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Geothermal heat flow is inferred from the gradient of temperature values in

boreholes or short-penetration probe measurements. Such measurements are

expensive and logistically challenging in remote locations and, therefore, often

targeted to regions of economic interest. As a result, measurements are not

distributed evenly. Some tectonic, geologic and even topographic settings are

overrepresented in global heat flow compilations; other settings are

underrepresented or completely missing. These limitations in representation

have implications for empirical heat flow models that use catalogue data to

assign heat flow by the similarity of observables. In this contribution, we analyse

the sampling bias in the Global Heat Flow database of the International Heat

Flow Commission; the most recent and extensive heat flow catalogue, and

discuss the implications for accurate prediction and global appraisals. We also

suggest correction weights to reduce the bias when the catalogue is used for

empiricalmodelling. From comparisonwith auxiliary variables, we find that each

of the following settings is highly overrepresented for heat flowmeasurements;

continental crust, sedimentary rocks, volcanic rocks, and Phanerozoic regions

with hydrocarbon exploration. Oceanic crust, cratons, and metamorphic rocks

are underrepresented. The findings also suggest a general tendency tomeasure

heat flow in areas where the values are elevated; however, this conclusion

depends on which auxiliary variable is under consideration to determine the

settings. We anticipate that using our correction weights to balance

disproportional representation will improve empirical heat flow models for

remote regions and assist in the ongoing assessment of the Global Heat

Flow database.
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1 Introduction

Studies of geothermal heat provide essential insight into the internal structure and

history of the Earth (Kelvin, 1863; Pollack and Chapman, 1977; Beardsmore and Cull,

2001; Artemieva, 2011; Davies, 2013; Hasterok, 2013; Jaupart et al., 2016; Podugu et al.,

2017; Lucazeau, 2019). A range of mechanisms control the amount of heat observed:

OPEN ACCESS

EDITED BY

Norbert Emanuel Kaul,
University of Bremen, Germany

REVIEWED BY

Michael Riedel,
Helmholtz Association of German
Research Centres (HZ), Germany
David Chapman,
University of British Columbia, Canada

*CORRESPONDENCE

Tobias Stål,
tobias.staal@utas.edu.au

SPECIALTY SECTION

This article was submitted to Solid Earth
Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 07 June 2022
ACCEPTED 25 July 2022
PUBLISHED 17 August 2022

CITATION

Stål T, Reading AM, Fuchs S, Halpin JA,
Lösing M and Turner RJ (2022),
Properties and biases of the global heat
flow compilation.
Front. Earth Sci. 10:963525.
doi: 10.3389/feart.2022.963525

COPYRIGHT

© 2022 Stål, Reading, Fuchs, Halpin,
Lösing and Turner. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Brief Research Report
PUBLISHED 17 August 2022
DOI 10.3389/feart.2022.963525

https://www.frontiersin.org/articles/10.3389/feart.2022.963525/full
https://www.frontiersin.org/articles/10.3389/feart.2022.963525/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.963525&domain=pdf&date_stamp=2022-08-17
mailto:tobias.staal@utas.edu.au
https://doi.org/10.3389/feart.2022.963525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.963525


thermal properties of the upper mantle, ongoing or recent

tectonism (e.g. Pasquale et al., 2014; Goes et al., 2020), crustal

heat production (e.g. Jaupart et al., 2016; Hasterok et al., 2018),

topographic focusing by refraction (e.g. Lees et al., 1910), erosion

and sedimentation (e.g. Von Herzen and Uyeda, 1963; Fukahata

and Matsu’ura, 2001), advection by groundwater (e.g. Mansure

and Reiter, 1979), and preserved variations and anomalies of

paleoclimatic conditions (e.g. Huang et al., 1997; Šafanda et al.,

2004).

