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The 2010 Mw 8.8 Maule earthquake occurred offshore central Chile and

ruptured ~500 km along the megathrust fault resulting from the oceanic

Nazca plate subducting beneath the continental South American plate. The

Maule earthquake produced remnant crustal displacements captured by a vast

set of geodetic observations. However, given the nature of the observational

techniques, it is challenging to extract its accurate three-dimensional coseismic

deformation field with high spatial resolution. In this study, we modified the

extended simultaneous and integrated strain tensor estimation from geodetic

and satellite deformation measurements (ESISTEM) method with variance

component estimation algorithm (ESISTEM-VCE) to retrieve the three-

dimensional surface displacement field of this event by integrating the

interferometric synthetic aperture radar (InSAR) and global positioning

system (GPS) measurements. The ESISTEM-VCE method accounts for the

spatial correlation of surface displacement among the adjacent points and

determine the accurate weight ratios for different data sets, but also uses the

uncertainties of GPS data and considers the different spatial scales from the

different datasets. In the simulation experiments, the RMSEs of the ESISTEM-

VCE method are smaller than those of the ESISTEM and ESISTEM-VCE (same

d0) methods, and the improvements of 97.1%, 3.9%, and 84% are achieved in the

east-west, north-south, and vertical components, respectively. Then, we apply

the proposed methodology to the 2010 Mw 8.8 Maule earthquake, to obtain a

three-dimensional displacement field that could provide fine deformation

information. In the east-west component, the significant deformation is in

the north of the epicenter, closed to the Constitución, with a maximum

westward displacement of 495.5 cm. The displacement in the north-south

component is relatively small compared to that in the east-west component.

The maximum uplift reaches 211.8 cm, located at the southwest of the

Concepción. Finally, the derived vertical displacements are also compared

with field investigations, indicating that the ESISTEM-VCE method can obtain
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more accurate weight of different datasets and perform better than the

ESISTEM method. The results highlight that the earthquake ruptured along

the NE-SW direction, with a dominant thrust and a relatively small component

of right-lateral strike-slip, coinciding with the characteristics of subduction and

right-lateral shear. The experiments with the simulated and real data suggest

that the improved ESISTEM-VCE method in this study is feasible and effective.
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Introduction

On 27 February 2010, an Mw 8.8 earthquake struck the coast

of Chile’s Maule region. It is the fifth-largest earthquake since the

beginning of the modern recording, and the largest megathrust

earthquake in this zone since the 1960 Mw 9.5 Chile earthquake

(Tong et al., 2010; Lorito et al., 2011). The earthquake occurred

along the interface between the Nazca and South American plates

with a convergence rate of ~6.5 cm/yr (Kendrick et al., 2003;

Ruegg et al., 2009; Vigny et al., 2009; Pollitz et al., 2011).

Subsequently, the surface deformation caused by this event

was observed by global positioning system (GPS) stations and

interferometric synthetic aperture radar (InSAR) images. The

horizontal displacement from the GPS stations (Figure 1) shows

a strong seaward motion, with a small southward motion, being

consistent with oblique convergence in the subduction margin.

Meanwhile, the vertical displacements along the coastal exhibit

surface uplift consisted with a rupture on the megathrust, with a

maximum uplift of 188.7 cm at the south of the epicenter. Inland,

the GPS measurements show the subsidence due to the effect of

coseismic slip (Vigny et al., 2011), with a maximum of 72.8 cm.

The InSAR technique is powerful to detect ground surface

displacement, such as earthquakes (Massonnet et al., 1993; Xu

et al., 2020; Yang et al., 2020a, 2020b), volcanoes (Guo et al., 2019;

Wang L. et al., 2021), and mining collapses (Yang et al., 2016).

For the Maule event, the Japan Aerospace Exploration Agency

(JAXA) imaged the deformation areas with the Advanced Land

Observatory Satellite (ALOS) Phased Array type L-band

Synthetic Aperture Radar (PALSAR) images (Tong et al.,

2010; Pollitz et al., 2011; Zhang et al., 2021). Besides, this

event induced some geohazards such as the tsunami with a

maximum runup of 29 m, resulting in 156 casualties and

economic losses of about 30000 million dollars (http://www.

ngdc.noaa.gov/hazard/tsu.shtml; https://www.ngdc.noaa.gov/

hazel/view/hazards/tsunami/event-more-info/4682).

Following the event, different data sources have been used in

several studies to investigate the Maule earthquake rupture

process and the mechanics of the subduction environment.

