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Ancient landslide has strong concealment and disturbance sensitivity due to its

special geotechnical mechanical characteristics, and it is the potential hazard

that cannot be ignored in human activities andmajor engineering planning. The

quantitative assessment of ancient landslide reactivation risk has becomemore

necessary for pre-disaster scientific warning. However, because the

mechanisms of deformation and damage during the evolution of ancient

landslides are quite complex, traditional landslide risk assessment methods

only select the single-time scale and relatively stable environmental factors for

analysis, lacking consideration of dynamic triggering factors such as rainfall.

Focusing on the complexity, a quantitative enhanced assessment for ancient

landslide reactivation risk considering cross-time scale joint response

mechanism is proposed. First, on the basis of systematic analysis of the

implicit genesis mechanism and explicit characterization, an evaluation

system of the cross-time scale joint characteristics of ancient landslide

reactivation is constructed. Then, XGBoost algorithm and SBAS-InSAR are

used to establish the long-time scale developmental evolution mechanism

model and the short-time scale dynamical trigger model, respectively.

Subsequently, we propose a cross-time scale joint response mechanism.

The information entropy weight method is applied to calculate the

contribution degree of long-short time scale assessment models for ancient

landslide reactivation based on the constraints of quantitative interval

thresholds, and the assessment processes of different time scales are

dynamically and quantitatively correlated. Finally, the updated optimization

of the assessment of ancient landslide reactivation risk is achieved. In this

research, experimental analysis was carried out for ancient landslide groups in a

geological hazard-prone area in Fengjie County, Chongqing, a typical

mountainous region of China. The results of the comparative analysis

validate the superiority of the method in this paper. It helps to accurately

OPEN ACCESS

EDITED BY

Jianhong Xia,
Curtin University, Australia

REVIEWED BY

Huisheng Yu,
Northeastern University, China
Bao-Jie He,
Chongqing University, China

*CORRESPONDENCE

Xiao Xie,
xiexiao@iae.ac.cn

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing,
a section of the journal
Frontiers in Earth Science

RECEIVED 21 June 2022
ACCEPTED 12 September 2022
PUBLISHED 05 January 2023

CITATION

Yang Z, Wu T, E C, Xie X, Tan L and
Jiang X (2023), A quantitative enhanced
assessment for ancient landslide
reactivation risk considering cross-time
scale joint response mechanism.
Front. Earth Sci. 10:974442.
doi: 10.3389/feart.2022.974442

COPYRIGHT

© 2023 Yang, Wu, E, Xie, Tan and Jiang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 05 January 2023
DOI 10.3389/feart.2022.974442

https://www.frontiersin.org/articles/10.3389/feart.2022.974442/full
https://www.frontiersin.org/articles/10.3389/feart.2022.974442/full
https://www.frontiersin.org/articles/10.3389/feart.2022.974442/full
https://www.frontiersin.org/articles/10.3389/feart.2022.974442/full
https://www.frontiersin.org/articles/10.3389/feart.2022.974442/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.974442&domain=pdf&date_stamp=2023-01-05
mailto:xiexiao@iae.ac.cn
https://doi.org/10.3389/feart.2022.974442
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.974442


assess the ancient landslide potential hazard in advance, providing scientific

basis and technical support for the risk assessment of mountainous watershed

geological hazards and major engineering projects.
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ancient landslide, reactivation risk, quantitative assessment, cross-time scale joint
response mechanism, SBAS-InSAR, China

1 Introduction

Ancient landslide is a slope that has suffered one or more

slides which has the deformation trend and potential reactivation

risk (Wang S. B. et al., 2021). The reactivation risk of ancient

landslides is the probability of slide and occurrence again, due to

the influence of environmental and human triggering factors.

(Luo et al., 2021; Huang et al., 2022; Xu et al., 2022). Related

works indicate a certain path dependency of the dynamic

evolution of ancient landslides in time series, which implies a

high probability of landslides re-occurring in unstable areas

where landslides have occurred before, and these will produce

more severe disasters (Samia, 2018; Hu et al., 2022). Therefore,

early ancient landslides are potential hazards for human

engineering activities, and the precise analysis of the stability

condition of ancient landslides and the quantitative assessment

of the risk of re-landslides are of vital significance for the safety of

people’s lives and properties and scientific disaster prevention

and mitigation (Xu et al., 2019; Zhu et al., 2019).

