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In a warming climate, understanding seasonal fluctuations in snowline position

is key to accurately predicting themelt contribution of glaciers to sea-level rise.

Snow and ice conditions have a large impact on freshwater availability and

supply on seasonal and multi-annual timescales. Factors such as snow extent

and physical characteristics affect predictions in snowmelt- and glacier-fed

catchments, influencing the potential of hydropower and drinking water supply

in these areas, as well as ecosystems and fjord waters. Summer snow

monitoring on glaciers and ice caps peripheral to the Greenland Ice Sheet

are limited, and are typically excluded from ice-sheet wide assessments. Here,

we analyse snow extent evolution on Qasigiannguit Glacier (QAS), a small

coastal mountain glacier in Kobbefjord, southwest Greenland, with the aim

of obtaining a baseline dataset of snow and ice conditions. Maximum snowline

altitude and bare ice extent are extracted using terrestrial time-lapse

photogrammetry, and compared to mass balance and automated weather

station observations since 2014. The number of days of visible bare ice,

cumulative Positive Degree Days (PDD) and mass balance are closely linked,

with 2016 and 2019 experiencing the most negative mass balance, earliest

onset of PDDs and greatest cumulative PDDs. 2021 had a relatively small

negative mass balance (−0.072 m w.e.) despite having the longest bare ice

exposure (112 days). This is attributed to the timing of bare ice exposure relative

to the mean 90% cumulative PDD (28th August). Longer periods of bare ice

exposure precede themean 90% cumulative PDD in both 2016 and 2019, which

reflects differences in the amount of melt energy available at different times in

the melt season. This has far reaching implications for mass balance modelling

efforts as this study demonstrates that spatial and temporal variability in snow/

bare ice cover are linked to differences in melt factors and energy required to

melt snow and ice. Snowline position provides a coarse indication of surface

conditions, but futuremodelling efforts need to incorporate the complex spatial

evolution of snow-to-bare ice ratios in order to improve estimates of mass loss

from glaciarised mountain catchments.
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1 Introduction

Greenland’s peripheral glaciers cover 5% of Greenland’s area,

yet account for 13% of the global glacier mass loss and contribute

significantly to sea-level rise (Bolch et al., 2013; Bjørk et al., 2018;

Hugonnet et al., 2021). Greenland-wide assessments that record

increasing bare-ice extent have typically excluded these

peripheral glaciers (Fausto et al., 2018; Ryan et al., 2019), and

only five of these glaciers are currently monitored for snowline

and mass balance changes (Machguth et al., 2016). Limited

existing snowline and mass balance field observations mean

that the contribution of peripheral glaciers to surface

meltwater runoff and their response to regional climate

variability remains unquantified. Quantifying snowline

elevations and melt-climatic interactions is important for

accurately representing these processes in regional climate

model predictions of surface melt contributions. Therefore,

snowline monitoring is needed on Greenland’s local glaciers

to provide a baseline for future change assessment.

The snowline is typically defined as the boundary between

fresh snow or firn and bare glacier ice at the end of the melt

season, or the boundary between the wet-snow and

superimposed-ice zones (Colgan et al., 2011; Racoviteanu

et al., 2016). The end-of-season snowline altitude (SLA) of a

glacier represents an approximate Equilibrium Line Altitude

(ELA, the spatially-averaged altitude at which annual glacier

mass balance is zero; Cuffey and Paterson, 2010; Cogley et al.,

2011), unless refreezing at the base of the snow/firn layer has

formed superimposed ice (Andreassen et al., 2021). Over

seasonal timescales, the winter snowpack melts in summer

and increases the extent of bare ice through the migration of

the summer snowline (Ryan et al., 2019). This amplifies surface

melt and runoff through a positive snow-albedo feedback,

whereby melting of the snowpack exposes darker, lower-

albedo bare glacial ice that enhances the absorption of

shortwave radiation (Ryan et al., 2019).

The snowline is typically not a clear linear boundary at any

one point during the melt season, but instead a transitional zone

composed of snow, firn, ice and slush patches. Snow patches can

form below the main snowline on the lee side of ridges owing to

ice surface topographic fluctuations, wind redistribution and

shadowed areas (Banwell et al., 2012). Conversely, patches of

firn or superimposed ice can form above the snowline on the

windward side of ridges or where snow melting and refreezing

has occurred (Hynek et al., 2014).

