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The topological structure of the underlying streets can help us better

understand urban space and human activities therein. As human urban

movements are inherently heterogenous in space and statistics, whether or

not the network of streets holds a similar degree of heterogeneity worth being

investigated. Relying on the graph theory and complex-network thinking, we

adopted the street segment analysis-based methods and computed segment-

based topological metrics in the downtown of twomajor cities in China: Beijing

and Shanghai. More specifically, we used Flickr photo location data as a proxy of

human urban activities and counted themovement flow at levels of both street-

based communities and street segments. We measured the heterogeneity of

each segment-based metric via the extent of being long-tailed in the rank-size

distribution (long-tailedness). We found that segment-based betweenness was

most long-tailed and was the best metric for capturing human activities within

each community and that neither segment-based degree nor can closeness

show a similar extent of long-tailedness and can have a good correlation with

the segment-based flow. These findings point to the insight that the positive

relationship between street structure and human activities is significantly

shaped by their shared heterogeneous nature.
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1 Introduction

The past decade in China witnesses a significant rural-urban transition. With more

than sixty percent of the total population living in cities, people are confronting a series of

urban issues. In the meantime, the advancement of information and communication

technology leads more and more people to conduct activities in a hybrid physical-virtual

urban space (Shaw and Yu 2009), from which we can easily acquire a massive amount of

fined-grained, widely-covered, spatio-temporal data–so-called urban big data (Mayer-

Schonberger and Cukier 2013). Big data makes it possible for us to foster a quantitative
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understanding of how people live, work, and move in the urban

area and, more importantly, to offer us a greater chance to

explore the factors behind (Zheng et al., 2014). Among those

factors, urban space or built environment is probably the first and

foremost because it underlies and works as a primary constraint

of our physical activities or movements (such as vehicles must

run along the street). In this regard, the understanding of the

urban structure and its relation to human activities becoming

more urgent and important, as authorities and policymakers are

actively seeking solutions for better urban and transport planning

to related issues including energy, environment, and

sustainability (Batty 2007; Batty 2013).

The urban spatial network has long been used for effectively

characterizing the urban structure and its underlying dynamics

(Zhong et al., 2014). Street network is one of the most prominent

network types. On the one hand, the human movements on the

streets in a two-dimensional geographical information system (GIS)

can be abstracted as moving points along road center lines, in which

we can count the number of points on each line as street-based

movement flow. On another, the network of streets naturally allows

us to store and model the street topology for investigating the

underlying structure of urban space, represented by a dual graph

consisting of nodes as streets themselves and links as intersections.

Moreover, the correlation between the flow and those structural

properties can further lead us to apprehend the relationship between

urban form and function (Hillier and Lida 2005). It is commonly

accepted that the very topology attained from the street segments

has the potential to well correlate with human street movements. In

the literature, street topological properties exhibit complex-network

characteristics such as scale-free (Barabasi and Albert, 1999; García-

Pérez et al., 2018). This indicates that a great heterogeneity of street-

street connections that leads to the street network consists of

compartments or communities wherein the streets are denser

than the ones outside (Newman 2003). However, there were rare

studies investigating human activities at the street community level.

Supported by Flickr data that are with finer spatial and temporal

granularities, it is plausible to adopt street communities as the unit

to conduct correlation analysis between human activities and a

more refined urban space.

In this article, we study the relationship between the street

topological properties and human activities represented by

location-based social media (LBSM). As one major kind of urban

big data, LBSM data record massive geo-related information from

millions of users and works as a good proxy of conventional data for

exploring the geographic space and human activities therein. Rooted

in complex-network thinking and graph theory, we adopt the street

FIGURE 1
The methodological framework of this study.

FIGURE 2
(Color online) The spatial distribution of processed geo-
tagged photos in the study areas and the underlying street
networks in the centermost region of Beijing (A,B) and
Shanghai (C,D).
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community as a unit for analysis and seek the correlation between

different types of topological metrics of street segments within each

community and related movement flow counted by Flickr points

along the segments. The contribution of this study is three-fold: 1)We

apply RA-index to measure the heterogeneity or long-tainedness of

the spatial distribution of Flickr photos, not only at the community

level but also at the street segment level; 2) At the segment level, only

betweenness has a moderate correlation with a number of Flickr

locations, others do not have at all. 3) A further investigation of

statistical distribution of all these metrics suggests that only

betweenness metrics exhibit a similar profile to that of Flickr

locations. This explains why betweenness can better capture

human activities and this knowledge could help us in some urban

applications such as traffic prediction and route planning.