Insights from geothermal measurements are applied in

mineral prospecting (e.g. Cull et al., 1988), and hydrocarbon

exploration, for example, to constrain the oil and gas windows

(e.g. Royden and Sclater, 1980; Shalaby et al., 2011), and

geothermal energy (Dickson and Fanelli, 2013). One particular

aspect of geothermal heat flow that has recently gained attention

is the impact of heat transfer at the base of ice sheets in Greenland

and Antarctica (Burton-Johnson et al., 2020; Karlsson et al., 2021;

Colgan et al., 2022). Even moderate geothermal heat can generate

basal melting at the pressure melting point, reducing the friction

of ice over bedrock or sediment and changing the rheology of the

ice (Greve and Hutter, 1995; Pattyn, 2010).

Heat flow is calculated from the thermal gradient in a

borehole combined with measurements or assumptions

regarding thermal conductivity. Factors that impact the

uncertainty and reproducibility of the recorded heat flow

include the depth of the borehole, integration time for bore

fluid to equilibrate to the surrounding temperature, assumptions

regarding thermal conductivity, and groundwater flow

(Beardsmore and Cull, 2001). In marine settings, short

bottom-penetrating thermistor-line probes, up to 10 m, are

commonly used for measurements in soft sediments. Such

sensors require relatively limited equipment and

infrastructure, and are quick to deploy (Hyndman et al., 1979;

Dziadek et al., 2017). The technique involves the same set of

assumptions regarding thermal conductivity and groundwater

circulation as for borehole measurements, but further includes

uncertainties due to local shallow anomalies, frictional heat from

the probe and stabilisation time, and periodic variations in the

FIGURE 1
Geographic distribution of heat flow measurements. (A) Measurements in IHFC, color coded by year of measurement. (B) Kernel density
estimation (KDE) for density of heat flowmeasurements, using great circle distances and a Gaussian kernel with σ = 400 km. A dotted contour marks
the 5% percentile. Inset shows the centred Ripley’s K function plot, where the positive values indicate that measurements are heavily clustered on all
scales, with a peak at 90°. (C) Distance to the nearest measurement. The longest distance is 1359 km, at 37°S 148°W in the South Pacific Ocean.
(D)Mean distance to nearest ten measurements. The longest distance is 1690 km, at 85°S 8°E in East Antarctica. Contours indicate 500 and 1000 km
distances in (C) and (D). Maps are displayed with perceptually linear colour representation (Crameri and Shephard, 2019; Morse et al., 2019) using
matplotlib (Hunter, 2007).
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water temperature. Some deep-water probes include a core

sample that is used for estimating thermal conductivity

(Gerard et al., 1962; Hyndman et al., 1979; Beardsmore and

Cull, 2001).

Most measurements have been conducted in the northern

hemisphere, particularly in Western North America and

Southern Europe (Figure 1B). Measurements are costly and

often sparse in remote areas (Figures 1C,D). A few techniques

have been established to generate continuous maps where in-situ

measurements are unavailable. Forward models compute heat

flow values from thermal gradients modelled from geophysical

data (An et al., 2015; Martos et al., 2017; Gard and Hasterok,

2021), energy balance (Stål et al., 2020), geological association

(Davies and Davies, 2010; Burton-Johnson et al., 2017), or

isostasy (Hasterok and Gard, 2016). Each of these approaches

is associated with assumptions, particularly regarding to the

crustal heat production and the strength of association

between the dataset used and observed heat flow (Ebbing

et al., 2009; Haeger et al., 2019; Lösing et al., 2020). A

different approach has been to interpolate and model heat

flow empirically by linking heat flow measurements elsewhere

to a target through the similarity of one or many observables

(Goutorbe et al., 2011; Lucazeau, 2019; Shen et al., 2020; Li et al.,

2021; Lösing and Ebbing, 2021; Stål et al., 2021). This empirical

approach shows promising and converging results in the case of

Antarctica; however, the choice of observables and how well they

capture thermal properties have been discussed and challenged

(Davies and Davies, 2010; Stål et al., 2021; Artemieva, 2022), and

further analysis will likely refine the choices made.

One aspect of empirical heat flow studies that has attracted

less debate, but has the potential to impact the results, is the

representation of the reference heat flow catalogue. Stål et al.