Currently, many researches around landslide risk assessment

have been mentioned and expected to be applied in reactivation

risk assessment of ancient landslide. These studies can be

classified into three categories according to the methodological

focus: 1) the method of landslide risk assessment based on expert

experience including fuzzy logic method (Zhu Q. et al., 2021),

fuzzy comprehensive evaluation (Gu et al., 2012) and analytic

hierarchy process (Das et al., 2022). Zhu T. T. et al. (2021) used

fuzzy logic method to analyze landslides and obtained the results

of landslide environmental factor characteristics and landslide

susceptibility. However, such methods are susceptible to the

influence by experts’ subjective experience, the accuracy of the

analysis results is difficult to guarantee. With the rapid

development of earth observation technology, many scholars

have proposed 2) the method of landslide risk assessment based

on data. The methodmainly applies rich observation data such as

GNSS, remote sensing and In-SAR to extract information on the

spatial and temporal variation of landslides, and then

quantitatively analyzes the landslide risk (Li et al., 2021; Zhu

Q. et al., 2021; Bondur et al., 2022). In-SAR technology has the

advantages of all-day, high precision and large range, which can

obtain continuous surface deformation information of a certain

area at the scale of centimeter or even smaller (Bondur et al.,

2021). Wang N. Y. (2019) used the In-SAR technique to extract

landslide deformation points and calculate deformation rates

based on multi-period data as a way to classify the degree of

landslide susceptibility. Ciampalini et al. (2016) and Yhokha et al.

(2018) capture the signal of accelerated surface deformation and

the phenomenon of local slow deformation in the early stage of

landslide, and then analyze the distribution and development

pattern of landslide hazards and conduct risk assessment (Huang

et al., 2020; Yan et al., 2021). Rott and Nagler (2006) and Dong

et al. (2018) used In-SAR data to analyze landslides and have

demonstrated that the In-SAR technique is a reliable approach to

improve landslide identification and monitoring. Especially the

small baseline subset interferometric synthetic aperture radar

(SBAS-InSAR) proposed by Italian scholar Berardino et al.

(2002), the precision of its surface deformation monitoring

can reach millimeter level, which has a significant superiority

in landslide deformation monitoring research ((Lanari et al.,

2007; Zhao et al., 2019; Yang, 2020; Zhang et al., 2022). It has

been proved that such observation data can well reflect the real

state of landslide, but how to further analyze the deformation

trend is still a problem. For this problem, 3) the method of

landslide risk assessment based on Machine Learning (ML) is

mentioned. The use of logistic regression, random forest (Liu

et al., 2018; Sun, 2019), artificial neural network (Polykretis and

Chalkias, 2018; Sevgen et al., 2019; Hua et al., 2021), support

vector machine (Kalantar et al., 2018; Yu et al., 2019), BP (back

propagation) neural network and decision tree (Wang N. 2019)

for integrated analysis of multiple landslide causal factors to

improve the accuracy of landslide assessment analysis. The

machine learning method can support the comprehensive

analysis of multiple influencing factors, which can more

effectively solve the problem of non-linear relationship

expression. Moreover, it might achieve better generalization

capabilities due to powerful study strategies (Tien Bui et al.,

2016). In particular, XGBoost is a type of decision tree model that

optimizes classification performance by combining multiple

weakly predictive models into a high-accuracy ensemble,

following the steepest gradient along a differentiable loss

function (Friedman, 2001; Friedman, 2002). The XGBoost

algorithm has been preferred by many researchers to fit

models with well-documented speed and high predictability

for the training dataset, which has already achieved superior

results in classification and regression prediction in several fields

(Li and Liu, 2019; Pham et al., 2021; Wang R. et al., 2021).

Furthermore, some scholars have also adopted it for landslide

susceptibility mapping and surface deformation monitoring

(Zhao et al., 2018; Stanley et al., 2020). Zhang et al. (2020)

noted that the accuracy of XGBoost in identifying landslide
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points was as high as 91.27%, well above the random forest

algorithm, which indicates that the XGBoost algorithm has a

high accuracy in landslide research. Chakraborty et al. (2019)

used XGBoost to analyze the spatial distribution characteristics,

genetic mechanisms and development environments of landslide

hazard points in the study area, and demonstrated that it can

support information mining of potential associations of landslide

features (Chen and Guestrin, 2016), producing regular and

generalizable results of landslide hazard environment

characteristics.

However, the reactivation process of ancient landslides is

very complex, it can be broadly divided into potential creeping

and apparent activation process. In the creep process, the

environmental conditions in which the ancient landslide is

located remain relatively unchanged for a long time, as the

basis for breeding hazards, its influence is impossible to

ignore; when the ancient landslide is strongly triggered by

rainfall or earthquake in short time, it will suddenly produce

obvious deformation and reactivation. The existing methods fail

to accurately and quantitatively assess the risk of ancient

landslide reactivation due to a lack of comprehensive

consideration of the environmental and triggering factors,

which can easily lead to problems such as randomness, bias

and blindness in the assessment results. Therefore, it is necessary

to consider the effect of disaster-triggering factors in a short

period of time on the basis of environment influence over a long

time and then establish more stable and reliable risk assessment

models.

Aiming at the above problems, this paper proposes a cross-

time scale joint enhanced quantitative assessment method of

ancient landslide reactivation risk. Firstly, a landslide factor

system including long-time scale and short-time scale factor

was established based on the reactivation process

characteristics of ancient landslides. Then, XGBoost is used to

analyze the long-scale factors and extract the deep environmental

feature evolving for a long time, while SBAS-InSAR is used to

extract the deformation feature of ancient landslide under the

action of short time-scale factors. In particular, a cross-scale joint

mechanism constrained by quantitative thresholds is proposed to

fusion different scales features, and the results of the ancient

landslides reactivation risk assessment using a single scale were

updated. Finally, we analyzed the ancient landslides area in

Fengjie, Chongqing, China, which can not only improve the

assessment accuracy but also identify the potential risk. This

method provides an effective way for prevention of ancient

landslide reactivation. This paper is organized as follows.