The remainder of this paper proceeds as follows. Section 2

introduces the datasets and methods. Section 3 presents the

visualization and statistical results regarding the topological

analysis of the street network, the imbalance distribution of

photo locations at the community and street levels, and the

correlation between the two. Section 4 discusses and concludes

the results and points to the future research direction.

2 Methodology

2.1 Data and data processing

The framework of this study is presented in Figure 1. We

focused on the centermost area of Beijing and Shanghai bounded

by the inner ring road for this study. Respectively (Figure 2). The

area includes two highly developed districts such as Dongcheng

in Beijing and Pudong in Shanghai, both of which attract massive

amounts of human activities. We wrote a simple script to clip out

the Flickr data downloaded from the Yahoo database. As Figure 2

shows, there were 73,276 and 92,479 records in downtown

Beijing and downtown Shanghai, respectively, including Photo

ID, user ID, timestamp, and XY coordinates. We also followed a

previous study (Wu et al., 2014) and cleaned the data by

removing photo duplicates (same user sent at same time and

location) and those photos sent by robots. The cleaned data

contained 19,970 photo locations for Beijing and 24,589 for

Shanghai. The street network was downloaded directly from

OpenStreetMap. We further used the Near function to assign

each location to the nearest street segment and eventually

counted how many photo locations were assigned to a single

segment as the segment-based flow.

2.2 Topological properties for
characterizing a street network structure

We built the dual graph G(V, E) of the obtained street

networks in two cities, in which V stands for the set of nodes

{v1, v2 . . .} , and E is a set of edges or links among the nodes.

Before that, we processed the original street data in ArcMap to

ensure the right polyline topology, where the intersection can

only occur in case of three or more segments. The resulting

number of street segments in Beijing and Shanghai were

respectively 13,709 and 23,583. The dual graph of segment-

segment topology was based on their intersection relationship

and had 30,260 and 65,377 edges. The constructed graph was

undirected and unweighted. To characterize a street network, this

study used the following topological metrics for each segment:

Degree centrality, as denoted in Eq. 1, the degree of a node is

based on how many links connect to that node.

D(vi) � d(vi)∑vi∈Vd(vi)
(1)

Closeness centrality, refers to the topological distance of a

node to every other node in a network, which is denoted by Eq. 2,

which d(vi, vj) is the shortest distance between a node vi and vj.

C(vi) � 1

∑g
j−1d(vi, vj) (2)

Eigenvector centrality, makes use of the centrality of a node’s

neighbor to determine the centrality for that node. The

eigenvector centrality for a node vi can be described as Eq. 3.

E(vi) � 1
λ
∑
j∈G

av,jvi (3)

Betweenness centrality measures how big a role a node vk
plays as a bridge in a network. Described as Eq. 4, the

betweenness score of vk is calculated by the ratio of the

number of shortest paths between any two nodes vi, vj
passing through vk.

B(vk) � ∑
vi ,vj∈V

σ(vi, vj∣∣∣∣vk)
σ(vi, vj) (4)

FIGURE 3
The illustration of the RA-index using a rank-size plot.
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Like many other real-world networks, a street network consists

of many independent compartments, forming a community

structure. This way we can naturally divide a large street

network group by group for a better understanding of the

structure of the streets. To assess the goodness of a community

structure, modularity is often used, denoted by Eq. 5:

Q � 1
2m

∑
i,j

(Aij − kikj
2m

)δ(ci, cj) (5)

in which Ai,j refers to weights between nodes (vi, vj), ci, cj are

community indexes, δ(ci, cj) = 1 denotes they belong to one

community if not, it equals to 0. The detection of communities for

a large network requires some efficient algorithms. This study uses the

Louvainmethod (Blondel et al., 2008) for the community detection of

the street network. With the street segments being represented as

nodes, and the intersection relationship being represented as binary

edges, the community detection algorithms can divide the segment-

segment network into communities, within which these segments

interact with each other more strongly than ones outside the

subgroup. To determine the best community detection result, this

algorithm joins individual nodes into communities progressively until

the modularity score no longer increases.

2.3 RA-index for measuring the long-
tailedness of topological metrics

Commonly, human urban activities are substantially

heterogeneous (e.g., Brockmann et al., 2006; Gonzalez et al.,

2008), manifested mathematically as a right skew in the

probability distribution or a long tail in rank-size distribution.

The skewness or long-tailedness in the distribution can also be

understood as data imbalance or unevenness since data with this

such kind of distribution contain only a few large values but

numerous small values, that is, large-to-small ratios are

disproportional (e.g., 80/20 rather than 50/50). In recent years, the

ratio (RA-index; Gao et al., 2016) is widely used to quantify the extent

of a data being long-tailed distribution (Ma et al., 2020). To calculate

RA-index, wefirst rank all values in the data set from the largest to the

smallest (a rank-size plot). The RA-index value, as Eq. 6 denotes,

equals the ratio between the areas of two polygonsA andBdivided by

the line connected with the largest and smallest values (Figure 3). The

value range of the RA-index is between 0 and 1. The smaller the RA-

index value, the more long-tailed or right-skewed the data is. This

study would compute the RA-index on every type of segment-based

measure, as well as the segment-based movement flow.