(2021) suggest that a focus on economic exploration, particularly,

in the Gondwana continents (e.g. Africa and Australia), could

lead to sampling bias. Another potential factor that might skew

the representation of the catalogue is a tendency to drill in flat

and accessible locations within mountainous regions. Heat flow

values are sometimes corrected for topographic factors, but not

always, and it can be difficult to determine if such corrections

have been applied in older studies. Such clarifications are within

the scope of the ongoing Global Heat Flow Data Assessment

Project of the IHFC catalogue (Fuchs et al., 2021a).

Heat flow measurements have been collected in cumulatively

growing databases (e.g. Chapman and Pollack, 1975; Pollack

et al., 1993; Hasterok, 2019; Lucazeau, 2019). From analyses of

those catalogues, the total heat balance and average heat flow, of

Earth have been calculated. The spatial bias has been recognised

and causal relationships are used to integrate heat flow from

lithospheric age in the oceans (e.g. Lucazeau, 2019) or geological

setting (e.g. Davies and Davies, 2010).

In this contribution, we analyse the most recent and extensive

heat flow catalogue (Fuchs et al., 2021b) for factors that might

bias the distribution and hence impact the integrated heat flow

maps. We also discuss qualitative reasons for the uneven

distribution and suggest statistical weights of individual

samples for use when the catalogue finds ongoing use.

2 Materials and methods

Spatial characteristics of the data are analysed to quantify

clustering and misrepresentation. The analysis is carried out

using Python libraries: geopandas (Jordahl, 2014), rasterio

(Gillies, 2019), and numpy (Harris et al., 2020). Methods

are implemented from agrid (Stål and Reading, 2020), a

python-based grid for representing multidimensional

geophysical data. All code is made available to ensure

reproducibility, and all datasets used are provided in open

repositories.

2.1 Heat flow database

We include the entire IHFC catalogue (cf. Fuchs et al. 2021b),

except for 12 records where positional data is missing. All

remaining 74 536 entries are analysed as they appear. We treat

every given location as correct and precise; however, this is often

not the case for older records.

2.2 Spatial descriptive statistics

We use a kernel density estimate (KDE) function to first

appraise the spatial distribution of the heat flow measurements

(Figure 1B). The KDE is calculated from a Gaussian kernel (σ =

400 km) applied to the spatial distribution of heat flow

measurements. We also calculate the distance in kilometres to

the nearest measurement and the mean distance to the nearest

ten measurements on a 0.5 ° × 0.5 ° grid (Figures 1C,D). All

distance calculations are done using the haversine formula,

assuming a spherical Earth.

For an appraisal of clustering, we calculate Ripley’s centred K

functions (Dixon, 2014) (Figure 1B). The standard application is

modified for great circle distances (Stål, 2022). The distribution

of pair-wise distances is also presented as a histogram in

Supplementary Figure S2.

2.3 Area weighting

We compute a geometric area weighting, assigning a higher

weight to sparse records, and a lower weight to densely located

measurements. This approach does not take the geological setting

into account. For each record, we first weigh other records by

proximity from a Gaussian kernel so that the impact decreases

with the distance. We apply three different Gaussian kernels with
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FIGURE 2
(Previous page.) Categorical classes in auxiliary variables, as sampled and heat distribution for each class. (A) Regionalisation from seismic
surface wave tomography (Schaeffer and Lebedev, 2015) (B) Province type (Hasterok et al., 2022) (C) Crustal type (Hasterok et al., 2022) (D) Tectonic
plate type (Hasterok et al., 2022) (E) Tectonic plate name (Hasterok et al., 2022) (F) Last orogeny (Hasterok et al., 2022) (G) Lithological class
(Hartmann and Moosdorf, 2012) (H) Geomorphometric shape (Amatulli et al., 2020) From left to right within each subplot: Percentage of the
relative distribution of the class of auxiliary variable calculated for an equal-area projection, shown numerically and as a bar plot (left bar). Percentage
of the relative distribution of the class of the locationmeasurement in IHFC are shown as a bar plot (right bar) and numerically. The calculated weight

(Continued )
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σ = 50 km, 200 km, and 1000 km. The weight for each record in

IHFC is calculated from the inverse proximity weight divided by

the mean inverse proximity weight for all records

(Supplementary Figure S5).