Snowline positions have been inferred from semi-automated

classification of satellite imagery. Band ratios and thresholding,

such as the normalised difference snow index (NDSI), have

typically been adopted to identify end-of-season snowline

altitude (Dozier, 1989; Banwell et al., 2012; Fausto et al., 2018;

Ryan et al., 2019). However, remote sensing approaches are

somewhat limited on small areas, such as Greenland’s

periphery glaciers, due to the relatively coarse resolution of

the satellite imagery.

Terrestrial time-lapse imagery provides a high temporal and

spatial resolution source of snow cover data. End-of-season SLA

has been extracted from digital camera images on Mittivakkat

Glacier (a local alpine glacier in east Greenland) to validate a

snow-evolution model (Mernild et al., 2006). Outside of

Greenland, annual SLA has been delineated manually from

repeat oblique and aerial photographs and from optical

satellite imagery in the French Alps, the Andes, the

Karakoram and the eastern Himalaya (Huss et al., 2013;

Barandun et al., 2018; Racoviteanu et al., 2016; Andreassen

et al., 2021). Automated classification workflows have been

implemented to produce snow- and ice-cover maps for entire

melt seasons, providing an effective form of validation for

satellite remote sensing classifications (Hynek et al., 2014;

Härer et al., 2016; Rastner et al., 2019).

In this study, we apply a manual snowline extraction method

using terrestrial time-lapse photogrammetry to extract snowlines

at daily to sub-weekly timescales on Qasigiannguit glacier in

Kobbefjord, Nuuk. We use this to construct time series of

maximum snowline elevations using a high-resolution Digital

Elevation Model (DEM) and the extents of snow and bare ice

during the 2020–2021 melt seasons. We then validate these

estimates using concurrent automatic weather station (AWS)

and surface mass balance measurements.

2 Datasets and methods

2.1 Study area

Qasigiannguit (QAS) glacier (64°9′N, 51°17′W) is a north-facing

mountain glacier in Kobbefjord, Nuuk (Figure 1). The glacier covers

an area of 0.7 km2, with an elevation range of 680 m–1000 m. Ice

thickness varies between 1 m and 70 m, with a mean ice thickness of

22 m (Abermann et al., 2019). Mean annual mass balance

was −1.5 m w.e yr−1 from 2012/13 to 2015/16, −0.33 m w.e yr−1

from 2017 to 2018, and −1.77 m w.e yr−1 from 2018 to 2019

(Abermann et al., 2019; Zemp et al., 2021). QAS has a strong

summer mass balance gradient (Abermann et al., 2014).

2.2 Data sources

The imagery used in this study is from a time-lapse camera

installed at QAS (Figure 1). The camera is located on the western

slope at 894 m elevation, and has taken multiple photos per day
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since 2014. The set-up consists of a Canon EOS 600D camera

with an EF-S 18–55 mm f/3.5–5.6 IS II zoom lens and a

Harbortronics Digisnap 2700 intervalometer, powered by an

external battery and mounted solar panel (see Table 1 for

summary of camera settings). We used images from the

2020–2021 melt seasons for mapping snowline, and referred

to images taken from 2014 to 2021 to estimate timing of melt

onset and total melt duration. Only camera images after the 20/

08/2020 were used for snowline mapping. This was due to a shift

in camera station orientation and therefore a lack of usable

Ground Control Points (GCPs) prior to this date.

A surface mass balance program has been running on the

glacier as part of the Greenland Ecosystem Monitoring

Programme (GEM: https://g-e-m.dk/) since 2012. This

consists of a network of eleven stakes across the glacier and

bi-annual visits to determine the winter and net balance. Field

FIGURE 1
Map of Qasigiannguit glacier showing locations of time-lapse camera station and ground control points. Purple areas show the camera
viewshed. The location of the automatic weather station is marked with a star. Base image is an orthophoto from a September 2020 drone survey.

TABLE 1 Time-lapse camera settings and parameters.