RA � SA
SA + SB

(6)

Where SA and SB represent respectively the area of two parts

of the triangle divided by the rank-size distribution line.

3 Results

3.1 Detected communities and related
statistics

We firstly partitioned the network graph into several

communities. As Table 1 presents, the statistical results of

the two downtown areas were similar. As the case with

Shanghai, the derived 58 communities with the highest

modularity score of 0.937. The size (number of street

TABLE 1 The statistics of derived street communities in downtowns Beijing and Shanghai. (Note: #, number; Comm, Communities; Mod, Modularity
score; MaxSeg, the maximum number of segments within a community; MaxPhotos, maximum unique photo locations within a community).

#Comm Mod #MaxSeg #MinSeg #MaxPhotos #MinPhotos

Beijing 52 0.944 481 52 2116 8

Shanghai 58 0.937 797 34 2274 1

FIGURE 4
(Color online): The layout of detected street communities in
the downtown area of Beijing and Shanghai (A,C), each of which is
with a number of Flickr points that aremapped using dot size (B,C).
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segments) of each community ranges from 34 to 797 (Table 1).

As can be seen from Figure 4A,C, at the center of the study area,

numerous small-sized communities were concentrated,

whereas bigger ones were surrounded layer by layer. On the

other hand, the number of geotagged Flickr photos within each

street community gave another story. Figure 4B,D showed that

smaller communities at the center tended to possess a

considerably large amount of photo locations (2274 at most

in one community; Table 1), indicative of the area of interest in

the downtown area, while much fewer photo locations resided

in larger communities at the periphery. From a statistical point

of view, the number of segments contained in each community

follows a normal-like distribution, that is, the big-to-small ratio

regarding the number of street segments for each community

was proportional, that is, around the average value. The

statistical distribution for photo locations within each street

community was, therefore, quite disproportional (right-

skewed) and was with an RA-index of 0.04, suggesting a

FIGURE 5
(Color online): The probability statistical distribution of #street segments and #Flickr locations within each community [Note: # = number,
#road segments for each community obey a normal distribution (A,C), while # Flickr photos exhibit in a right-skewed or long-tailed manner (B,D)].

TABLE 2 The average community-based RA-index values for several photo locations and each of the centrality measures.

#Photo Betweenness Closeness Degree Eigenvector

Shanghai 0.04 0.12 0.75 0.79 0.72

Beijing 0.06 0.14 0.76 0.75 0.66
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highly imbalanced distribution, both in space and statistics, of

human activities in social media (Figures 4, 5).

3.2 Correlation within each community

We computed four types of centrality measures for each street

segment, that is, betweenness, closeness, degree, and eigenvector.

Within each derived street community, we further extracted the

contained street segments and then examined the extent of

imbalance distribution across four topological parameters as

well as the number of photo locations (Table 2). It is very

interesting to note that the distribution of photo locations at

the street segment level was very uneven too, for most of the

RA-index values were less than 0.1, similar to what has been

distributed over different street communities. On the other hand,

the centralitymeasures behaved quite differently. Figure 6 provides

an overview of the RA-index for each metric at the community

level, from which we can see a remarkable consistency between

several photo locations and betweenness, while the other three

centrality measures appeared several times bigger (above 0.7).

We correlated each segment-based topological metric with

the corresponding amount of photo location. The range of

correlation for all metrics was in general (−0.21, 0.39) in

Shanghai (Figure 6a) and (−0.18, 0.48) in Beijing (Figure 6b).

Taking examples of the top 10 popular communities for both

cities shown in Figure 7, the correlation results vary from

community to community and demonstrate, by and large, a

consistent pattern with the RA-index values, that is, metrics with

a smaller RA-index was inclined to have a larger correlation

result (e.g., betweenness). In contrast, a lack of correlation or

negative correlation can be found in some communities where

metrics with a large RA-index value (e.g., degree and closeness).

In this regard, betweenness outperforms other structural

properties regarding the capture of human activities at the

community level (e.g., the strongest correlations in

5 communities out of the top 10 communities in Shanghai;

Figure 7A), as it conforms to the imbalanced spatial

distribution of photo locations. Furthermore, to confirm the

above result about the presence or absence of correlations, we

mapped street segments within one of the most popular

communities (Figures 7A, B). For example, we selected one

community in Shanghai with 1,545 geo-tagged photos over

580 street segments, the visualization uses a color scheme

from blue (lowest) to red (highest) showing high/low

correspondence between different measures and human

activities.

