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This paper examines the influence of simplified vertical discretization using 50-

to four- layer models and ensemble size on history matching and predictions of

groundwater age for a national scale model of New Zealand (approximately

265,000 km2). A reproducible workflow using a combination of opensource

tools and custom python scripts is used to generate three models that use the

same model domain and underlying data with only the vertical discretization

changing between the models. The iterative ensemble smoother approach is

used for historymatching eachmodel to the same synthetic dataset. The results

show that: 1) the ensemble based mean objective function is not a good

indicator of model predictive ability, 2) predictive failure from model

structural errors in the simplified models are compounded by history

matching, especially when small (<100 member) ensembles are used, 3)

predictive failure rates increase with iteration, 4) predictive failure rates for

the simplified model reach 30–65% using 50-member ensembles, but stabilize

at relatively low values (<10%) using the 300 member ensemble, 5) small

(50 member) ensembles contribute to predictive failure of 22–30% after six

iterations even in structurally “perfect”models, 6) correlation-based localization

methods can help reduce prediction failure associated with small ensembles by

up to 45%, 7) the deleterious effects of model simplification and ensemble size

are problem specific. Systematic investigation of these issues is an important

part of the model design, and this investigation process benefits greatly from a

scripted, reproducible workflow using flexible, opensource tools.
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1 Introduction

Groundwater accounts for approximately 97% of all accessible fresh water, supplies

drinking water for nearly half the world’s population, and accounts for 43% of the global

water consumption for agriculture (Siebert et al., 2010; Guppy et al., 2018). Physically

based numerical models (as opposed to data-driven models such as are used in Ruidas

et al., 2021. or Jaydhar et al., 2022), combined with subsurface properties inferred from

sparse observations can help extend our understanding of groundwater systems (e.g.,

Singh, 2014), providing an essential tool to help inform resource management decisions
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(Jakeman et al., 2016). However, all models require simplification

of real-world properties and processes. Identifying the

appropriate level of simplification for modelling groundwater

systems remains challenging. Appropriate simplification

depends on the intended use of the model (Watson et al.,

2013; Guthke, 2017; White, 2017). We explore this important

issue in the context of simulating groundwater age at a national

scale across Aotearoa/New Zealand, to inform national water

management policy. Note, the objective of the study presented

here is not to provide definitive maps for groundwater age across

Aotearoa/New Zealand, but rather to explore and highlight the

implications of model and methodological simplification on

groundwater age predictions at large scale.

Groundwater age provides a convenient method for

evaluating the potential for groundwater recharge and hence

contamination from recent sources (Sanford 2011; Morgenstern

et al., 2015). The utility of decision support models based on

groundwater age, where “young” groundwater suggests a

potential groundwater contamination risk and “old”

groundwater suggests a smaller component of modern

recharge, would clearly be compromised by the presence of

model structural errors that bias simulated groundwater age

(e.g., Knowling et al., 2020). This study reveals that

predictions of groundwater age can be biased by the inability

to represent parameter complexity with simplified (upscaled)

layering. Due to the relationship between flow depth and

groundwater age, where deeply circulating water is generally

older, the range of ages impacted depends on the depth of these

structural simplifications.

Increased and wide-spread human impacts on climate and

natural resources can warrant national government

consideration and oversight of environmental processes and

resource management activities over larger spatial extents,

often in data-scarce areas (e.g., Regan et al., 2019).

Maintaining national oversite of the effectiveness of policy

requires an understanding of the broad range of natural

processes and resource management activities that affect water

resources extending from the mountains to the sea. This

understanding also includes consideration of interactions

between climate, ecosystems, lakes, rivers, aquifers, land use,

land management, and water allocation.

However, the desire for models with continuous coverage

over large spatial scales presents several modelling challenges: 1)

trade-offs between model resolution and computational burden,

2) upscaling of hydraulic properties to a representative elemental

volume (REV; the volume within which properties are assumed

to be constant to facilitate numerical modelling), 3)

representation of local processes over a large REV (e.g.,

upscaling stream-aquifer interactions), 4) representation of

high variations in permeability (e.g., bedrock–aquifer contacts

which typically form model boundaries in “traditional”

groundwater models), 5) large changes in topography (e.g.,

Southern Alps rising 3,700 km from sea level over 30 km and/

or deeply incised streams), and 6) limited subsurface data makes

characterization of the groundwater system difficult, especially in

areas with complex topography and geology like Aotearoa/

New Zealand. We explore these modelling challenges within

this paper.

2 Background

2.1 Model structure and parameterization
challenges

One of the most fundamental techniques for simplifying

processes and properties in numerical groundwater models is the

subdivision of the model domain into discrete volumes with

representative properties (REV). This requires heterogeneous

and potentially scale dependent properties (e.g., hydraulic

conductivity, porosity) within each REV to be represented by

a single value in each cell. Also, complex processes (e.g., stream-

aquifer interactions) need to be conceptualized and simplified in

a way that allows them to be effectively represented over the

entire cell.

The choice of model discretization provides the underlying

structure to support the parameter representation

(parameterization) of hydraulic properties. It also imposes a

limit on the level of parameterization a numerical

groundwater model can accommodate for history matching

and predictions. Coarse discretization can reduce the

computational burden and may ease the parameter estimation

and inversion process, but it also increases the potential for

structural deficiencies caused by homogenising processes and

properties over larger areas which can bias model results (e.g.,

Wildemeersch et al., 2014; Knowling et al., 2019).