2.4 Auxiliary variables from categorical
maps

We examine the sampling bias in heat flowmeasurements for

eight categorical auxiliary variables. Some do not directly

correlate with observed geothermal heat flow but can be used

to investigate the spatial distribution. The selection of those

variables is based on three criteria:

1) Has global or near-global extent with consistent quality and

uniform resolution; however, datasets excluding oceanic

settings are considered. Particularly, the observables should

be comparable for Gondwanan continents and the rest of the

world.

2) Represents parameters with expected auxiliary impact on the

heat flow distribution.

3) Is available with open access to a computer-readable format.

Auxiliary variable values at each heat flow location are

sampled using spatial join for vector polygon datasets or point

sampling to the nearest pixel for data sets provided as rasters.

Those values are added as attribute data to the database file

analysed (this modified database is provided with supplementary

FIGURE 2
for each class to compensate for the difference between the distributions. The horizontal box plots show the heat flow distribution for
measurements within each class. Themean heat flow for each class is indicated by a black triangular marker (▲). Themedian heat flow for each class
is indicated with the vertical line (|) within each box. Note that a few whiskers and bars are cropped (e.g. Juan de Fuca Plate in Figure 2E). Outliers are
not indicated. The median and mean values for each class, and the corresponding weighted medians and means, are listed in Supplementary
Table S1. Weighted average heat flow for each auxiliary variable shown as a dashed blue vertical line and given numerically in blue at the top. The
value is calculated by assigning the mean heat flow for each class to the reference area. The median values for the weighted means are shown as a
dashed orange vertical line and a numerical value in orange at the top. The vertical lines indicate themean (green; 205.3mWm−3) andmedian (purple;
64 mWm−3) values of all IHFC database records (Fuchs et al., 2021b). Abbreviation used in the labels; bsn. = basin, cmplx = complex, interm. =
intermediate, belts & mod. crt. = Precambrian belts and modified cratons, sed. = sediments or sedimentary rocks. All heat flow values are given in
mW m−2; units are omitted to minimise clutter.

FIGURE 3
Correlation with mining and hydrocarbon prospecting and exploration. (A) The area distribution for mining polygons (grey), oil and gas fields
(brown), overlappingmining region and oil field (red), and neithermining nor oil and gas fields near themeasurement (green, as explained in Figure 2).
The reference land area is the global landmass; however, offshore oil and gas fields are included, making the total slightly over 100%. (B) The
Australian area distribution for oil fields (392.591 km2) (Rose et al., 2018) and mining regions (Maus et al., 2020) with a buffer, as described in the
text (1.657.683 km2). The reference area is the Australian landmass (7.692.024 km2). (C)Map of Australia showing mine sites (Maus et al., 2020) with a
buffer of 0.5° and gas fields (Rose et al., 2018).
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material). The relative reference area distribution of each class is

calculated from the dataset used, excluding undefined area.

Vector polygon areas are calculated in an equal-area

projection, and global rasters are compensated with a function

that weights each pixel to the area it represents on a sphere. All

tectonic, geological or geomorphometric classes for each

auxiliary variable are listed in Figure 2. We also calculate the

relative distribution of two cultural datasets to investigate the

reasons for the sampling bias (Figure 3).

2.4.1 Tectonic variables
We include the regionalisation from clustering of surface

wave tomography (Schaeffer and Lebedev, 2015) (labelled as

REG), which provides a quantitative, robust global

regionalisation (Figure 2A). We also include the recent

tectonic and geologic province maps (Hasterok et al., 2022),

these maps are constructed from refined qualitative and

quantitative analyses of published global and regional maps,

and auxiliary geoscientific data sets such as earthquake

locations and geochronology. We analyse for the following:

Province type (PROVINCE), for example, craton, passive

margin, basin (Figure 2B); Crust type (CRUST), i.e.

continental, oceanic, transitional crust (Figure 2C); Plate type

(TYPE), i.e. microplate, rigid plate, deformation zone

(Figure 2D). Tectonic plate (PLATE), for example, Philippine

Plate, Antarctic Plate, and Somali Plate (Figure 2E). We also

investigate the most recent orogeny (OROGEN), for example,

Alpine-Himalayan, Grenvillian, and Afar (Figure 2F). This

dataset provides a first-order approximation of crustal

stabilisation age.