4 Discussion

The street network is a de facto complex network, in which

the connections among streets are distributed rather unevenly

(Newman 2003). In other words, the connections in some parts

FIGURE 6
(Color online): The bar chart view of RA-index values on fivemetrics at the community level (Note: Data with an RA-index closer to 0 is prone to
be highly right-skewed. Thus, across four types of centrality measures, the extent of imbalance distribution of betweenness is the closest to that of
#photo locations, followed, in order, by degree, closeness, and eigenvector).
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FIGURE 7
(Color online) The segment-based metric-flow correlation results between four types of topological parameters, respectively, and several
photo locations in the top 10 popular communities and the street network in one of the selected 10 communities, rendered using different types of
segment-based measures, respectively in Shanghai (A) and Beijing (B). (Note: The betweenness value shows the strongest uniformity with the
number of photos, either spatially or statistically, and thus has a better correlation than other metrics).
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of the network are dense while in other parts are quite sparse.

This leads us to decompose such a network into communities

within which the streets interact more intensively than the ones

outside. It should be noted that the detected communities work

effectively as alternative space partitioning units that are emerged

from the bottom-up rather than traditional ones from the top-

down such as equal-sized grids that neglect the essentials of the

underlying spatial environment. This is very much in line with

the Flickr data used in this study which is also collected in a

bottom-up manner and with an unbalanced spatial distribution.

Although Flickr is not as popular asWeibo andWechat in China,

we chose the centermost part of the two largest Chinese

metropolises where the places are relative with very dense

photo locations to ensure the Flickr data can reflect greatly

the activity level. In doing so, we managed to conduct an in-

depth investigation of the interplay between urban spatial

structure and human activities.

From a statistical viewpoint, the unevenness can be

characterized as a right-skewed or long-tailed distribution. In

the study, it is interesting to stress that such an uneven spatial

distribution of Flickr photo locations at two levels: across

communities and within a single community, represented by

the RA-index value being smaller than or equal to 0.1. From one

community to another, the different amount of photo locations

can reflect the varying popularity degrees of a place. Such a

variation also appears from the street to street within a

community. The result showed that the minimum RA-index

value for the number of photo locations distributed across streets

is 0.02, indicating an extremely imbalanced pattern of far more

rarely-visited streets than frequently-visited ones. What is more,

some of the calculated segment-based structural parameters

exhibited a similar statistical pattern such as betweenness

whose RA-index largely resonates one of photo locations in

most cases (also shown in Figure 6B).

The correlation test further revealed that betweenness was

the best segment-based topological metric for capturing human

activities at the community level. Other metrics like degree or

closeness were with larger RA-index values and thus were hard to

have a moderate metric-flow correlation. The primary reason

could be that the betweenness is a more global measure (Freeman

1979) and its calculation takes account of not only the immediate

intersected streets (neighbors) of a street, but also neighbors’

neighbors, and so on. On the contrary, the degree of closeness

centrality considers only the local neighbors of a street. As a street

segment usually intersects immediately with only 3 or

4 segments, the segment-based degrees within a community

would not differ too much from one another, thereby leading

to a larger RA-index value or a more proportional distribution

(e.g., 50/50 rather than 20/80).

The similar community-based statistics in the two cities

above help us better understand the interplay between the

complex or heterogenous street structure and human check-in

activities. As confirmed in many urban literatures, although one

has his/her own choice or behavior while moving, the collective

movements are greatly influenced by the underlying spatial

environment such as the network of streets (e.g., Hillier 2012)

and can, to a certain extent, captured by the structural properties

(network metrics). Moreover, based on the detected long-tailed

distribution on both the betweenness metric and the number of

photo locations along streets within each community, we further

identify that the heterogeneity of urban space may work as an

effective means of characterizing group-level human activities.

5 Conclusion

The relationship between the urban environment and human

activities therein is one of the cores in urban science. The present

study makes use of the street network in the downtown two

metropolitan areas Beijing and Shanghai and decodes the urban

morphology from the perspective of the street communities,

from which we can further understand a city’s configurational

and functional complexity regarding the imbalanced distribution

of street topological parameters and human check-in activities.

Despite previous studies had pointed out a positive correlation

between street topological properties and people movement flow,

our experiment further contributes to the literature that one of

the reasons behind the positive correlation is the shared

heterogeneous or imbalanced nature held by both street

structure and human activities. Future work will involve more

metropolises worldwide for an international outlook and develop

agent-based simulation using street networks as the computation

environment for deeper insights into urban structure and its

complex dynamics.
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