Tong et al. (2010) quantitatively derived the coseismic slip

distribution based on the elastic dislocation model with a

combination of GPS and ALOS data. Lay et al. (2010)

inferred the finite-fault slip distribution using the teleseismic

P, SH, and Rayleigh wave data. Delouis et al. (2010) presented the

slip distribution based on the static and High-Rate GPS,

teleseismic, and InSAR data. Lorito et al. (2011) derived the

slip distribution with a robust model using a combination of

tsunami, GPS, InSAR data, and land-level changes (Farías et al.,

2010). Luttrell et al. (2011) estimated the stress drop and crustal

tectonic stress of the Maule earthquake. However, there is still no

research on the coseismic three-dimensional surface

displacement field related to this event. Although InSAR has

played a significant role in measuring surface deformation, it is

confined to one-dimensional line of sight (LOS) displacement of

the geohazards such as earthquakes and volcanic eruptions (Jung

and Hong, 2017; He et al., 2018; Xiong et al., 2020). The LOS

results cannot fully reflect the real deformation in most cases

(Song et al., 2017). However, the three-dimensional displacement

field can assist us to comprehensively understand the

characteristics of the seismogenic fault and provide

enlightenment of the earthquake rupture (Fialko et al., 2001;

He et al., 2018, 2019; Zhou et al., 2018; Liu et al., 2019; Xiong

et al., 2020).

It is well known that GPS data offer high precision in

measuring surface deformation, but provide sparse three-

dimensional displacement caused by an earthquake. Moreover,

the sites of the network of GPS stations registering the Maule

earthquake are unevenly distributed, being denser near the coast

and more scattered at the epicentral or far-field areas (Hill et al.,

2012; Jiang, 2014; Elliott et al., 2016). Therefore, compared to

one-dimensional LOS displacement or sparse GPS observations,

the large-scale three-dimensional displacement field can provide

exhaustive information that helps to produce a straightforward

geological interpretation (Jung and Hong, 2017; He et al., 2019).

Generally, GPS and InSAR data are fused to estimate three-

dimensional surface displacement. As a first step in previous

studies (Gudmundsson et al., 2002; Samsonov and Tiampo, 2006;

Hu et al., 2012), sparse GPS measurements are interpolated to fill

in the LOS grid. To avoid GPS interpolation and consider the

spatial correlation of surface displacements among the adjacent

points, Guglielmino et al. (2011) proposed the SISTEM method.

Based on the elastic theory, SISTEM method can provide the

solutions of the strain tensor, the displacement field, and the rigid

body rotation tensor. Luo and Chen (2016) proposed the

ESISTEM approach that both surrounding InSAR and GPS
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measurements available were used to constrain the derived

displacements, while the SISTEM approach only used the

surrounding GPS measurements. Furthermore, neither the

SISTEM nor ESISTEM methods account for the relative

weight between GPS and InSAR measurements needed to

compensate for the highly larger amount of InSAR

observations. With the spatial correlation of the adjacent

points’ displacements taken into consideration in the SISTEM/

ESISTEMmethods, more measurements are involved to estimate

displacements and strain at the points of interest. Thus,

providing a chance to use the variance component estimation

(VCE) algorithm to determine accurate relative weights between

GPS, ascending, and descending InSAR data in the SISTEM/

ESISTEM methods. In previous research, Hu et al. (2012)

introduced the VCE algorithm to estimate the relative weight

between InSAR and GPS measurements for inferring the three-

dimensional surface displacements. However, their method does

not consider the spatial correlation of neighboring surface

displacements. Liu et al. (2018, 2019) and Hu et al. (2021)

incorporated the VCE algorithm into the strain model based

on the elastic theory, using only InSAR measurements.

Nevertheless, they calculated displacements/strain in a given

spatial window, without determining the distance-decaying

constant. However, the spatial distribution characteristics and

resolutions (spatial scales) of GPS and InSAR data are quite

different. For instance, while InSAR observations are

homogenously distributed over a broad area, the spatial

distribution of the GPS stations is highly heterogeneous in the

large-scale deformation area of the 2010 Maule earthquake.

Therefore, Liu et al. (2018), Liu et al. (2019) and Hu et al.

(2021) approaches are not suitable when integrating GPS and

InSAR data to derive the three-dimensional displacement field.

In addition, Wang Y. et al. (2021) integrated the VCE and the

SISTEM methods to derive three-dimensional surface

displacement. However, they defined the relative weight

between horizontal and vertical components of GPS data

without acknowledging their uncertainties. Moreover, they

defined the same distance–decaying constants to multi-source

data, which is also not appropriate for GPS and InSAR data with

intrinsically different spatial distributions. As a example, for the

2010 Maule earthquake, the spatial scale of GPS data is larger

than that of InSAR observations.