Parameter Value

Camera position (m) 481737.70078, 7115229.09129

Camera elevation (m) 894.67

YPR (yaw, pitch, roll) (radians) −0.4651, −0.0012, 0.0049

Image type RAW

Image dimensions (px) 4272, 2848

Focal length (mm) 18

Focal length (px) 3606.37, 3541.25

Principal point (px) 2136.5, 1424.5

Radial distortion −0.4271 1.3025 −3.2621

Tangential distortion 0

Homography residual error (px) 89

Number of GCPs 14
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measurements for the 2019/2020 and 2020/2021 summer balance

were carried out during field visits on 02/09/2020 and 10/09/

2021. These data are submitted annually to the World Glacier

Monitoring Service (WGMS: https://wgms.ch/ggcb/) and GEM

(Christensen and Topp-Jørgensen, 2021) (https://g-e-m.dk/gem-

publications-and-reports/gem-annual-report-cards).

In 2014, an AWS was added to the monitoring program at

QAS, in collaboration with the Programme for Monitoring the

Greenland Ice Sheet (PROMICE, https://promice.org/). The

AWS is placed on the lower section of the glacier, close to

Stake 2 at approximately 710 m elevation (Figure 1). It

measures an array of parameters to calculate surface and

energy balance (Abermann et al., 2019; Fausto et al., 2021).

Here, we use the air temperature data to calculate Positive

Degree Days (PDD), and the sonic ranger (SR50) and the

pressure transducer to estimate the onset of ice melt (Hock,

2003). The sonic ranger is suspended above the surface, whilst the

pressure transducer is drilled into the ice.

2.3 Manual snowline extraction with PyTrx

Time-lapse images from 2014 to 2021 were used to estimate

the timing of bare ice onset and end-of-season snowline, where

images were not occluded by cloud, rain or snow. Bare ice onset

was here defined where bare ice was visible anywhere on the

glacier within the camera viewshed. End-of-season snowline was

the date of the last image before full snowfall coverage on the

glacier.

Only camera images after the 20/08/2020 were used for

snowline mapping. This was partly due to a shift in camera

station orientation and therefore a lack of usable Ground Control

Points (GCPs) prior to this date. Two approaches were adopted

to classify snow-covered/bare-ice areas from the 2020/

2021 images: 1) manually delineating snowline as a line

feature, and 2) manually delineating bare-ice (i.e. snow-free)

areas as polygon features. Snowline positions and bare ice areas

were digitised manually on all cloud-free images from the 2020

(2nd September to 15th September) and 2021 (9th July to 12th

September) melt seasons. Areas were delineated separately in

cases where multiple bare ice areas were present in the same

image.

A planar transformation projection model was used to

transform the classified areas from the 2D image plane to 3D

positions, as provided in PyTrx. A 5.7 cm-resolution Digital

Elevation Model (DEM) was used for the georectification,

which was derived from a September 2020 survey using an

Ebee fixed-wing Uncrewed Aerial Vehicle (UAV). GCPs were

FIGURE 2
Evolution of (A) bare-ice area derived from manually-delineated polygons in PyTrx and (B) snowline derived from manually-delineated lines in
PyTrx onQAS during the 2021 summermelt season. Note bare ice areas and snowlines up until 12th September 2021 are shown, which is the last date
before several light snowfall events partially cover the bare ice. Melting then continues until 28th October (Figure 4). Camera viewshed is shown in
purple. Locations of mass balance stakes and the AWS are shown in Panel (B).
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used to optimise the projection model, as is standard practise in

glacial photogrammetry studies (e.g. Messerli and Grinsted,

2015; Schwalbe and Maas, 2017), where static points on the

surrounding bedrock were marked out with paint in the field

prior to the drone survey. These GCPs were subsequently

identified and matched between the drone survey orthophoto

and the time-lapse camera images, producing an optimised pixel

error of 36 pixels.

2.4 Uncertainty estimates

Snowline classification and mapping of snow cover and bare

ice derived from terrestrial time-lapse photogrammetry are

subject to two main sources of uncertainty: 1) error in the

georectification process to transform coordinates between the

image plane (u,v) and physical space (x,y,z); and 2) uncertainty in

the manual delineation of snow and ice area estimates.

Error in the georectification process is introduced from

uncertainty in the homography model generated during image

registration, where image pairs are aligned to account for shifts in

the camera platform. Themean pixel error in the homographymodel

for each image pair was 86.8 pixels. An additional source of

georectification error comes from the horizontal and vertical

accuracy of the DEM, which creates discrepancies between

positions in the image plane and the associated physical space

represented by the DEM. The DEM’s horizontal accuracy (total

Root Mean Square Error) is 0.074 m, with a maximum error of

0.218 m, as calculated from the difference between the surveyed GCP

positions and the corresponding UAV positions and elevations. The

camera model is optimised in order to account for this in the

georectification process, producing a mean pixel error of 36.5 pixels.