Doherty and Moore (2021) discuss how the model structure,

and the accompanying parameterization approach, need not be

more detailed than is required to make the prediction of interest,

despite resulting in a more abstract (less “realistic”)

representation of hydraulic properties. On the other hand,

parameter compensation resulting from deficiencies in

structural and/or parameterization detail may impose bias in

predictions, especially if those predictions are significantly

different than data used for history matching (Doherty and

Welter, 2010; Doherty and Christensen, 2011; White et al.,

2014; Doherty, 2015). White et al. (2019a) explored the

impact of truncating the vertical representation of a regional

groundwater system, by comparing a 7-layer representation of a

regional aquifer system, with truncated 2- and 4-layer

representations. Knowling et al. (2020), showed that the

inappropriate vertical truncation limited the ability of that

model to assimilate information in tritium data, imposing a

history matching induced parameter and predictive bias.

None of the previous work investigating the impact of model

discretization on prediction uncertainty has specifically isolated
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the influence of vertical discretization/layering while keeping all

other factors the same (e.g., aquifer thickness). This research

specifically focusses on issues associated with using simplified

vertical discretisation approaches to represent complex

parameter fields and its impact on the uncertainty of

groundwater age model predictions after history matching.

We use a paired complex-simple model methodology to

explore the propensity for bias using various vertical

discretisation structures (Doherty and Christensen, 2011;

White et al., 2019a; Gosses and Wöhling, 2019; Knowling

et al., 2019).

In this study groundwater flow is simulated using

MODFLOW and advective transport, used as a surrogate for

age, is simulated using MODPATH (particle tracking). We show

that the inability of the coarse discretization to represent the

appropriate level of heterogeneity during the history matching

process results in model bias when compared to more refined

discretization schemes.

2.2 History matching challenges

Highly parameterized approaches to model inversion can

provide the flexibility to match observations but can also incur a

large computational cost when using finite difference methods,

which require one model run per adjustable parameter to fill a

sensitivity matrix (Jacobian). Here instead we use the iterative

ensemble smoother (IES; Chen and Oliver, 2013) method as

implemented in the PEST++ suite (White, 2018). The IES

method calculates an empirical Jacobian based on an

ensemble of stochastic realizations. The number of realizations

in the ensemble is generally much less than the number of

adjustable parameters, resulting in significant gains in

computational efficiency (e.g., Hunt et al., 2021).

The size of the IES ensemble should reflect the

dimensionality of the solution space (i.e., the extent to which

history matching targets inform various parameters), and

therefore it is problem dependent. Spurious correlations can

compromise parameter upgrade calculations when the

ensemble size is small compared to the number of

independent observations that span the solution space.

Determining the appropriate ensemble size is challenging in

that it depends on the relationship between the history

matching dataset, and the representation of relevant real-

world detail in the model (e.g., discretization or resolution of

the computational grid), the predictions of interest, and the scale

of the processes being simulated. Systematic explorations of this

issue appear to be absent in the literature.

This research explores the size of the stochastic ensembles

used for history matching in IES. Smaller ensembles combined

with simplified model structures compromise the predictive

ability of the calibrated model, despite a simple, synthetic

dataset used for history matching. In some cases, this

compromise is exacerbated as a better fit to the calibration

dataset is sought through more iterations. The automatic

adaptive localization (Luo et al., 2018) option implemented in

PEST++ is shown to improve history matching and prediction.

2.3 Research objectives

In Aotearoa/New Zealand groundwater accounts for nearly

70% of consented freshwater takes and supplies approximately

30% of the population with drinking water (White, 2001;

Rajanayaka et al., 2010). Land use changes over the last 40-

year have resulted in increased groundwater contamination (e.g.,

nitrogen, pathogens, etc) prompting a national scale evaluation

of groundwater resources and threats (Ministry for the

Environment and Stats, 2021). In responses to these changes

the National Policy Statement for Freshwater Management in

New Zealand (NPSFWM) calls for the management of freshwater

in a way that gives effect to Te Mana o te Wai (“the fundamental

importance of water and the recognition that protecting the

health of freshwater protects the health and well-being of the

wider environment”; Ministry for the Environment, 2020).

We present a series of national scale models (approximately

268,000 km2) that simulate groundwater flow and groundwater

age (derived from particle tracking), embracing the extensive

nature of New Zealand’s NPSFWM. These models use the best

available nationwide data and estimates of uncertainty for

groundwater recharge, hydrogeology, and the location of

stream networks. This model represents the spatially

continuous groundwater system in Aotearoa/New Zealand and

a consistent starting point for the development of regional or

local scale models that may include more detailed representation

of the processes of interest. However, the complexity of the

natural world and the spatial extent of this model require

significant abstraction and simplification of many processes.

This simplification is necessary to ensure numerical stability

and reasonable simulation times that enable history matching

and inversion. This study specifically investigates the uncertainty

and bias imposed by simplification of model layering on

predictions of groundwater age.

3 Methods

The models presented herein are designed to evaluate: 1) the

effects of different vertical discretization approaches on

simulations of particle travel times in large scale groundwater

models and 2) the effects of ensemble size on the ability of the

model to match predictions. The model calculates particle travel

times from a surface water source (i.e., stream or rainfall

recharge) to an observation location via backward particle

tracking. We use these particle travel times as an estimate of

groundwater age, which in turn can be used to infer the potential
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susceptibility of groundwater to contamination from recent

surface sources (Stauffer et al., 2005) and estimate sustainable

groundwater recharge rates (McMahon et al., 2011). Vertical

discretization is explored using three layering schemes: up to

50 evenly spaced layers (“complex”model), up to four layers with

fine discretization in the upper layers and a single layer at depth

(“fine”model), and up to four layers with evenly spaced layers at

depth (“even” model). See below for detailed descriptions.