To overcome the shortcomings mentioned above, we

propose the improved ESISTEM method combined with VCE

algorithm (ESISTEM-VCE). We also called this method tight

integration of GPS/InSAR data, which is similar to the

integration of GPS/INS in navigation. The main objectives of

this method are: 1) to avoid the interpolation of sparse GPS data

and construct a functional model with physical meaning that

takes into account the spatial correlation among adjacent points

based on elastic theory; 2) to utilize the uncertainties of

horizontal and vertical directions from GPS data, and fully

consider the differences of the spatial scales intrinsic to data

from GPS networks and InSAR scenery; 3) to make a posteriori

estimation of the adjustment stochastic model and determine the

accurate weights of GPS, ascending, and descending InSAR data

by applying the VCE algorithm. Thus, exploit the intrinsic

complementarity of GPS and InSAR data to determine surface

displacements. For validation, the improved ESISTEM-VCE

method is used to derive the three-dimensional displacements

with a simulated experiment. Then, as a novelty, we apply our

proposed methodology to the case study of the 2010 Mw

8.8 Maule earthquake.

ESISTEM-VCE method

For an arbitrary pointP0, whose position and three-dimensional

displacements are x0 � (x0
e , x

0
n, x

0
u) and d0 � (d0e , d0n, d0u),

respectively. There are N reference points (RPs) surrounding the

FIGURE 1
The tectonic setting of the 2010 Maule earthquake. The black
rectangle represents the continuous GPS stations, and the red
circles are campaign stations. The red and blue vectors represent
the horizontal and vertical displacements of GPS,
respectively. The orange and blue stars are the epicenters of
2010 and 1960 earthquakes, respectively. The orange beach ball is
the United States Geological Survey (USGS) centroid moment
tensor. The focal mechanism of the blue beach ball is from Fujii
and Satake (2013). The bold red arrow shows the interseismic
convergence vector between the Nazca plate and the South
American plate. The purple rectangles represent the locations of
surrounding cities; Cons, Constitución; Conc, Concepción.
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P0 with the positions and displacements are xi � (xi
e, x

i
n, x

i
u) and

di � (die, din, diu), respectively, where i � 1, 2,/N. The subscripts

e, n and u represent the east-west (E-W), north-south (N-S), and

vertical (U) components, respectively. Based on the elastic theory

(Guglielmino et al., 2011), the relationship between the

displacements d0 and di can be expressed as

di � HΔx + d0 (1)

where Δx � xi − x0 � [Δxi
e Δxi

n Δxiu ]T denotes the vector

distance between the ith RP and the arbitrary point P0, H �
zdi/zxi denotes the elements of the displacement gradient tensor.

In the SISTEM method, Guglielmino et al. (2011) only used

surrounding GPS measurements. Thus, Luo and Chen (2016)

proposed the ESISTEM method, where both surrounding GPS

and InSARmeasurements can be used in deriving displacements.

The linear equation for the ESISTEMmethod can be expressed as

d � AX + e (2)
where d is the column observation vector, A is the design matrix,

X is the column vector of unknown parameters, and e is the

observation error vector. The expressions of the vectors or

matrices are shown in the Appendix A. The detailed

information about formula derivation can be referred to Luo

and Chen (2016).

For the 2010Mw8.8Maule earthquake, theGPS, ascending, and

descending InSARmeasurements can be together used to extract the

three-dimensional surface deformation field. Therefore, the data sets

are divided into three groups based on their properties. Their

observations are d1, d2, and d3 for GPS, ascending, and

descending InSAR measurements, respectively. The

corresponding coefficient matrices are A1, A2, and A3, respectively.

The weight matrices Wj (j � 1, 2, 3) is determined by 1/δ2j ,

and δj denote the standard deviations of the measurements, with

their uncertainties of the GPS as well as InSAR data are utilized,

respectively, which is different from Wang Y. et al. (2021).

Meanwhile, the estimation for any point of interest can be

performed over the RPs with a suitable weighting strategy to

automatically lower the contribution of points distant from the

point of interest (Pesci and Teza, 2007). Hence, the weightedW′
j

is given as (Shen et al., 1996; Guglielmino et al., 2011)

W ′
j � Wj exp(−dn/dj) (3)

where dn is the distance between the ith RP and the point of interest

P0, and dj are distance–decaying constants for GPS, ascending, and

descending InSAR measurements, respectively (Guglielmino et al.,

2011), which is evaluated with the following empirical formula:

dj � 1
PQ

∑P
p�1

∑
q∈Ki

dpq (4)

which takes into account the obvious spatial scale differences

among different data sets and shows the other main difference

from Wang Y. et al. (2021). As Guglielmino et al. (2011)

described in the paper, P is the number of the RPs of the

network, Ki is the set of Q nearest stations in the circle

centered at the i station for different data sets. In our study,

we also refer to it that Q ranges between four and six.