The second main source of uncertainty is in the manual

delineation of snow and ice areas from the time-lapse camera

imagery, which stems from human error. Small and isolated

snow/ice patches were excluded because they were too small to

accurately delineate. In addition, the camera viewshed limits the

visible extent of the glacier, meaning bare ice on the lower and upper

steeper-slope eastern portions of QAS cannot be mapped from the

oblique camera images (Figure 1). Overall, this means bare-ice areas

delineated manually are underestimates. To account for this, all bare

ice and snow-cover areas we report have been calculated relative to

the total area of QAS visible by the camera viewshed. In addition, we

delineated bare ice areas from six time-lapse camera images taken

FIGURE 3
Evolution of bare-ice area during 2020 and 2021 (A) and fraction ofQAS covered by bare ice and snow during the 2020 (B) and 2021 (C) summer
melt seasons, derived frommanually-delineated polygons in PyTrx. Bare ice and snow-cover areas have been calculated relative to the total area of
QAS visible by the camera viewshed. Note in 2021 that bare ice area and bare ice/snow fractions up until 12th September 2021 are shown, which is
the last date before several light snowfall events partially cover the bare ice. Melting then continues until 28th October (Figure 4).
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throughout 1 day (21/08/2021) at hourly intervals in the morning

(03:49 to 05:48) and evening (18:49 to 20:49), in order to test the

methodology’s sensitivity to the time of day the imagewas taken.We

also tested this on a different day earlier in the melt season (29/07/

2021) at hourly intervals in the morning (02:46 to 05:46) and

evening (18:46 to 22:46). The findings from this sensitivity

analysis are reported in Section 4.1.

Offsets between classified snowline and the UAV-derived

orthophoto were noted in the high-elevation regions furthest

away from the camera (Figure 2). This offset is due to shadowing

and steep topography, introducing error in this region of the

DEM. We calculated a positional shift of −50.84 m in the Easting

(X) direction, +7.27 m in the Northing (Y) direction and +3.38 m

in the vertical (Z) direction between the bare ice polygon

manually delineated in PyTrx from the 02/09/2019 camera

image and the snowline position on the orthophoto, taken on

the same date. This offset coefficient was only applied to the

classified snowlines to correct for this source of error for the dates

that correspond to the mass balance stake field measurements,

which are presented in Section 4.4.

3 Results

3.1 Snowline evolution 2020–2021

In 2020, bare-ice patches started to form on the middle and

lower portions of QAS on 10th July, based on visual inspection of

the time-lapse imagery. These coalesced on 1st August and by 8th

August the entire lower portion of QAS was snow-free. On 2nd

September, the day of the summermass balance measurements at

QAS, 70% of QAS was bare ice (Figure 3B) and the maximum

snowline elevation was 962 m above sea level (m a.s.l) (Figure 4).

The end-of-season SLA (i.e. the day before the first snowfall) was

on 15th September, and reached a maximum elevation of 967 m

a.sl. By this date, 76% of QAS was snow-free (Figure 3B). Bare ice

was visible on QAS for a total of 67 days in the 2020 melt season.

In 2021, a small bare-ice patch started to form on the lower

portion of QAS on 9th July (covering < 0.5% of the glacier;

Figures 2, 3 and 4), at a maximum snowline elevation of 703 m

a.s.l (Figure 4). Another bare-ice patch started growing further

up-glacier from 11th July, causing a jump in maximum snowline

elevation to 844 m a.s.l (Figure 4). These bare ice patches

expanded through late-July and early-August until they

started coalescing. The entire lower portion of QAS was

snow-free by the 6th August (33% bare ice area; Figure 3C),

when maximum snowline elevation reached 910 m a.s.l

(Figure 4). By 12th September, the day before a series of light

snowfall events on QAS, maximum snowline elevation reached

965 m a.s.l. Melting continued until 28th September, when the

FIGURE 4
Maximum snowline elevation on QAS during the 2020 and 2021 summer melt seasons, derived from manual classification in PyTrx. Snowline
positions delineated as lines are shown in black. Snowline positions (i.e. bare ice areas) delineated as polygons are shown in blue and orange. Each
individual dot represent the maximum elevation of a snowline position classified from a single time-lapse camera image on one date in the melt
season. The drop in maximum snowline elevation on the 9th August 2021 is due to light snowfall covering the bare ice patches on the upper
portion of QAS, which subsequently melted the following day.