The IES method is used to match model outputs to a

synthetic dataset (i.e., “truth”) using models with alternative

vertical discretization. One realization is chosen from a 300-

member ensemble of the complex model to serve as the truth,

based on the minimum sum of squared differences between the

realization age at each location (agei) and the simulated mean

age at each observation location (agei):

min∑
n

i
agei − agei( )2 (1)

where n is the number of observation locations in gravel and

sand. The realization chosen to represent the truth is removed

from the parameter ensembles used for history matching.

We consider a failure or conflict to occur if the true value of

an observation (plus or minus a representative measurement

noise) falls outside the range of the simulated observation

ensemble. The percentage of locations for which the model

fails to capture the truth (Pf) is the ratio of the number of

observation (parameter) values that fail to total number of

observations (parameters), times 100. This is the same

approach used to identify prior data conflict (PDC) in

PEST++ and requires no assumptions about the shape of the

posterior probability density function (PDF). More thorough

analysis of the PDFs and more precise statistical tests are

warranted to determine criteria for model failure in real world

applications with specific management objectives.

Simulating groundwater age older than the true age

(“overestimation”) represents a failure of the model in a

management context when groundwater age is used as a

proxy for potential contamination from recent sources.

Conversely, simulating groundwater age younger than the true

age (“underestimation”) represents a failure of the model in a

management context when groundwater age is used as an

indicator for the presence of modern recharge, leading to an

overestimate of sustainable aquifer yield and potential for

groundwater contamination. Underestimation and

overestimation Pf generally follow the same trend (see

Supplementary Material; “SM”). We report total Pf for

observations used in history matching, predictions, and

parameters for each model structure–ensemble size

combination. Details for observations, predictions, and

parameters are described below.

3.1 Models

Groundwater models often have finer discretization near the

surface and coarser discretization at depth, reflecting the

availability of data and the desire to represent important

surface boundary conditions (e.g., surface water-groundwater

interactions, recharge, etc) while still meeting reasonable

computation requirements. Coarse discretization reduces the

ability of the model to represent heterogeneity and more

complex flow paths, potentially affecting simulated

groundwater ages. We isolate the influence of vertical

discretization on mean age by presenting a series of equivalent

models where only the vertical discretization, and the

parameterization supported by that discretization, is changed.

As noted above, three versions of a steady-state

groundwater flow and particle tracking model of developed

using MODFLOW v6.2.2 (Langevin et al., 2021) are presented

in this study. MODPATH v7.2.002 (provisional at the time of

writing) was used for all particle tracking simulations. Each

version of the model is produced with the same scripts and

TABLE 1 List of characteristics resulting from the layering approach and parameterization for eachmodel, including simulation times and times for parameter
upgrades using automatic adaptive localization (AAL).

Description Complex Fine Even

North Island Active cells 218,426 111,592 111,068

Number of Parameters 37,087 16,769 16,753

Simulation (minutes) 7.2 3.7 3.9

AAL upgrade (minutes) 27.2 5.4 5

South Island Active cells 321,271 148,597 148,048

Number of Parameters 61,442 25,433 25,379

Simulation (minutes) 14.8 7.0 7.5

AAL upgrade (minutes) 81.5 17.8 17.1
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underlying data. The number of active cells in the

MODFLOW domain and the number of parameters for

each model are reported in Table 1. The model domain and

underlying data are based on Aotearoa/New Zealand.

However this study is designed to explore the trade-offs

between model simplification and predictive ability in the

context of history matching large scale models to age tracer

data, rather than reproduce real-world observations. We use

synthetic data generated by the complex model in order to

isolate vertical discretisation simplification errors from other

sources of error inherent in real-world data (e.g., model

conceptualization, measurement). The high number of

parameters, wide prior parameter distributions, and flexible

boundary conditions ensure a statistically feasible

representation of the real-world system. The results

presented in this study reveal important considerations for

future history matching efforts using real-world data.

The open-source python package FloPy 3.3.5 (Bakker et al.,

2021) was used to construct most of the MODFLOW input files.

The Surface Water Network tool (SWN; Toews and Hemmings,

2019) was used to generate inputs for the Streamflow Routing

Package (SFR2; Niswonger and Prudic, 2005) in MODFLOW.

The PstFrom class (White et al., 2021) in the python package

pyEMU (White et al., 2016) was used to ensure a consistent

approach to representing adjustable parameters, observations,

and predictions between the various models (see

“Parameterization” section below and Supplementary

Material). Additional python package libraries including

NumPy, Pandas, and SciPy were used to pre-process data and

post-process model results.

FIGURE 1
Map of the North Island (A) and South Island (B) of Aotearoa/
New Zealand showing Strahler order four streams and above,
regional boundaries, and hydrogeologic units of interest in this
study (silt, sand, and gravel). Regional boundaries are used for
manual localization in the IES method. Hydrogeologic units of
interest are used to determine locations for history matching
observations and predictions. See Figure 2 for a plan view ofmodel
specifics in the area shown by the red box.