Let Nj� AT
j W

′
jAj, Lj � AT

jW
′
jdj and N � ∑3

1Nj, L � ∑3
1Lj.

With the weighted least square method (WLS) (He et al., 2018;

Wang and Gu, 2020), the estimated unknown vector X̂ can be

solved, as shown in Eq. 5.

X
∧ � N−1L (5)

In this paper, we assumed the initial variances for the data

sets are σ201, σ
2
02, and σ203, respectively. The relationship between

the estimates and the residuals sum of squares (RSS) of

observations is (Cui et al., 2001; Xu et al., 2009)

Sθ � Wθ (6)
and

S � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 3pn1 − 2tr(N−1N1) + tr(N−1N1)2 tr(N−1N1N
−1N2) tr(N−1N1N

−1N3)
tr(N−1N1N

−1N2) n2 − 2tr(N−1N2) + tr(N−1N2)2 tr(N−1N2N
−1N3)

tr(N−1N1N
−1N3) tr(N−1N2N

−1N3) n3 − 2tr(N−1N3) + tr(N−1N3)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ̂ � [ σ̂201 σ̂202 σ̂203 ]T,
Wθ� [VT

1W
′
1V1 VT

2W
′
2V2 VT

3W
′
3V3 ]T , where n1, n2, and n3

are the numbers of the GPS measurements, ascending, and

descending ALOS InSAR results. The solution of Eq. 6 can be

expressed as

θ̂ � S−1Wθ (7)

In a real application, iteration is needed to obtain an accurate

solution by adjusting the weight as follows:

W ′
j
k � c

σ̂20j
W ′

j
k−1, (j � 1, 2, 3) (8)

where c is an arbitrary positive constant, which usually can be

assumed to be σ̂201. The iteration will not stop until the variance

components are almost identical, i.e. σ̂201 ≈ σ̂202 ≈ σ̂203. In the final,

the weights from the last iteration are used to determine the

optimal three-dimensional surface displacement field with Eq. 5.

Figure 2 shows the flowchart of the ESISTEM-VCE method.

The main steps of the proposed method are as follows. S0: Give

the studied region that the three-dimensional surface

displacement field needs to be solved. S1: Give the GPS,

ascending, and descending InSAR measurements, and divide

them into three groups. S2: Determine the dj according to

formula in Guglielmino et al. (2011) with Eq. 4, and compute

the Wj (j � 1, 2, 3) according to their standard deviations. S3:

Use Eq. 3 to compute the weighted W ′
j of the RPs. S4: Compute

the estimated unknown vector with Eq. 5. S5: Compute the

variance components σ̂20j, (j � 1, 2, 3) with Eq. 7. S6: Use Eq.

8 to update the weight matrix W ′
j, (j � 1, 2, 3) and go to S4. If

σ̂201 ≈ σ̂202 ≈ σ̂203, terminate the iteration. S7: Determine the

optimal three-dimensional surface displacement with Eq. 5.

S8: Go to S0 until the points in the studied area are all solved.
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Simulation experiments

The ESISTEM-VCE method is tested and compared with

the ESISTEM method by simulation experiments. The

simulated LOS and GPS displacements are obtained from the

three-dimensional surface displacement under a given fault slip

based on the elastic half-space dislocation theory (Okada,

1985). The model parameters are shown in Table 1, and the

slip distribution is shown in Figure 3A. Figures 3B–D show the

three-dimensional surface displacement with a cell size of

5 km × 5 km. Two InSAR LOS displacements are calculated

from the simulated three-dimensional displacement field with

mean unit vectors, [−0.6058, −0.1776, 0.7753] and

[0.5855, −0.1697, 0.7919] for ascending and descending

ALOS LOS measurements, respectively, based on the InSAR

data for the 2010 earthquake (Figures 3E,F). The spatially

correlated noises with 1 cm standard deviation on a scale

length of 10 km are added to the LOS displacements

(Lohman and Simons, 2005; Luo and Chen, 2016). The black

dots in Figure 3B are the selected points that are assumed to be

GPS stations, and unbiassed Gaussian noises with standard

deviations of 3 and 5 mm are added to the horizontal and

vertical displacements, respectively.

Figure 4 shows the average three-dimensional displacement

fields of 400 tests, which are obtained by Monte Carlo simulation

using the ESISTEM-VCE and ESISTEMmethods, respectively. It

can be found that the derived displacements are both consistent

with the simulated ones. However, the displacements of E-W and

U components from the ESISTEM method are underestimated.