TABLE 2 Date according to the AWSmounted sonic ranger sensor and
the pressure transducer that appear to indicate no snow at the
AWS, compared to the date it appears to be bare ice according to the
time-lapse camera imagery.

AWS Camera Difference

07/08/2015 08/08/2015 1

14/06/2016 12/06/2016 5

23/07/2017 30/07/2017 7

18/07/2018 16/07/2018 2

25/06/2019 03/07/2019 8

18/07/2020 19/07/2020 1

20/07/2021 15/07/2021 5
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end-of-season snowline reached a maximum elevation of

963 m.a.s.l (Figure 4). Bare ice was visible on QAS for a total

of 112 days in the 2021 melt season, which is 43 days longer than

that of 2020. This means that the QAS ice surface was exposed to

melt for longer before the first snowfall (Figure 5).

From mid-September 2021, there were several light snowfall

events which thinly covered visible bare ice and then subsequently

partially melted leaving some snow patches in small surface

depressions. The complexity of these ice/snow surface features

made the manual delineation of bare ice extent unfeasible. These

data are therefore not presented in Figure 3. However, the gross

snowline position was still clearly definable (Figure 4). As a result, we

could continue to map the snowline until the first snowfall on 28th

October, after which no bare ice was exposed again during the season.

3.2 Bare ice evolution 2014–2021

We observe large fluctuations in the exposure and total

duration of bare ice between 2014 and 2021 on QAS, reflected

in both the time-lapse images and the AWS observations

(Figure 5A and Table 2). Onset of ice exposure varied

between 3rd June (in 2016) and 20th July (in 2015 and 2017).

The end-of-season snowline date (i.e. the last day that bare ice is

visible before the first full snowfall coverage where no bare ice is

exposed after this date) varied between 21st August (in 2018) and

28th October (in 2021). The season with the longest duration of

ice exposure was 2021 (112 days) and the shortest duration of ice

exposure (and therefore the longest duration of snow cover) was

in 2018 (43 days).

FIGURE 5
(A) Timings of onset of bare ice exposure (i.e. the date that bare ice is first visible onQAS) and total ice exposure duration (i.e. the total duration in
days that bare ice is visible up until the first day of full snowfall coverage, labelled in each bar) from time-lapse camera images taken between
2014 and 2021. The first and last PDDs for each melt season are marked by horizontal black lines. The average date when 90% PDD is reached is
marked as a black dashed line. In 2014, the AWS was set up after the start of the melt season so only the end of season PDD is available. In 2015,
the start date of themelt season is estimated in yellow based on the average start date from camera images in other melt seasons. (B)Winter balance,
summer balance and net balance from mass balance stakes on QAS. Stake locations are shown in Figure 2B.
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3.3 Mass balance

The net annual balance since 2013/2014 has largely been

negative, with a mean net balance of −0.31 m w.e. (Figure 5B).

The 2015/2016 period was a markedly negative net balance

(−1.57 m w.e.), whilst the prior period (2014/2015) was the

only positive net balance (0.22 m w.e.) observed in this study.

Winter balance has an average inter-seasonal variability of

0.5 m w.e., ranging between 0.80 m w.e. (2013/2014) and

1.33 m w.e. (2014/2015). The difference between the

maximum and minimum summer balances is much higher

(1.31 m w.e.), largely due to the large negative summer balance

of 2015/2016 (−2.403 m w.e.).

The summer balance for the 2019/2020 and 2020/

2021 seasons were similar, differing by 0.007 m w.e., whilst

the winter balance was 1.26 and 1.32 m w.e., respectively

(Figure 5B). The net balance for both these seasons were

negative for all stakes, except for the highest stake at an

elevation of 943 m. The ELA was estimated to be 933 m and

934 m for 2020 and 2021, respectively.

PDD results signify the first and last PDD for each year of the

study (Figure 5A) and the total PDD and date when 90% and 95%

cumulative PDD is reached (Table 3). The year 2016 had the

largest total PDD of 667.02°C, spanning between 17th January to

15th October. The year 2015 had the shortest PDD time range

from 17th June to 15th October, whilst the year 2018 experienced

the smallest total PDD (333.56°C).