2.4.2 Geological variables
Lithological affiliation is sampled from the GLiM map

(Hartmann and Moosdorf, 2012). The map is assembled from

existing regional geological maps translated into 16 classes (for

example, unconsolidated sediments, metamorphics, and basic

volcanic rocks). The relative abundance of each class only

considers the land area as the geology of oceanic regions is

not provided; however, we include classes such as water bodies,

and ice and glaciers (Figure 2G).

2.4.3 Geomorphometric variables
Topographic refraction is a well-known parameter to

locally focus heat (Lees et al., 1910). A recent set of

geomorphometrics rasters (Amatulli et al., 2020) provides

insights into the shape of the topography from a high-

resolution global digital elevation model (Yamazaki et al.,

2017). One raster with particular relevance for a first

appraisal is the geomorphological forms (Jasiewicz and

Stepinski, 2013; Amatulli et al., 2018). The shape is

associated with ten classes such as ridge, summit, and slope

(TOPO, Figure 2H). For efficient area distribution calculation,

we sub-sample the raster at a ratio of 1:40 (Supplementary

Figure S1). Point sampling at heat flowmeasurements is done in

full resolution, 250 m at the equator, corresponding to 0.00208°.

2.4.4 Cultural variables
We investigate the economic setting for where heat flow

measurements have been conducted. Prospecting and

exploration are linked to geology as well as infrastructure and

accessibility. We count the fraction of heat flow measurements

within oil and gas fields (Rose et al., 2018). We also count the

number of measurements within 0.5° distance from mining sites,

derived from reported activities and infrastructure identified

from satellite images (Maus et al., 2020). Cultural auxiliary

variable polygons are dissolved to remove any overlapping

polygons.

As a reference for both cultural datasets, we use the total area

of the Earth’s landmass 148 940 000 km2; however, data points in

offshore oil and gas fields are included, and hence the total

reference area is slightly larger than 100%. (Figures 3A,B). We

also investigate the Australian case for an appraisal of the impact

in a region known for mining and hydrocarbon exploration and

relevant for an understanding of East Antarctic geothermal heat

distribution. The reference Australian landmass area is

7 692 024 km2 (Figures 3B,C).

2.5 Calculation of weights

For each auxiliary variable, a weight is calculated for sample

balancing as the quotient ratio of the fraction of reference area

covered by a given class, and the fraction of heat flow

measurements taken from the matching setting:

w c( ) � fA c( )
fN c( ), (1)

where w(c) is the calculated weight for each class or category (c),

fA(c) is the area fraction of the reference area; entire globe,

terrestrial landmass (TOPO and GliM), or all orogens

(OROGEN), and fN(c) is the fraction of measurements in

IHFC located within the area of the class. The weights for

each auxiliary variable are assigned to each record for the

class it is located within. Weights for four auxiliary variables

are shown in Figures 4A–D, and for all variables in

Supplementary Figure S3.

Some auxiliary variables are correlated because they

represent comparable properties in their respective studies or

by the nature of geological processes (Supplementary Figure S5).

Combining weights is not straightforward, and various

techniques with different benefits and shortcomings produce

diverging results (Reviewed by Kalton and Flores-Cervantes,

2003). A well-established approach is iterative proportional

fitting (IPF), sometimes referred to as raking. IPF is an

iteratively-calculated weight for each combination of classes

between the N variables that satisfies the marginal distribution
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FIGURE 4
Calculated weights for selected categorical variables and suggestions for combined weights. (A) REG (Schaeffer and Lebedev, 2015) (B)
Geomorphological forms (Amatulli et al., 2020) (C) Province (Hasterok et al., 2022) (D) GLiM (Hartmann and Moosdorf, 2012) (E) IPF calculated joint
weighting from TYPE and TOPO, (F) IPF calculated joint weighting from CRUST, TYPE, and PLATE, (G) IPF calculated joint weighting from TYPE and
GLiM, (H) IPF calculated joint weighting from TYPE, GLiM, and TOPO. The weights are displayed as a logarithmic colour representation to allow
for the ranges to be compared. Measurements with no weighting (i.e. weight of 1) are shown in grey, those that are weighted down are in blue, and
measurements weighted up are shown in brown. The inset histogram shows the relative log–value distribution. Note that the scale differs for each
subplot for clarity.
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for each variable. We compute combined weights using the