The results from the ESISTEM-VCE method are closer to the

simulated values and smoother than those from ESISTEM

method in three components.

To quantitatively evaluate the performance of both methods,

we use the root mean square error (RMSE)

RMSE �
�����������������[Xsub − X̂sub]2/num√

(sub � e, n, u) (9)

where num is the total number of points, Xsub are the simulated

displacements in three components, and X̂sub are the derived

ones from the ESISTEM-VCE and ESISTEM methods.

Table 2 shows the average RMSEs in three components from

different methods. Meanwhile, Figure 5 displays the RMSEs for

FIGURE 2
The flowchart of the ESISTEM-VCE method.
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400 tests. As expected, the RMSEs of the three-dimensional

displacements from the ESISTEM-VCE method are lower

than those from the ESISTEM method. Compared with the

ESISTEM method, the ESISTEM-VCE method achieves

97.1%, 3.9%, and 84% improvements in three components,

respectively. It is obvious that the RMSE of the N-S

component is larger than those of the E-W and U

components, and the accuracy and improvement are worse

than the other two components. This is mainly because the

LOS displacement is not sensitive to the north-south direction,

and the N-S displacement is mainly constrained by the GPS data.

Furthermore, we assumed that the distance–decaying constants

for the ascending and descending InSAR measurements are the

same as that of GPS measurements in the ESISTEM-VCE method,

which is named ESISTEM-VCE (same d0) method. This method is

used to compare and verify the significance of the different d0 for

different data sets that differ in their spatial scales. The RMSEs are

also listed in Table 2, and the improvements are slightly lower than

those of ESISTEM-VCE method, which shows that the ESISTEM-

VCE performs best. Since the spatial scales of GPS, ascending, and

descending InSAR data are different, it is critical to give them

different distance–decaying constants, which can be supported by

the improvements.

For the ESISTEM-VCE method, the number of RPs is vital

for the accuracy of the method. A random Monte Carlo

simulation with RPs ranging from 10 to 150 was carried out

to assess the performances of the ESISTEM-VCE method. The

behavior of the RMSEs versus the number of RPs is reported in

TABLE 1 Model parameters in the experiments.

Length(km) Width (km) Strike(°) Dip(°) Rake(°)

660 260 16.8 15 116

FIGURE 3
The simulated data used in the simulation experiments. (A) The slip distribution. (B–D) The simulated three-dimensional displacement field
according to the elastic half-space dislocation theory. (E,F) The simulated ascending and descending InSAR displacements.
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Figure 6. As expected, it is possible to see that the RMSEs of all

three components decrease (the accuracies of the methods

increase) with the increase of RPs and tend to be flat. The

RMSEs of the N-S component are also greater than the other

two components, which is consistent with the performance of

Figure 5. Additionally, Figure 6 suggests that, in our simulation

experiments, a good tradeoff between the accuracies and the

number of RPs can be obtained with 50–60 RPs.

Three-Dimensional displacement
field of the 2010Mw 8.8 Maule
earthquake

GPS and InSAR data

We assembled a database of GPS and InSAR observations to

extract the three-dimensional displacement field of the 2010 Mw

FIGURE 4
Solutions of ESISTEM-VCE and ESISTEMmethods for simulation example. The upper row (A-C) is from the ESISTEM-VCEmethod, the low row
(D-F)is from the ESISTEM method.

TABLE 2 The RMSEs for the EISISTEM-VCE and ESISTEM methods.

Method E-W (m) N-S (m) U (m)

ESISTEM 0.103 0.064 0.100

ESISTEM-VCE (same d0) 0.010 0.061 0.020

ESISTEM-VCE 0.003 0.061 0.016

Improvements 97.1%/90.3%a 3.9%/3.9%a 84%/80%a

aImprovements calculated by ESISTEM-VCE, ESISTEM-VCE (same d0) relative to ESISTEM, respectively.

Frontiers in Earth Science frontiersin.org07

Xiong et al. 10.3389/feart.2022.970493

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.970493


8.8 Maule earthquake (Figure 7). The GPS data were obtained

from Tong et al. (2010), Delouis et al. (2010), Vigny et al. (2011),

Moreno et al. (2012), and Melnick et al. (2013). There are

77 stations in total (Figure 7A). The GPS data available prior

to the 27th February 2010 Maule earthquake were collected at

different times before and re-observed within a few days to

months after the event. They were observed on existing

benchmarks installed in the framework of the South American

Geodynamic Activities (SAGA) project, Central Andes GPS

Project (CAP), Concepción Geodetic Activities (COGA)

project (Bevis et al., 2001; Klotz et al., 2001; Moreno et al.,

2011). These GPS data were processed with the GAMIT/GLOCK

software (King and Bock, 2000; Herring et al., 2009) and Bernese

GPS software V5.0 (Dach et al., 2007) to estimate the coseismic

displacement at each station affected by the Maule earthquake.