Comparing themore recent seasons, the onset of PDDswas earlier

in 2021 than 2020 (Figure 6). High temperatures in May to mid-June

resulted in rapid change in cumulative PDD during the snow melt

period in 2020; continuing throughout the summer with the exception

of late August. In 2021, the rate of cumulative PDD change was much

less rapid in the spring. The total PDD was higher in 2020 than 2021,

and was reached approximately 2months earlier in 2020.

The average total PDD per year for the study period was

499.04°C, with the average date of the year for 90% and 95% PDD

being 28th August and 15th September, respectively (Table 3).

Beyond 90% PDD, cumulative PDD is discontinuous, or

intermittent, which results in a negligible amount of melt

production.

4 Discussion

4.1 Sensitivity of manual snow and bare ice
classification to time of day

The classification of bare ice from time-lapse imagery is

highly sensitive to the time of day the image is captured. On the

2 days we investigated this sensitivity, we found the largest

differences in bare ice areas were between early morning and

evening. For example, at 05:48 on 21st August 2021, bare ice

coverage was 0.23 km2, but at 18:49 on the same day, bare ice

coverage was calculated as being only 0.01 km2 (accounting for

the proportion of QAS not visible from the camera viewshed).

Similarly, at 02:46 on the 29th July 2021, bare ice coverage was

0.32 km2, but at 22:46 on the same day was calculated as being

TABLE 3 Total annual PDD, and the dates in each melt season when
90% and 95% of the cumulative PDD are reached.

Year Total PDD (°C) 90% PDD 95% PDD

2015 388.74 29/08/2016 03/09/2015

2016 667.02 25/08/2016 02/09/2016

2017 483.00 30/08/2017 14/09/2017

2018 333.56 23/08/2018 02/09/2018

2019 693.52 27/08/2020 26/09/2019

2020 468.10 31/08/2021 15/09/2019

2021 459.31 05/09/2021 12/10/2021

Mean 499.04 28/08 15/09

FIGURE 6
Fraction of Bare Ice versus Cumulative Positive Degree Days on QAS during 2020 and 2021.
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only 0.04 km2. This difference arises from lower sun angles at

later times of day casting shadows across the lower portion of

QAS, resulting in bare ice being underestimated. For images

taken within the same time of the day (i.e. morning or evening)

at hourly intervals, there is a smaller difference in bare ice areas

(0.2–0.32 km2 on 29th July between 02:46 and 05:46,

0.18–0.23 km2 on 21st August between 03:49 and 05:48).

Overall, this sensitivity analysis demonstrates the importance

of image timing and selected pixel thresholds in bare ice

classification.

4.2 The timing of seasonal bare ice
exposure at the AWS

The exposure of bare ice according to the AWS pressure

transducer and sonic ranger matches well with the date

defined by the camera (Table 2). Discrepancies are on the

order of a few days to a week, with the largest difference

(8 days) observed for the year 2019. These discrepancies likely

reflect the challenges in interpreting the pressure transducer

and sonic ranger datasets, in order to accurately pick the day at

which all snow has melted away, exposing the previous

seasons ice surface. This data is extremely localised to the

exact measurement footprint of the respective sensor. The

spatial overview provided by the camera also highlights the

impact itself of the presence of the AWS, which alters snow

distribution around the station and can lead to a bias in the

timing of the ice exposure. In addition, the locational bias in

the AWS observations do not reflect glacier-wide conditions.

Validation data, such as from time-lapse cameras, provide a

spatial context that offer a more realistic perspective when

combined. Overall, this highlight the need for validation

datasets to constrain AWS observations of surface

conditions, such as the timing of bare ice exposure at the AWS.

4.3 Snowline and ELA correspondence

According to the shift-corrected time-lapse data, the

snowline elevation was 912.90 m a.s.l. at the location along

the mass balance stake transect between the upper two stakes on

02/09/2020. The estimated ELA for 2020 from the upper two

stakes was estimated to be 933.00 m a.s.l. For 2021 (10/09/

2021), the camera-derived snowline elevation was 918.30 m

a.s.l. whilst the stake-derived ELA was 934 m a.s.l. Therefore,

the elevation difference between the camera-derived snowlines

and the ELA stake measurements were 20.00 m and 15.70 m for

2020 and 2021, respectively. The snowline and ELA

measurements thus demonstrate good correspondence for

this location on the glacier.