Python package ipfn (Forthommme, 2021). There is no

theoretical upper limit to how many variables can be fitted;

however, attempts to fit more than four variables return non-

robust high weights, and the computational cost increases

exponentially with the number of variables. Individual records

can be assigned very high weight if underrepresented in more

than one auxiliary variable.

We calculate joint weighting for all combinations of 2, 3 or

4 auxiliary variables, yielding a total of ∑k�2,3,4(8k) � 154

combinations. All fitted weights are added to the catalogue.

Weighted mean, weighted median and difference from

estimated global average is listed in Supplementary Table S2,

S3 and S4.

We assume that a reasonable indication of the soundness of a

weighting is that the weighted average is closer to the estimated

global average 80 mWm−2 (Lucazeau, 2019) than the mean of the

catalogue, 205 mWm−2. As such, we rank the weightings by

difference from 80 mWm−2. This is not a universal validation but

allows us to consider what properties are meaningful.

3 Results

The map in Figure 1A shows the records in the IHFC. The

spatial distribution is also shown as a kernel density estimation in

Figure 1B. This smoothed distribution highlights that the highest

density of measurements is in the Western United States and

Southern Europe. The inset to the bottom-left of Figure 1B shows

centered Ripley’s K function. For context, the expected value of

the K function for spatially uniform sampling is K̂(t) � 0. The

measured K function is positive on all scales, indicating

clustering.

Figure 1C shows the distance to the nearest IHFC heat flow

record, measured from grid cell centres. Central Africa, the

Amazon Basin, and parts of the Middle East, have extensive

areas with a distance of over 500 km to the nearest record. In

parts of interior Africa there are areas with over 1000 km, and up

to 1359 km in South Pacific. Figure 1D shows the mean distance

to the closest ten measurements. The overall distribution is

similar; however notably, the Southern Ocean is highlighted as

having only a few measurements representing large areas. For

both metrics, Antarctica is exceptionally sparsely surveyed.

In Figure 2, we show the reference and sampled distributions,

and the heat flow associated with each class for the eight

categorical auxiliary variables. The calculated weights are

listed. The horizontal bar charts show the heat distribution

within each class. Generally, the mean heat flow values tend

to be much higher than the median due to extremely high

measurements in active geothermal settings. The difference

between the median and mean values of IHFC and the

weighted average heat flow indicates the magnitude of the

impact on heat flow models from sampling bias. We also

calculate the robust mean, excluding 1 and 10% upper and

lower percentiles (Supplementary material Table S1).

To better understand the origin of the sampling bias, we

extract the economic setting for the measurements: 17.8% of the

measurements in IHFC are within the polygons defined as oil and

gas fields (Rose et al., 2018), in relation to only 8.7% of the

landmass. Meanwhile, 7.3% of the measurements are within 0.5°

from a mine, as mapped (Maus et al., 2020), in relation to 12.3%

of the global landmass, excluding oceans. Prospective regions are

only slightly over-represented on a global average; however

strongly pronounced in sparsely populated Australia, where

26.2% of the measurements in IHFC are located in mining

areas (c.f. 22.1% by landmass), as defined above, and 38.3% of

the measurements are within oil and gas fields (c.f. 5.6% by

landmass, Rose et al. 2018). Moreover, many of the remaining

measurements are in regions targeted for geothermal heat

extraction, e.g. North West Tasmania and South-Western

Victoria (Holgate et al., 2010; Bahadori et al., 2013).