Detailed information on data acquisition and processing can be

found in the references above.

The ALOS data were from Tong et al. (2010). Nine tracks

(T111-T119) of ascending InSAR data were obtained with the

Fine Beam Single Polarization (FBS) strip-mode (Figure 7B).

Two tracks of descending data were obtained with two subswaths

(T422-subswaths 3–4) of Scanning Synthetic Aperture Radar

(ScanSAR) mode and ScanSAR-FBS mode, and one track (T420)

of FBS-FBS mode (Tong et al., 2010) (Figure 7C). The various

mode SAR data were processed by using the FBS to ScanSAR

software and ScanSAR-ScanSAR processor (Tong et al., 2010) of

GMTSAR software (Sandwell et al., 2008). The unwrapped

interferograms were converted into LOS displacements

composed of 820 and 1112 data points for ascending (the

maximum displacement is 418 cm) and descending InSAR

observations (the maximum negative displacement is 374 cm),

respectively, which are available at ftp://topex.ucsd.edu/pub/

chile_eq/. The more detailed information can be referred to

Tong et al. (2010).

Results and discussions

Figures 8A–F show the three-dimensional surface

displacement fields for the Maule earthquake with GPS and

InSAR data derived from ESISTEM-VCE and ESISTEM

methods. The derived displacement field is in the hanging

wall of the ruptured fault that occurs on the subduction

FIGURE 5
The RMSEs for three components from ESISTEM-VCE and ESISTEM methods with 400 Monte Carlo simulations. The black and green lines
represent the RMSEs of the ESISTEM-VCE and ESISTEM methods, respectively. The subfigures in E-W and U components are partial enlarged view,
respectively.

FIGURE 6
The accuracies (RMSEs) versu the RPs.
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interface, whose strike angle is N16.8°E according to Tong et al.

(2010).

Figure 8A shows that the E-W displacement is dominated by

the seaward movement. The most intense deformation zone is

located to the north of the epicenter, with a maximum value of

495.5 cm near the city of Constitución. The other significant

deformation zone is located to the south of the epicenter, with a

maximum value of 396.2 cm. These two locations are generally

consistent with the large LOS displacements of the corresponding

regions in Figures 7B,C. Meanwhile, these maximum value areas

display that this event ruptured along the north and south

directions, which are consistent with the significant coseismic

slip areas in published slip models (e.g., Tong et al., 2010; Vigny

et al., 2011; Lin et al., 2013).

Compared to the E-W deformation, the magnitude of the

N-S deformation (Figure 8B) is significantly small, and the spatial

distribution is different from the E-W component. For example,

the most significant deformation of N-S is located around the

epicenter, while that of E-W is at the north of the epicenter. The

displacement along the coastline moves southward, with a

maximum displacement of 72.5 cm, while that away from the

coastline moves northward.

The vertical displacement (Figure 8C) demonstrates that

the overall magnitude of displacement is smaller than that in

the E-W component. The displacement ranges from −103.8 to

211.8 cm, and the maximum surface uplift is located south of

the epicenter. Along the coastline, the displacement can be

roughly divided into three areas, the areas corresponding to

the black, red, and blue lines, which is consistent with the

results of Vigny et al. (2011). The north (corresponding to the

black line) and south (corresponding to the blue line) areas

show the surface uplift. The zone of the epicenter reveals the

uplift with displacement lower than 50 cm, which can not be

reflected from the sparse GPS or InSAR observations alone.

Vigny et al. (2011) described that the data near the epicenter of

blue lines (−36.7° to −35.8°) are scarce or lacking. Combined

with the GPS data, InSAR observations could detect more

deformation information that can not be obtained by a single

data source. This implies that the InSAR data can better

complement the GPS data in the extraction of three-

dimensional displacement.

Figures 8D–F present the three-dimensional surface

displacement field from the ESISTEM method. It is

noticeable that the deformation characteristics are similar

to those of the ESISTEM-VCE method. However, the

magnitude of the vertical displacements is underestimated

especially in the north or south of the epicenter, which is

consistent with the situation in the simulation examples. This

should be attributed to the inaccurate weight ratio among the

GPS, ascending, and descending ALOS InSAR data.