In the 2 years where we have overlapping data between the

mass balance and the delineated time-lapse snowline, it appears

that the stake mass balance data for the upper two stakes slightly

overestimates the snowline elevation. However, we find that the

stake ELA is much lower if we include data from all 11 mass

balance stakes, with the estimated ELA being at 908.00 m a.s.l.

and 880.00 m a.s.l. in 2020 and 2021, respectively.

Overall, the inter-comparison between the camera data and the

stake measurements highlights the importance to adopt multi-

method datasets to better understand mass balance results. The

spatial data derived from the camera images enables us to interpret

small differences between mass balance years; for example, due to

differences in the amount of bare ice exposed to melt compared to

that of snow. The AWS data provides a multitude of high-resolution

time series, but its uses in identifying spatial patterns and

complexities is particularly limited in mountain glacier studies.

This is reflected in the comparison with the camera-derived

datasets, where shadowing, localised redistribution of snow, and

heterogeneous patterns of bare ice exposure are evident (Table 2 and

Figures 2, 5).

4.4 Comparison of camera data with
surface mass balance

Overall we find a good agreement between the number of

days of visible bare ice on the glacier, the cumulative PDD, and

the net surface mass balance. Both 2016 and 2019 stand out as the

most negative mass balance years, with the earliest onset of PDD

and greatest cumulative total PDD (Figures 5A, 6). 2017,

2018 and 2021 had very similar net balance of −0.051, −0.088,

and −0.072 m w.e., respectively. They were also 3 years with low

total PDD (Table 3). The duration of bare ice exposure prior to

the mean 90% cumulative PDD (28th August, Table 3) is also

similar in each of the aforementioned years.

Bare ice exposure is similar in 2020 and 2021, specifically

prior to the mean 90% cumulative PDD (28th August, Table 3)

(Figure 5A). However, this is not reflected in net balance, with a

greater negative net balance of 0.142 m w.e. in 2020 (Figure 5B).

Differences in net balance likely arise from a slightly higher

winter balance in 2020/2021 compared to 2019/2020.

Additionally, the onset of melt occurs earlier in 2020, as

reflected in the cumulative PDD curves, despite the first PDD

being much earlier in 2021 (Figure 6). The overall total PDD

before the mean 90% cumulative PDD (28th August, Table 3) is

higher in 2020 (400.56°C) than in 2021 (394.15°C)).

Despite 2021 having the longest ice exposure duration in the

study (112−days, Figure 5A), it had a relatively small negative mass

balance (−0.072 m w.e., Figure 5B). This is likely due to intermittent

snowfall in late-autumn/early-winter, which was visible on the time-

lapse images. This snowfall would have reduced the effectiveness of

ice melt, and the continuity of increasing PDD would have been

interrupted (Figure 6). The increase in cumulative PDD therefore

plateaus and the occurrence of further PDDs becomes much more

intermittent and sporadic (Table 3). As a result, the amount of
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energy for ice melt is low and has little impact on the resulting mass

balance after this date.

4.5 The importance of the timing of bare
ice exposure

The years 2016 and 2019 experienced substantial periods of

exposed bare ice according to the camera data. However,

2021 experienced the longest duration of bare ice exposure yet

this is not reflected in the mass balance observations as expected

(Figure 5B). The main difference between these years is the

timing of bare ice exposure relative to the mean 90% cumulative

PDD (28th August, Table 3). In 2021, the majority days of the

bare ice exposure occurred after 28th August (Figure 5A).

Whereas in 2016 and 2019, a large part of the duration of

bare ice exposure occurs before the mean 90% cumulative PDD.

It is suggested here that the timing of bare ice exposure

relative to the mean 90% cumulative PDD (28th August, Table 3)

plays a critical role in surface melting and mass balance, with

large negative mass balance records from 2016 to 2019 linked to

long periods of bare ice exposure prior to the 28th August. This is

because the date at which bare ice is exposed on the glacier

depends on the amount of energy available to melt the winter

snow pack as well as the thickness of the snowpack.

The importance of the timing of bare ice exposure is further

reflected in the overall total PDD (as described earlier in Section

4.4). Prior to the mean 90% cumulative PDD (28th August,

Table 3), the bare ice fraction is higher during August for

2020 compared to 2021. This is reflected in differences in

total PDD for 2020 and 2021, with 2020 having a higher total

(400.56°C) than 2021 (394.15°C), despite 2021 experiencing

longer bare ice exposure. Therefore, it could be argued that

the larger bare ice surface exposed in 2020 prior to the mean

90% cumulative PDD plays a greater role in ice melt than the

longer bare ice exposure experienced in 2021.