Figure 3C shows the Australian records in IHFC and the

polygons used to define mining and oil and gas fields.

Figure 4 shows the weights calculated. Figure 4A shows the

weights derived from seismic tomography regionalisation

(Schaeffer and Lebedev, 2015), highlighting the general under-

representation of the oceanic crust. Figure 4B shows the smaller

weights from geomorphometrics (Amatulli et al., 2020). For this

analysis, local rather than global and reg ional distribution

impacts the weight. Figure 4C shows the weights based on the

province (Hasterok et al., 2022). Figure 4D shows the weights

from lithologies (Hartmann andMoosdorf, 2012). Oceans are set

to a weight of 1. All ten maps are provided in Supplementary

material Figure S4.

We now consider selected weights derived for the classes in

each auxiliary variable using IPF, as described in Section 2.5.

The IPF calculated weighting from TYPE and TOPO

produce a weighted average of 84 mWm−2, this is closest to

the global mean (Pollack et al., 1993; Lucazeau, 2019), and also

the lowest weighted mean for any fitted weighting. The weighted

median is 58 mWm−2, which is lower than the median of IHFC,

64 mWm−2 (Figure 4E). IPF calculated weighting from the three

variables CRUST, TYPE, and PLATE yield a weighted mean of

93 mWm−2, which is also close to expected global average. The

weighted median is 60 mWm−2 (Figure 4F). An IPF calculated

weighting from a combination with the potential to capture both

tectonic and geological misrepresentation, TYPE and GLiM,

gives a weighted mean of 95 mWm−2, and a weighted median

is 58 mWm−2 (Figure 4G). An IPF calculated weighting from

TYPE, GLiM and TOPO represents tectonic, geological and

topographic settings. The weighted mean for this combination

is 145 mWm−2, and the weighted median is 59 mWm−2

(Figure 4H).

From all variables considered, some extreme weights are

suggested. In order to compensate for the sparse measurements

from GLiM class glaciers and ice sheets, measurements for those
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two classes are calculated to have a weight of 813.9 (Figure 2).

Other underrepresented tectono-geographical regions include, as

a most recent orogen, the Birimian Orogen, Kuunga Orogen and

particularly the Scotian Orogen, where no heat flow

measurements are catalogued. Generally, Gondwana and the

oceanic crust are underrepresented.

4 Discussion

We have shown that the distribution of heat flow

measurements is spatially biased and does not fully

represent the Earth’s geometric, tectonic, geological or

geomorphometric disposition. This conclusion is readily

seen from the clustering of measurements (Figure 1B),

and in the context of eight auxiliary variables, whereby

we found that some settings are overrepresented whilst

others are correspondingly underrepresented. The

selection of those variables is somewhat arbitrary;

however, together, they represent a meaningful range of

parameters that should be expected to impact the

distribution of geothermal heat. The scope of this

contribution is not to analyse the relation between

observables and geothermal heat, as has been done in

previous studies (e.g. Davies and Davies, 2010; Goutorbe

et al., 2011), but to investigate how well the heat flow

catalogue represents the Earth’s surface.

The calculated weights from each variable compensate for

the bias, and the combined fitted weights provide

individually optimised weights for each record in IHFC.

The somewhat diverging results highlight the need for

caution when weighting is applied in empirical models.

The choice of weights depends on the scale of the model

and relevance of the variables used. It would be tempting to

evaluate the weights based on their performance to reduce

prediction misfits in existing empiric models; however, such

an appraisal will necessarily contain the same bias. A useful

test case could be cross-validation of a sufficiently large

subset of the heat flow catalogue that can be shown to

truly represent a random sampling of the Earth, and of

good quality. Unfortunately, given that some settings are

strongly underrepresented, such a sample distribution is not

yet possible. With empirically driven heat flow models, there

is potential to further explore how the weighting and

processing of reference measurements can impact the

results. Some observables, such as the distance to

volcanoes, have been shown to have large impact (Lösing

and Ebbing, 2021); however, the sensitivity changes if

weights are applied, and in many cases extreme

geothermal settings are weighted down.