FIGURE 7
The distribution of the data set used in this study. (A) The GPS data; the black line denotes the area of three-dimensional displacement to be
estimated. (B) The ascending ALOS LOS displacements. (C) The descending ALOS LOS displacements.

Frontiers in Earth Science frontiersin.org09

Xiong et al. 10.3389/feart.2022.970493

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.970493


To verify that the vertical displacement is underestimated and to

assess the accuracy of our methods quantitatively, we compared the

derived displacements to the land-level changes estimated through

observations of bleached lithothamnioids crustose coralline algae,

submerged quays and piers and flooded beaches, flooded river bars

with submerged and flooded trees, and swampy vegetation (Vargas

et al., 2011). Figure 9 shows the comparison among the vertical

displacements from the field investigation, the ESISTEM-VCE, and

the ESISTEM methods, with their corresponding uncertainties also

given. It shows that the displacements from the ESISTEM-VCE

method are closer to the field investigations than those from

ESISTEM method. The overall uncertainties of the ESISTEM-

VCE method are smaller than those of ESISTEM method. We

obtained the RMSEs between the derived vertical displacements and

field investigations, and they are 32.1 and 44.5 cm for ESISTEM-

VCE and ESISTEM methods, respectively. Compared to the

ESISTEM method, an improvement of 27.9% is achieved by the

ESISTEM-VCE method, which should be attributed to the more

accurate variance and weight estimations of the InSAR and GPS

measurements.

The reliability of the three-dimensional displacement field

obtained by the ESISTEM-VCE method is further verified. The

slip distribution model given by Lorito et al. (2011) is used to

obtain the three-dimensional displacement field from forward

modeling (Figures 8G–I). Compared to Figures 8A–C, we found

that the deformation patterns are consistent with each other near

the epicenter and along the coastline. Whereas, in the area distant

from the coastline, they show some differences, especially in the

N-S component. These differences may be due to different data

constraints and methods used. The results of Figures 8G–I are

derived from the forward modeling with the slip distribution

based on the elastic dislocation theory, in which the fault plane is

divided into 200 subfaults of 25 × 25 km with a large scale.

Nevertheless, the similar deformation patterns suggest that the

derived results from GPS and InSAR data using the ESISTEM-

VCE method are reasonable.

FIGURE 8
Three-dimensional surface displacement field derived fromdifferent data sources. (A–C) Three-dimensional surface displacement field derived
from the ESISTEM-VCE method with all data. In (A), the red rectangles denote the locations of surrounding cities. (D–F) Three-dimensional surface
displacement field derived from the ESISTEMmethod with all data. (G–I) Three-dimensional displacement field from forward modeling with the slip
distributionmodel from Lorito et al. (2011). (J–L) Three-dimensional displacement field derived from the continuous GPS and LOS data with the
ESISTEM-VCE method. (M–O) Three-dimensional displacement field derived from the continuous GPS and LOS data with the ESISTEM method.
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The abundant independent observations are helpful to

extract the accurate and detailed three-dimensional

deformation field. We collected the continuous and campaign

GPS data in this study. As is known to us that the precision of the

continuous GPS data is higher than the campaign ones. To

highlight the importance of campaign GPS data, we retrieved

the three-dimensional deformations only with the continuous

GPS data and LOS measurements using the ESISTEM-VCE

(Figures 8J–L) and ESISTEM (Figures 8M–O) methods.

Figures 8A–F,J–O show that the magnitudes and

characteristics of deformation are quite different, especially in

the N-S components. This should be related to that a few

continuous GPS stations can not sufficiently provide

constraints on the magnitude and trend of deformation and

cannot make up for the insensitivity of LOS measurements to the

north-south component. However, it is observed that the

magnitudes of displacements in Figures 8J,L are closer to

Figures 8A,C than those in Figures 8M,O. This demonstrates

that the VCE method is still capable of determining the accurate

relative weights between GPS and ALOS data sets. It also

manifests that the N-S displacement is mostly constrained by

the GPS observations, and the campaign GPS observations play a

dominant role in the reconstruction of precise three-dimensional

surface deformation.

In addition, the three-dimensional displacement field

derived from the ESISTEM-VCE (same d0) method is

shown in Figure 10, with the distance-decaying constants

for ascending and descending InSAR measurements are

same as that of GPS data. Figure 10 shows a deformation

pattern similar to Figures 8A–C. The RMSE between the

vertical displacements from ESISTEM-VCE (same d0) and

the field investigations is also obtained, which is 35.2 cm.

Compared with ESISTEM method, 20.9% improvement is

achieved. The comparisons of 27.9 and 20.9% show that

FIGURE 9
Comparison among the vertical displacements measured from field investigation, derived from the ESISTEM-VCE and the ESISTEM methods.
The error bars denote the 2σ uncertainties.