4.6 Future work

Opportunities to extend this work include expanding the

time-series of snowline and bare ice evolution to include data

from 2014 to 2020. The time-lapse camera data requires refining

the projection model with new GCPs to ensure precise

georectification of bare ice areas. A possibility for addressing

mis-classifications from the workflow would be to include a

shadow modelling module using the DEM in order to remove

shadowing (Schwalbe and Maas, 2017). Shadows could then be

automatically removed before classifying bare ice areas.

The snowline positions and bare ice areas presented here

could serve as a useful comparison to satellite-derived snowlines.

Each approach to snowline mapping offers its own advantages

and limitations. While terrestrial time-lapse imagery provides a

high temporal and spatial resolution source of ground truth snow

cover data, it is restricted to a small geographic area and a limited

number of sites (Härer et al., 2016). Satellite imagery offers the

advantage of a larger spatial footprint and longer-term return

period to monitor catchments over an extended period, albeit at a

medium resolution (i.e. metres to tens of metres). Therefore, a

combined approach using both of these image sources would be

beneficial for assessing snowline evolution on local peripheral

glaciers around whole regions of the ice sheet.

One of the main findings from this study is the importance

of the spatial distribution of snow and bare ice across the

glacier. This is crucial for mountain glaciers where topography

plays a huge role in the heterogeneous melting of snow. In

particular, traditional snowline studies assume an elevation of

snowline, and thus also energy input for melting. However,

this is not observed at QAS where persistent snow patches

exist at low elevations and ice is exposed at higher elevations

on the glacier at the start of the melt season. This has far

reaching implications for mass balance modelling efforts,

where it has been demonstrated that spatial variability in

glacier surface characteristics is linked to different melt

factors and energy required to melt snow and ice. A

snowline can give a rough indication, but the findings from

QAS reveal that the situation is far more complex. Accurate

estimates of mass loss from glaciarised mountain catchments

can only be achieved with a deeper knowledge of the spatial

evolution of the snow-to-bare-ice ratio throughout the melt

season.

5 Conclusion

Using manual snowline extraction from terrestrial time-lapse

photogrammetry, we produced a time-series of maximum

snowline elevation and the extents of snow and bare ice

through the 2020 and 2021 melt seasons. Additionally, we

compared this data to a comprehensive 8 years record of mass

balance and AWS data from QAS glacier. Overall we find a good

agreement between the snowline elevation from the time-lapse

data and the stake mass balance data. The corresponding

snowline value from the day of summer mass balance

measurements in 2020 and 2021 show an overall discrepancy

in elevation of 20 m and 15.7 m, respectively, compared to the

forecast ELA compiled from measured mass balance stake data.

Snowline classification accuracy is sensitive to image cloud cover

and illumination, spectral similarities in snow and ice facies, and

the diffuse nature of the snow-ice boundary. Nevertheless, we

were able to produce a high resolution spatio-temporal time

series of the snow and bare ice area evolution over the entire

glacier.

This study highlights some of the challenges when interpreting

mass balance data, especially the variations between years. It

demonstrates the importance of having a spatial overview of the
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surface conditions at the glacier, especially mountain glaciers with

varying topography. In particular, this refers to the timing of bare ice

exposure as defined by spatially-limited single point data at the AWS

compared to that of the spatial context of time-lapse images. The date

of ice exposure at QAS was detected much earlier in the camera data

than at the AWS. This highlights the importance of AWS placement,

especially in mountain glacier settings, and the challenges associated

with extrapolatingAWSacross an entire glacier. An importantfinding

is that the date of ice exposure timing in relation to the mean 90%

cumulative PDD is a key component for ice melt and mass balance.

Ice exposure after this threshold date appears to have little impact of

the resulting mass balance, compared to the amount of days prior to

the 90% cumulative PDD. This is clearly evident in the 2021 season,

which has the longest ice exposure duration yet a relatively small

negative mass balance due to the majority of the bare ice exposure

occurring after this threshold date. Overall, this is crucial for future

modelling efforts on peripheralmountains glaciers such asQAS, as the

complexity of surface conditions and timings of bare ice exposure are

currently not represented and yet have a large implications for mass

balance.
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