50, and 0.75 were taken as critical values. If the

probability value is less than 0.25, it is the non-rockburst zone,

accounting for 17.6%; between 0.25 and 0.50, it is the weak

rockburst hazardous zone, accounting for 52.8%; if it is between

0.50 and 0.75, it is the medium rockburst hazardous zone,

accounting for 26.4%; and if it is more than 0.75, it is the

strong rockburst hazardous zone, accounting for 3.2%.

Figure 3 shows the classification results of the hazardous zone

of rockburst.

The multi-factor pattern recognition method based on

machine learning completed the sub-unit probability

prediction of rockburst hazard. By comparing the rockburst

training samples with the predicted samples, the results

showed that the prediction results were in good agreement

with the actual situation, and the prediction results were

highly scientific and reliable. Table 1 shows the prediction

accuracy of rockburst in different grade zones.

Prediction results of rockburst hazard in
Working Face 4 of Western Mining Area
2 in Jixian Coal Mine

Based on the regional prediction of rockburst hazard in Jixian

Coal Mine, the predicted hazard probability values of any

working face, any mining area, or any location in the mine

field can be obtained. Figure 4 shows the unit probability

prediction value of rockburst hazard in the Working Face 4 of

Western Mining Area 2.

As shown in Figure 4,Working Face 4 in theWesternMining

Area 2 is divided into 12 unit grids in line with 100 m × 100 m

unit grids. There are 10 unit grids with a hazard probability value

TABLE 1 Prediction accuracy of mine rockburst in different grade
zones.

Local grade Critical value Accuracy rate

None ≤0.25 87.49%

Weak 0.25–0.5 63.31%

Medium 0.5–0.75 96.78%

Strong > 0.75 99.79%

Hazard Maximum 0.92

Probability Minimum 0.08

Random variables μ 0.44

Eigenvalues σ2 0.03

FIGURE 4
Prediction results of multi-factor pattern recognition for rockburst hazard in panel 9102.
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of 0.66, accounting for 83.33% of the predicted unit grids in the

working face. Most areas of the working face are medium

rockburst hazardous zones. There are two unit grids with a

hazard probability value of 0.76, accounting for 16.67%. The

area from the middle of the transportation roadway to the open-

off cuts of Working Face 4 is the strong hazard rockburst zone,

which is also an area prone to stress concentration and rockburst.

Through the aforementioned analysis, it is concluded that the

sub-unit prediction with multi-factor pattern recognition can

divide the predicted working face into several prediction units,

and the probability value of each unit can be obtained. Before the

roadway tunneling or mining face advances to different

prediction units, the potential rockburst hazard of the location

can be determined in advance, so that corresponding control

measures can be taken in advance. Compared with the

comprehensive index method, the hazard value of Working

Face 4 was 0.62, indicating that the multi-factor pattern

recognition method improves the accuracy and precision of

the prediction.

Regional prevention and control
technology of rockburst hazard

By using the probability prediction method with multi-factor

pattern recognition, the sub-unit probability prediction of coal

seam hazard was realized, and the results were classified in line

with the regional prediction grade. In the actual mining, when

excavation roadways or working faces enter different prediction

units, the potential rockburst hazard of the location can be

obtained in advance, and corresponding preventive measures

can be taken in advance. According to the hazard probability

value of the prediction unit, when the conditions were suitable,

regional measures were first chosen to relieve the hazard, or the

corresponding local measures were taken to reduce the hazard.

Regional prediction of rockburst provides a scientific basis for

taking prevention and control measures against the rockburst, so

as to ensure safe production in coal mines. For different hazard

grades, the corresponding prevention and control measures were

adopted, as shown in Table 2.

Conclusion

For the problem of rockburst hazard area prediction under

complex mining conditions, traditional linear data analysis is not

an ideal solution. In order to improve the precision and accuracy

of prediction results, this article studies the non-linear mapping

relationship between rockburst hazard and its influencing factors

through machine learning of rockburst hazard training samples

and draws the following conclusion based on the principle of the

binary Gaussian process and the main influencing factors of

rockburst:

(1) Aiming at the prediction of rockburst hazard under complex

conditions, a multi-factor pattern recognition method of

rockburst hazard prediction was proposed based on GPC.

By learning the training samples, the non-linear mapping

TABLE 2 Hazard classification of rockburst and prevention measures in Jixian Coal Mine.

Hazard grade Probability value
of
the predicted unit

Suggestions on prevention
and control measures

Non-rockburst hazard ≤0.25 ① Advance all working faces of mining in line with the operation rules

② Conduct the random hazard test in the mining operation

Weak rockburst hazard 0.25–0.5 ① Take the single local measures for the hazard relief

② Strengthen the hazard detection in the mining operation. Conduct the mining operation if detection indicators are
identified to be safe

Medium rockburst
hazard

0.5–0.75 ① Take two or more combinations of local hazard-relief measures

② Strengthen the hazard detection in the mining operation. Conduct the mining operation if detection indicators are
identified to be safe

Strong rockburst hazard > 0.75 ① Take the comprehensive local measures for the hazard relief

② Strengthen the hazard detection in the mining operation. Conduct the mining operation if detection indicators are
identified to be safe

③ Terminate the mining operation and evacuate personnel from hazardous locations, if detection indicator exceeds
the limit

④ Take prevention, control measures, and relevant parameters under the guidance of experts; adopt comprehensive
measures and methods under special conditions

⑤ Take the next step of the mining operation only through expert argumentation

⑥ Strengthen strong support and structural support of the roadway. Implement relevant measures, such as increasing
strong pressure relief, reducing drilling density, and low pressure blasting in deep hole interval
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relationship between rockburst hazard and its influencing

factors was established, and the probability prediction value

of the unit hazard was determined.

(2) The probability values of rockburst hazard of 0.25, 0.5, and

0.75 were taken as critical values, and the rockburst hazard of

Jixian Coal Mine was divided into four grades. The sub-unit

probability prediction results of rockburst hazard in

Working Face 4 are 0.66 and 0.76 in Western Mining

Area 2. Through the sub-unit probability prediction of

rockburst hazard, the rockburst prediction is upgraded

from point prediction to regional prediction, from single-

factor prediction to multi-factor prediction, and from

qualitative prediction to quantitative prediction. Moreover,

the accuracy of rockburst prediction is greatly improved.

(3) The prevention and control technology system of hazard

prediction of rockburst was established based on GPC.

According to the hazard probability value of grid units,

the potential rockburst hazard of the mining location can

be determined before roadway driving or working face

mining advances different prediction units. It provided a

scientific basis for taking effective rockburst prevention

measures, so as to ensure safe production in coal mines.
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