FIGURE 10
Three-dimensional surface displacement field derived from the ESISTEM-VCEmethodwith the same distance–decaying constants for GPS and
InSAR data. (A) The east-west displacement. (B) The north-south displacement. (C) The vertical displacement.
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the distance–decaying constants of different data sets should

be considered. This also implies that the ESISTEM-VCE

method is effective.

The predominantly westward horizontal motion reveals that

there existed the right-lateral strike-slip component in the main

rupture region, with the east-west extrusion and north-south dextral

shear. Meanwhile, it shows that the rupture of this event was

bilateral, and propagated to north and south from the epicenter

(Lay et al., 2010; Koper et al., 2012; Yue et al., 2014). The case of

predominantly east-west displacement could also occur in large

subduction zones, such as South America, Japan, or Cascadia

(Grandin et al., 2016). A few minutes after the Maule

earthquake, large tsunami waves hit the coast ranging from

about −39° to −33° (Figure 1). The localized maximum runup of

29 m is located at Constitución, and the runup distribution exhibited

almost a decaying trend along the north with runup heights typically

of 5–10 m (Fritz et al., 2011; Vargas et al., 2011). The magnitude of

displacement decreases from Constitución to the north in the E-W

component, showing a similar trend. The predominant deformation

in the vertical component along the coastline shows an uplift

pattern. These characteristics are coherent with the observations

frombleached lithothamnioids crustose coralline algae (Vargas et al.,

2011) (Figure 9). The three-dimensional displacement could provide

insights into the motion of the tsunami from the similar decaying

trend, and be used to make up for insufficient spatial resolution of

the coastal uplift measured from bleached lithothamnioids crustose

coralline algae or GPS stations.

Conclusion

The three-dimensional displacement field is significant for

understanding the characteristics of the seismogenic fault by

providing enlightenment of the earthquake rupture. This

study develops an improved ESISTEM-VCE method, which

is a tight integration of GPS and InSAR data, to derive the

three-dimensional displacement field. On one hand, the

ESISTEM-VCE method can exploit the spatial correlation

of the displacement among adjacent points and determine

accurate relative weights between different data sets. On the

other hand, the ESISTEM-VCE method can take full

advantage of the information about the precision of the

GPS measurements and the differences of the spatial scales

for different data sets. Thus, the ESISTEM-VCE method can

be applied to derive the three-dimensional displacement

associated with a transient event such as an earthquake.

Simulated experiments are firstly carried out to validate the

method. Then, the accurate coseismic three-dimensional

displacement field of the 2010 Mw 8.8 Maule earthquake is

successfully retrieved for the first time by a combination of

GPS and InSAR data. The comparison with the land-level

changes from the field investigation also validates that the

ESISTEM-VCE method is feasible and valid.
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Appendix A: The ESISTEM method

The linear equation for the ESISTEM method is

d � AX + e

where d is the observation vector

d � ⎡⎢⎢⎢⎢⎢⎣ d1

d2

d3

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ dGPS

dASC

dDES

⎤⎥⎥⎥⎥⎥⎦
and A is the design matrix

A � ⎡⎢⎢⎢⎢⎢⎣A1

A2

A3

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ AGPS

SASCAASC

SDESADES

⎤⎥⎥⎥⎥⎥⎦
the matrices forms of the AGPS, AASC, and ADES are

Aj �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 Δx1
e Δx1

n Δx1
u 0 0 0 0 Δx1

u −Δx1
n

0 1 0 0 Δx1
e 0 Δx1

n Δx1
u 0 −Δx1

u 0 Δx1
e

0 0 1 0 0 Δx1
e 0 Δx1

n Δx1
u Δx1

n −Δx1
e 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 0 0 ΔxN
e ΔxN

n ΔxN
u 0 0 0 0 ΔxN

u −ΔxN
n

0 1 0 0 ΔxN
e 0 ΔxN

n ΔxN
u 0 −ΔxN

u 0 ΔxN
e

0 0 1 0 0 ΔxN
e 0 ΔxN

n ΔxN
u ΔxN

n −ΔxN
e 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (j

� GPS/ASC/DES)
the Sm(m � ASC/DES) in the matrix A is composed of the

projection coefficients that for the ascending/descending

InSAR measurements from E-W, N-S, and U components to

LOS displacement.

And X is the parameter vector

X � [ d0
e d0

n d0
u ε11 ε12 ε13 ε22 ε23 ε33 ω1 ω2 ω3 ]T

where ε and ω representing strain tensor and rigid body rotation

tensor, respectively.
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