FIGURE 2
Detailed portion of the Aotearoa/New Zealand national
groundwater model showing regional boundaries, hydrogeologic
units, and observation locations (circles) used for history matching
(black boarder) and predictions (no boarder). Observation
depths are show by the colour bar. The red line (A,A9) shows the
location of the cross section shown in Figure 3.

Frontiers in Earth Science frontiersin.org05

Kitlasten et al. 10.3389/feart.2022.972305

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.972305


3.2 Discretization

Each of the model vertical structures explored in this study

represents the same subsurface domain (horizontal and

vertical extents) with a horizontal discretization of 2 km

(Figures 1, 2). The specific depth and thickness of each

layer is dependent on the spatially distributed depth to

hydrogeologic basement (DHGB) as described in

Westerhoff et al. (2019) and the layering scheme (Figure 3).

A minimum layer thickness of 10 m and a minimum model

thickness of 50 m is enforced for all models. The bottom of the

top layer in all models is nominally 10 m below the surface.

Routines in the SWN package that ensure stream reach

elevations progress downstream from high elevation to low

elevation can result in stream bed elevation being significantly

lower than surface elevation, especially in steep terrain. While

this is reflective of the often deep incision of streams in many

parts of Aotearoa/New Zealand, it may require that the

bottom of the surface layer is shifted down to

accommodate the stream. The top of the model is

unchanged to honour the elevation data, resulting in a

thicker upper layer where streams are deeply incised

(Figure 3).

The vertical model structure with a constant vertical

discretization of 10 m and up to 50 layers is used as the

complex version of the system (Figure 3A; “complex”

model). The actual number of layers depends on the depth

of the model (DHGB) and any adjustments to the top layer

needed to accommodate incised channels. Two additional

layering approaches are investigated: 1) a four-layer model

with three thin (nominally 10 m) upper layers and one

deeper layer (Figure 3B; “fine” model), and 2) a four-layer

model with three evenly distributed deeper layers (Figure 3C;

“even” model).

3.3 Boundary conditions

Surface water sources in our models are either distributed

recharge along the top surface of the model representing rainfall

recharge or losing streams. In this study we use the Streamflow

Routing Package (SFR2) which provides a more realistic and

flexible way to simulate streamflow than other packages. For

example, in the RIV package cells with a river boundary

condition essentially act as a general head boundary when the

groundwater head falls below the bottom of the streambed. This

can lead to higher groundwater recharge compared to SFR2 (e.g.,

Foglia et al., 2018), creating higher gradients near streams, and

incorrect simulation of streams as sources. The input data for the

SFR2 package is generated for Strahler order four and above

streams contained in the River Environment Classification

database from the National Institute of Water and

Atmospheric Research (National Institute of Water and

Atmospheric Research, 2019) using the Surface Water

Network (SWN) tool developed by the Institute of Geological

and Nuclear Sciences (GNS; Toews and Hemmings, 2019).

Spatially distributed recharge from the nationwide model of

groundwater recharge for Aotearoa/New Zealand (NGRM;

Westerhoff et al., 2018) is added to the model using the

RCHA package. The NGRM model considers the effects of

precipitation, evapotranspiration, vegetation, topography, soils,

and geology on groundwater recharge. However, overland flow

due to saturation from below (i.e., Dunnian flow) is not

considered in the NGRM model because the groundwater

flow system is not well represented. Dunnian flow is

simulated in our models by applying a head dependent flux

boundary condition to the upper surface of the model using the

drain package (DRN) and routing groundwater discharge to the

surface or rejected recharge in cells where groundwater reaches

the surface to the nearest SFR segment using the mover package

FIGURE 3
Cross-sections of A-A′ shown in Figure 2 illustrating discretization and upscaled hydraulic conductivity values (log(K)) for the (A) complex
model, (B) fine model, (C) even model.
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(MVR). This also prevents unrealistically high groundwater

heads in areas of high recharge and low conductivity. The

general head boundary package (GHB) is used to represent

the edge of the active model domain at the coast. See the

MODFLOW documentation (Langevin et al., 2021) for a

detailed description of these packages.

3.4 Age simulations

Locations of history matching targets and predictions

(i.e., weighted and unweighted observations, respectively) in this

study are limited to areas mapped as sand or gravel in the model,

the materials that make up the most extensive and productive

aquifers in Aotearoa/New Zealand (White P. A. et al., 2019). To

avoid potential boundary effects, coastal boundary cells were

excluded from the observation dataset. A total of

6,970 locations mapped as sand or gravel are randomly selected

as observation locations: 2,056 for the North Island and 4,914 for

the South Island, reflecting the relative abundance of sand and

gravel aquifers on each island (Figure 1). The distribution of

observations also reflects the relative abundance of these aquifer

materials within each region. The mean depth of each observation

is selected from a random distribution between the bottom of the

top layer and either 80 m below the surface or 10 m above the

bottom of the model, whichever is shallower. Observation

locations were limited to 10 m above the bottom of the model

to avoid potential stagnant conditions along the bottom of the

model. The distribution of observation locations per layer for each

model is listed in Supplementary Material. Each observation point

is populated with 100 particles evenly distributed along the surface

of a cylinder with a radius of 10 m and a height of 2 m. Particles are

tracked from the observation location to the source, as determined

by the steady-state flow field and the IFACE parameter in

MODPATH (Pollock, 2012; see below).

Mean age is calculated from the travel times of particles

originating from each location described above. The IFACE

parameter in MODPATH specifies which cell face is

considered the source for each boundary cell. For upper

boundary cells in the RCH package the IFACE parameter is

set to six indicating the source (i.e., zero age) is at the top of the

cell. Abrams et al. (2013) showed that travel times to weak sink

streams in a simple 1-layer model can be accurately simulated if

the bottom of the stream channel is aligned with the top of the

model and IFACE is set to 6 (i.e., the top face of the cell).