One potential shortcoming in this study is that we have

assumed that the coordinates of the measurements are given

correctly and accurately to match the auxiliary variables; this is

often not the case. The surprisingly low bias in the

geomorphometrics variable might be, at least partially,

explained by imprecise positions that sample random

geomorphological forms in the vicinity rather than the actual

topographic shape right at the borehole.

From an assumption that weighted mean and median

values from the catalogue should approach the qualitative

estimates of the global heat flow distribution, the closest

weighted mean is given precedence in our interpretation.

The total Earth heat loss is estimated to be 40–42 TW, or

80 mW m−2 (Lucazeau, 2019). Earlier studies come to similar

results (e.g. Pollack et al., 1993). Most weighted mean values

are closer to this average, suggesting that weight applied to

metrics of the catalogue can improve the prediction if applied

carefully.

Weights derived from one auxiliary variable, that generate

weighted averages close to the expected global value: Last

orogeny (OROGEN) average is +12 mWm−2 compared to

global average, shallow geology (GLiM), +13 mWm−2,

geomorphometric shapes (TOPO), +26 mWm−2, and tectonic

plate, +26 mWm−2. The fitted weight from plate type (TYPE) and

topography (TOPO) (Figure 4E) produces a close value of

+4 mWm−2, however we have concerns regarding the validity

of the geomorphometrics (TOPO), as the coordinates given in

the catalogue might not be precise enough. Moreover, marine

data is note weighted to topography. Plate type (TYPE) and

shallow geology (GLiM) also generate a weighting that is similar

to the global average at +16 mWm−2 (Figure 4G). A qualitative

reasoning of what processes would impact heat flow on different

scales, is represented by weighting for tectonic setting (TYPE),

shallow geology (GLiM) and topography (TOPO). This

combination gives a weighted mean difference of +65 mWm−2

(Figure 4H).

The spatial sampling bias is consistent with the challenges

and lack of incentives to conduct investigations in remote

regions or developing countries. More measurements of the

thermal gradient have likely been conducted for prospecting

and exploration reasons in some of such sparse areas; however,

the results are not included in heat flow compilations and the

understanding of some areas suffers from very sparse records

(Figures 1C,D, (Discussed by e.g. Brigaud et al., 1985; Lesquer

and Vasseur 1992; Noorollahi et al., 2009; Yousefi et al., 2010)).

We also suggest that the quality of the measurements varies

spatially. Some assumptions might be outdated in areas where

older measurements dominate (Figure 1A). If one were to use

borehole data alone, the marine portions of the map would be

even more sparsely sampled, except near oil and gas provinces.

Acknowledging the achievement of the cumulative heat flow

catalogues, the scope of this contribution is to support and add

value to the ongoing, substantial undertaking to coordinate a

representative compilation of measurements.

We make six recommendations from the results of this

study:

Frontiers in Earth Science frontiersin.org09

Stål et al. 10.3389/feart.2022.963525

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.963525


1) Empirical heat flow model developers should consider

applying weights when using the reference database and

investigate how this can reduce uncertainty and misfit.

2) The spatial coordinates of heat flow measurements should,

whenever possible, be amended such that they are sufficiently

precise and accurate to facilitate statistical analysis of

refraction from topography and shallow geology. This is

viable thanks to the availability of global high resolution

digital elevation model and refined geological maps.

3) Attribute data could be added to heat flow records, including

information about geological setting and uncertainties, to

assist in future appraisals. Particularly, the lithospheric age

of the site should be included for marine heat flow values.

4) In the ongoing assessment project of the IHFC database,

highly weighted existing records should be assessed first, as

they represent underrepresented settings.

5) All heat flow measurements are valuable additions; however,

underrepresented regions and settings should be prioritised

when new data is incorporated into IHFC.

6) To truly improve the global thermal representation of the

catalogue, underrepresented regions and settings should be

prioritised for future new heat flow measurements,

particularly within the Gondwanan continents Antarctica,

Africa, and Australia, Southern Ocean and South Pacific

Ocean; and particularly in regions without an immediate

interest for mineral or hydrocarbon exploration.
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