However, in the current models where a stream may be incised

hundreds of meters below the surface elevation, using the top of

an SFR cell as the source can result in ages over 100 years higher

than if the bottom of the cell is used (i.e., 0.5 m below the stream

bed). Therefore, we set the IFACE parameter to 0 for all cells with

SFR segment, indicating the source (i.e., zero age) is along the

face of the boundary cell that is first intersected by the particle

path during the backward particle tracking simulation.

3.5 Parameterization

The prior values of horizontal hydraulic conductivity (Kh),

vertical hydraulic conductivity (K33), streambed hydraulic

conductivity (Ksb), drain conductance (Cd), GHB

conductance (Cghb), and porosity (ɸ) for all models are

assigned consistently based on the main rock type in QMAP

(GNS Science, 2012) and representative values found in the

literature. The surface geology is assumed to extend to the

DHGB (Westerhoff et al., 2019), except for units mapped as

silt. Silt deposits are assumed to be 10 m thick and overly gravels

with thickness determined by adjacent deposits. The hydraulic

conductivity and porosity of the gravels overlain by silt is reduced

by 10%. The hydraulic conductivity and porosity of all materials

decrease as an exponential function of depth following

Westerhoff et al. (2018).

Uncertainty for all parameters is addressed using parameter

multipliers over four spatial scales (two scales geostatisical

interpolation, zone multipliers, and layer multipliers; see

Supplementary Material). Model inputs are the product of the

multipliers and the “native” values. The initial value of all

multipliers is one. The limits of each multiplier are reported

in Table 2. The large range in parameter values accommodates: 1)

the potential for inaccuracies in the mapping QMAP hydrofacies

to the model grid, 2) the large uncertainty in hydraulic

conductivity values for geologic materials (e.g., Domenico and

Schwartz, 1998), and 3) the potential for parameters taking on

physically unrealistic values to accommodate structural defects in

the model, including due to averaging properties to

accommodate different discretization approaches. Further

details of model parameterization can be found in

the Supplementary Material.

The PstFrom utility in the pyEMU package is used to create

the interface and input files for the PEST++ suite and generate

the initial parameter ensemble. The parameter ranges are used to

define a wide prior parameter distribution, representing ±3σ. The
PstFrom.draw() method in pyEMU is used to draw an ensemble

of stochastic parameter vectors (realizations) assuming multi-

variate Gaussian distributions. We limit parameter values to

physically realistic and numerically stable values by enforcing

an “ultimate” upper and lower bound for “native” parameter

values via the PstFrom utility (Table 2).

3.6 History matching

Simulated ages from a single stochastic realization of the

complex model is used to define a set of observations

representing the target values (i.e., “truth”). This dataset is free

from real-world complication such as measurement noise and

transience. Since the data were generated by the complex model,

the complex model is endowed with precisely the appropriate

parameter complexity to reproduce the results. This end-member
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case is compared to the simplified models to isolate the impacts of

coarse vertical discretization. History matching to this data using the

complex model shows how small ensembles can bias predictions,

despite using a structurally perfect model.

A random sample of approximately 10% of the

observations on each island are assigned a weight of one

during the history matching process (204 out of 2,056 for

the North Island, 504 out of 4,914 for the South Island). The

other 90% (1,852 and 4,410, respectively) are retained as

predictions with zero weights. This allows us to evaluate

the implications of model simplification and the associated

parameterization on model predictions following history

matching. The number observations used for history

matching in each layer of each model is listed

in Supplementary Material.

The IES method, as implemented in the PEST++ suite, is

used for history matching (White 2018;White et al., 2020;Welter

et al., 2015). The IES method uses an empirical Jacobian matrix

calculated using cross-covariances between ensembles of

stochastic realizations of parameter vectors and simulated

equivalents of historical observations constituting the history

matching dataset. Too few realizations in the ensemble,

compared to the span of the observations which determine

the dimensions of the solution space, can cause spurious

correlations. These spurious correlations for infeasible or

impossible parameter-observation relationships can be “zeroed

out” using localization (see below). The history matching process

in IES can be further improved by using more realizations than

the dimensionality of the calibration solution space to increase

the rank of the empirical Jacobian.

Methods exist for estimating the dimensionality of the

solution space using a high-fidelity, perturbation-based

Jacobian (e.g., Doherty and Hunt, 2009). However, we are not

aware of a similar method for estimating the solution space using

an empirical Jacobian. Practitioners typically use ensembles of

50–150 realizations for parameter estimation. Hunt et al. (2021)

use 300 realizations for a parameter estimation problem with

1,777 adjustable parameters and a diverse set of approximately

30,000 history matching targets to “ensure the solution space was

fully represented and results were free from adverse effects of

ensemble collapse.”Here we test the effects of using ensembles of

50, 100, 150, 200, and 300 realizations for history matching to a

relatively simple dataset using each of the three model variations.

By default, PEST++ identifies prior data conflict (PDC) for

weighted observation when the ensemble of observation values

plus noise does not cover the ensemble of simulated values using

the prior parameter ensemble. Observations with PDC are likely

to cause bias as the history matching process seeks extreme

parameter values to satisfy those observations. In this study, we

retain observations with PDC in order to explore the potential

impact on model predictions.

3.7 Localization

Localization masks spurious correlations between

parameters and observations that can result from the use of a

low-order ensemble. In this study, localization is initially based

on groups defined by the 16 regions in Aotearoa/New Zealand,

the boundaries of which typically follow major watershed

boundaries. This groupwise localization scheme breaks

correlations established between parameters in one region and

observations in another. Zone and layer multiplier parameters

are not included in this level of localization, meaning

observations on a given island can influence zone and layer

multipliers anywhere on that island. This groupwise localisation

is very efficiently defined and implemented within PEST++

(White et al., 2021).

Localization also has the effect of increasing the rank of the

empirical Jacobian used in the IES scheme, beyond that set by the

size of the ensemble. Hence localization can mitigate the effects of

truncation of the solution space if the ensemble size is too small. An

alternative and automated localisation scheme can also be

implemented in PEST++ using “automatic adaptive localization”

(AAL; Luo, et al., 2018; White et al., 2021). AAL attempts to identify

andmask spurious parameter-observation correlations generated by

the stochastic nature of the ensembles for every parameter and

observation pair. This process of localization results in a highly

disjointed Jacobian matrix requiring numerous “local” parameter

upgrade solves, which can become numerically expensive (Table 1).

We explore the effectiveness of AAL using the lowest order ensemble

(50 realizations).

TABLE 2 Values of multiplier parameters, potential for combined multipliers, and native value bounds enforced for each parameter group.

Multipliers Potential Combined Native value Bounds

Name Parameters Initial Max Min Max Min Max Min Units

Conductivity Kh, Ksb, K33 1 10 0.1 10,000 1.0E-04 2000 1.E-10 m d-1

Conductance Cd, Cghb 1 10 0.1 10,000 1.0E-04 2000 1.E-10 m2 d-1

Porosity ɸ 1 3 0.3 81 0.012 0.3 1.E-10 -

Recharge Rp 1 1.5 0.5 2.3 0.25 0.008 1.E-10 m d-1
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4 Results

4.1 Mean phi

In general, model to measurement fits, as summarised by the

mean objective function (phi or the L2-norm), decrease rapidly

within the first three iterations (Figure 4). All three model vertical

discretisation approaches display significant reductions in mean

phi for all ensemble sizes, with all reducing to the same order of

magnitude over six IES iterations. Generally, the simplified

models of the North Island (Figures 4B, C) do not achieve the

same reduction in phi as the complex model (Figure 4A) after six

IES iterations. The simplified models of the South Island (Figures

4E, F) achieve similar values of mean phi as the complex model

(Figure 4D) after six IES iterations. Interestingly the lower order

ensembles often achieve the lowest values of mean phi for all

models. Other than this, there is no apparent relationship

between the rate of decrease and the level of model

simplification or the size of the ensemble. Instead, the

ensemble size and the number of iterations needed to attain a

particular value of mean phi depends on the system being

modelled (e.g., North Island vs. South Island) and the size of

the ensemble. This seems particularly true for the structurally

‘perfect’ complex models (i.e., iteration 2 in Figure 4A and

iterations 2 and 3 in 4D).

The complex models contain the appropriate level of

structural complexity and parameterization to adequately

reproduce the calibration targets and predictions, since this

50-layer model was used to generate the ‘truth’ target

observations using a single parameter vector chosen from the

prior probability distribution. History matching using the

complex models of the North Island results in a mean phi

value that is lower than the simplified models after the third

iteration, regardless of ensemble size (Figures 4A–C). However,

this is not the case for the South Island. History matching of the

South Island model using the 4-layer models produces mean phi

values similar to, and occasionally lower than, the complex model

after six iterations, depending on ensemble size (Figures 4D–F).

The ensembles with 50 realizations and AAL result in the

highest mean phi (worst fit) after six iterations for all models. The

ensemble with 300 realizations also results in a relatively high

mean phi after six iterations for most of the models. Conversely,

the ensemble with 50 realizations results in a relatively low mean

phi after six iterations for most of the models.

4.2 History matching observations

The history matching targets are captured by the prior parameter

ensemble for more than 92% of the weighted observation locations,

for all ensemble sizes and all models (Pf < 8%; Figure 5 iteration 0).

The complexmodel with 300 realizations performed the best in terms

of history matching, with less than 0.5% failure for all iterations

(Figures 5A, D). The highest prior failure (PDC) occurs with the 50-

realization ensembles (2% < Pf < 8%; Figure 5, iteration 0), except for

the complex model of the South Island (Pf = 0.2%; Figure 5D). The

history matching process with 50 realizations and no AAL

significantly increases the percentage of history matching

FIGURE 4
Plots of mean phi with iteration for the complex models (A,D), simplified fine models (B,E), and simplified even models (C,F) of the North Island
(A–C) shown in Figure 3 (columns). Different ensemble sizes used in the IES history matching are shown by the colours.
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FIGURE 5
Percent failure (Pf) by iteration, ensemble size, and model structure for history matching targets (weighted observations) for the complex
models (A,D), simplified fine models (B,E), and simplified even models (C,F) of the North Island (A–C) and South Island (D–F). Ensemble sizes are
indicated by colours.

FIGURE 6
Percent failure (Pf) by iteration, ensemble size, and model structure for predictions (unweighted observations) for the complex models (A,D),
simplified fine models (B,E), and simplified even models (C,F) of the North Island (A–C) and South Island (D–F). Ensemble sizes are indicated by
colours.
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observation locations for which the model fails to capture the truth

(Pf >15%), except for the structurally perfect complex models.

We can isolate the influence of structural errors from the history

matching process by examining the percent failure at iteration 0 in

Figure 5 for all model structures. This corresponds to prior data

conflict (PDC) reported by PEST++. The PDC suggests structural

defects in the fine model affect the North Island (Figure 5B) more

than the even model (Figure 5C), while the opposite is true for the

South Island (Figures 5E, 6F, respectively). The structural defects in

the simplified models implied by the PDC are compounded through

the history matching process, resulting in higher model failure rates

with more iterations. This is particularly true using 50 realizations

without AAL. The simplified models of the South Island with

50 realizations and no AAL have higher percentage of failure than

the simplified models of the North Island for any given iteration,

reaching 37.6% and 24.7% failure, respectively.

The ability to capture the true value of the history matching

dataset is improved with AAL. The failure rate of the predictions

after six iterations using the structurally perfect complex models

using 50 realizations with no AAL is 7.6% for the North Island

and 8.6% for the South Island; this is reduced to 3.2% and 2.4%,

respectively, using AAL.

4.3 Predictions

The predictions are captured by the prior parameter

ensemble for more than 86% of the locations, for all ensemble

sizes and all models (Pf < 14%; Figure 6 iteration 0). The complex

model with 300 realizations performed the best in terms of

prediction (Figures 6A, D), with less than 0.7% failure for all

iterations, with no systematic change in prediction failure rates

over iterations. The history matching process significantly

increases prediction failure for all other models, particularly

when using 50 realizations without AAL. Similar to the

history matching targets, the simplified models of the South

Island (Figures 6E, F) with 50 realizations and no AAL tend to

have a higher percentage of failure for predictions than the North

Island (Figures 6B, C), reaching 43.6% and 63.3%, respectively.

The ability to capture the true value of predictions is

improved with AAL. The failure rate of the predictions after

six iterations using the structurally perfect complex models and

50 realizations with no AAL is 28.8% for the North Island and

23.3% for the South Island; this is reduced to 10.4% and 6.1%,

respectively, using AAL.

4.4 Parameter estimation: Prior and
posterior distributions

The three model structures presented here support

different levels of parameterization at depth, making it

difficult to make direct comparisons of individual

parameter adjustments for each model during the history

matching process. However, for a single model structure we

can examine how parameter ensembles of different sizes

FIGURE 7
Probability density functions for hydraulic conductivity multipliers for the (A) complex model and (B) fine model of the South Island. The prior
PDF for 50 realizations is shown in light blue with stipples. The mean of the posterior PDF for 50 realizations (blue), 50 realizations with AAL (red), and
300 realizations (yellow) ensembles are shown by vertical lines.
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morph from prior to posterior through history matching in

different ways.

Figure 7 provides an example of this for hydraulic

conductivity multipliers from the complex (A) and fine

(B) models of the South Island. After six iterations the

history matching process with the complex model

maintains a broad PDF using 300 realizations (Figure 7A

yellow, 10-0.38–100.4) and 50 realizations with AAL

(Figure 7A red, 10-0.12–100.28). These PDFs encompass

the initial value of unity and hence still represent the

initial value of hydraulic conductivity in native parameter

space. However, using 50 realizations without AAL

(Figure 7A solid blue) shows a narrower PDF that does

not encompass the initial value of unity (100.11–100.24)

despite achieving a lower value of phi. The posterior PDF

does still fall within the prior PDF (Figure 7A, blue with

stipples).

After six iterations the history matching process with the

fine model shows similar behaviour using 300 realizations

and 50 realizations with AAL (Figure 7B). However, the even

the structurally complex model with a small ensemble

without AAL shows a much narrower PDF that falls

outside the prior PDF. This example illustrates how small

parameter ensembles can result in collapse of the posterior

parameter PDF. It also demonstrates the role of large

ensembles and localization to prevent ensemble collapse.

Figure 7 also shows how structural defects can corrupt the

posterior PDF as parameters take on surrogate roles that

accommodate for the missing parameters as model output to

measurement matches are sought.

5 Discussion and conclusions

The numerical experiments described in this paper focus

on the predictive performance implications of adopting

structurally simple models and history matching with

reduced ensemble sizes. The implications of the results of

these experiments are considered in a decision support

modelling context that relies on groundwater age

simulations at a national scale. For this specific decision

support context, we adopted a similar paired complex and

simple model approach as documented in Doherty and

Christensen (2011), Knowling et al. (2019), White et al.

(2019a) and others. This method assesses the performance

of simpler model structures in relation to a complex model

structure. In synthetic experiments such as are documented

in this paper, this complex model structure can represent the

nominal “truth”, for the purposes of the study.

5.1 Model to measurement fits and
predictive performance

On the basis of model to measurement fits, as summarised by

the mean objective function (phi), one might consider in some

cases that the simplified models is as effective as the complex

model for simulating the system, e.g., the South Island simplified

models examples. At first glance it may also appear that low

realisation numbers are more than sufficient for conditioning

parameters to system observations. However, the higher

prediction failure rates (Pf) of the simplified models are not

consistent with how well the model was able to fit the data (as

reflected by the associated mean phi values). Many of the

configurations that produce the best fits, or lowest mean phi,

also produce the highest prediction failure rate.

The implications of good fits being a poor indicator of good

predictive performance are not well understood in the larger

modelling community. The demonstration of this issue in this

paper is consistent with the recent discussions in Hunt et al.

(2021) and Doherty and Moore (2021) in a numerical physically

basedmodelling context, and Ruidas et al. (2021) in a data-driven

modelling context. The interplay of predictive performance with

model structural errors and ensemble size is discussed below.

5.2 Model structural errors and predictive
performance

The predictive failure results relating to the 4-layer models

conflate structural deficiencies with those arising from

inadequate ensemble size. However, because the 300-

realisation ensemble can be inferred to span the solution

space (Hunt et al., 2021; Doherty and Moore 2019), the

predictive impact from structural deficiencies can be isolated

when exploring the 300-realisation ensemble results. Prediction

failure occurs because the simplified (coarse) vertical

discretization inhibits the ability of the model to represent the

hydraulic property heterogeneity that occurs with depth; this

heterogeneity places controls on groundwater flow paths and

hence groundwater age. This simpler structure therefore

compromises the ability of the model to process information

from the history matching observations to the model parameters

in a way that adequately informs the predictions, as evidenced by

the higher prediction failure rate of the simplified models

compared to the complex model.

The predictive performance of simplified models and smaller

ensemble sizes is problem specific, as illustrated by differences in

the geological contexts of the two models; the North and South

Island models. In general, the South Island has more extensive
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and deeper gravel aquifers than the North Island. As such,

parameters in the simplified models of the South Island

represent parameters lumped over a greater depth interval.

We observe that the greater the extent of parameter lumping

(or upscaling), the greater structural related prediction errors will

be, wherever predictions are sensitive to the hydraulic property

detail that has been obscured by the lumping process.

5.3 Ensemble size, number of history
matching iterations and predictive
performance

History matching using smaller ensembles (particularly those

without AAL) significantly increases failure for both history

matching targets (phi) and predictions (Pf). This is evident for all

versions of vertical model structures examined. These results again

emphasise that good model to measurement fits are an insufficient

criterion for predictive model efficacy, as described above.

The results also show that there is an increase in model

predictive failure rate through history matching iterations for all

discretisation versions, and across all ensemble sizes, except for

the complex models with the 300 realizations ensemble, which

remains below 1% over all iterations. This trend is especially

evident in the simplified models and where the ensemble size is

small. The 300-realization ensembles consistently provide the

minimum predictive failure trend in all models, reaching a fairly

constant value of 10% in the simplified models after the first few

iterations. This indicates that the history matching process

involving simpler models and/or inadequately sized

ensembles, is forcing parameters to take on surrogate roles

that can lead to parameter and predictive bias (Doherty and

Moore 2019; Knowling et al., 2019).

This becomes clearer when examining the complex model

with 300 realizations, for which we can assume that there is no

structural model error, as the structure is the same as the ‘truth

model’. For this complex model, because history matching does

not appear to incur any increase in predictive failure, we can also

assume that the 300 realizations sufficiently span the solution

space. Therefore, the history matching and predictive ability of

the complex model presented is compromised only by rank

deficient Jacobian matrices associated with smaller ensembles.

This effectively allows us to isolate the impact of deficiencies in

model structure from those resulting from the history matching

implementation with a rank deficient Jacobian. These rank

deficiency related errors result from the smaller ensembles

and hence insufficient dimensions in parameter space to

realistically convey predictive error, i.e., some parameter

combinations that the observations and predictions are

sensitive to are not well represented in the smaller ensembles.

Localisation methods can address this to varying extents by

increasing the rank of the Jacobian matrices. The automatic

adaptive localization (AAL) was demonstrated to reduce

model failure, which becomes more extreme with smaller

ensembles. This is as it should be as AAL provides a method

for mitigating the impacts of adopting small ensembles to some

extent, which is a compromise that is often made when model

run times are larger as discussed in Chen and Oliver 2017. This

mitigation is achieved by removing spurious correlations from

the parameter update calculations. It is this process that helps to

guard against failure to capture the true values of both history

matching targets and predictions. However, it should be noted

that using AAL can incur a significant computational cost due to

the potentially disjointed Jacobian.

5.4 Implications for design of large-scale
groundwater age models

Results in this study suggest simplified layering schemes

appropriate for large, national scale models may produce

adequate results, provided large enough ensembles are used.

However, history matching with simplified models and small

ensembles is likely to produce unacceptably high failure rates.

Acceptable model simplifications and adequate ensemble size is

problem specific, as illustrated by the difference between the

North and South Island models. This study suggests a reasonable

combination of model simplification and ensemble size may be

identified by a stable failure rate of weighted observations with

iteration, as seen with the 300-realization ensemble for all models

presented. In contrast, increasing failure rate of weighted

observations with iteration, as seen in the lower order

ensembles and simplified models, suggests a concomitant

increase in prediction failure rate.

Finally, we note that while other national groundwater

models exist (Döll and Fiedler, 2008; De Lange et al., 2014),

the development of a national groundwater age model, which to

the authors knowledge is a world first in terms of scale, represents

an extensive modelling effort. This type of development includes

the running of numerous numerical experiments as part of the

model design process, one of which is documented in this paper.

The number of moving parts is enormous, and the cognitive load

of a modeller is limited, and hence we believe that this effort

would likely not be possible without adopting a scripted

modelling workflow that spans task ranging from model

discretization to highly parameterized inversion (Leaf and

Fienen 2022). This workflow benefits enormously from the

existence of opensource software packages and the community

that contributes to their development and maintenance (Bakker

et al., 2021; White et al., 2016; White et al., 2021).
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