Principle of Mechanism Section presents the Principle of

Mechanism of the study, including the cross-time scale joint

quantitative enhanced assessment model, and its modeling and

analyzing process. The study area and data for modeling on

analytical framework are viewed in Materials Section, then

presents the modeling process of study area in Modeling

Process Section and Results and Analysis Section discusses the

experimental results. Finally, the conclusions are presented in

Conclusion Section.

2 Principle of mechanism

2.1 Overview

Regarding to the difficulty of traditional methods to

comprehensively consider the characteristics of the disaster-

causing factors at different time scales. This paper

innovatively proposes a quantitative enhanced assessment

mechanism of ancient landslide reactivation risk jointly across

time scales, which can jointly analyze landslide evolution

characteristics at long-time scale and dynamical trigger

characteristics at short-time scale. The assessment of complex

ancient landslide reactivation risk based on establishing a

dynamic quantitative correlation between the two scale

processes, and finally achieving a risk assessment results

consistent with the ancient landslide reactivation mechanism.

The schematic principle flowchart of this method is shown in

Figure 1, and the specific steps include:

1. First, this paper constructs a cross-time scale joint feature

evaluation system for ancient landslide reactivation. Divides

the causing factors into different single-scale categories

according to the temporal characteristics of the factors

based on the full consideration of the short-term

dynamical triggering process and long-term developmental

evolution of ancient landslide deformation.

2. Then, the adaptation analysis model was determined based on

the evaluation factors of different time scales, and the

quantitative risk assessment of the ancient landslide area

was carried out in long-short scales separately. In which,

the XGBoost is used to excavate the deep-seated disaster-

generating characteristics and deformation damage

mechanism of the long-time scale factors and to calculate

the spatial-temporal probability of landslide re-occurrence.

The SBAS-InSAR technique is used to invert the landslide

surface deformation state and intensity based on short-time

scale dynamical triggers.

3. Particularly, a cross-time scale joint response mechanism based

on quantitative interval thresholds is then proposed to

dynamically and quantitatively correlate the assessment

processes of different time scales to achieve the updated

optimization of the reactivation riskiness of ancient landslides.

The information entropy weight method is used to calculate the

contribution degree of long-short time scale assessment models

for ancient landslide reactivation based on the constraints of

quantitative interval thresholds, and the optimal weights are

assigned separately and the assigned assessment models are

nonlinearly superimposed jointly to obtain updated results on

the riskiness of ancient landslide reactivation.
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FIGURE 1
Overall flowchart of the cross-time scale joint quantitative enhanced assessment model.
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2.2 Cross-time scale joint feature
evaluation system

The landslide reactivation mechanism is particularly

complex, and the effect of the reactivation characteristic

factors on the deformation and damage of the internal

structure of the ancient landslide varies with spacetime,

showing a nonlinear and unsteady character. Moreover, the

ancient landslide is dramatically influenced by external

dynamic triggers such as heavy rainfall and sudden changes in

reservoir water level. The triggers that induce secondary disasters

at key nodes are kinetic and strong, resulting in a dynamic and

random short-term activation process of residual landslide

deformation.

In this study, the spatial-temporal characteristics of

ancient landslide disaster-causing environments were

generalized by considering the economic applicability of

factor data and historical geography. Based on the

principles of systematicity, representativeness, hierarchy

and operability, the cross-time scale joint feature evaluation

system of ancient landslide reactivation is constructed

(Figure 2).

1 long-time scale feature evaluation factor sets: the feature

factors of the disaster-generating environment with low

correlation are identified, including deep geological factors

(faults, stratum), topographic and geomorphological factors

(slope, aspect, DEM, NDVI), human engineering factors

(roads), and hydrological factors (river systems), which can

be used for the study of ancient landslide susceptibility in

long-time scales.

2 short-time scale feature evaluation factor sets: for the

dynamic triggers that induce reactivation and their

characteristics, rainfall and reservoir water level changes

were identified as the influencing factors on short-time

scales. Among them, rainfall, as a force majeure

contingency, is the most important factor to induce

landslide deformation in the short term.

2.3 Cross-time scale joint response
mechanism

Reactivation mechanisms and tendency are frequently

correlated with historical disaster-causing environments

strongly, leading to a trend for landslides to occur in areas

where landslides have already occurred. And ancient

landslides also show strongly reactivation characteristics under

the combined effect of seasonal rainfall and periodic reservoir

water level changes (Liao et al., 2016). Therefore, the assessment

of the reactivation risk of ancient landslides requires the analysis

of the response characteristics of the action of short-term

dynamical triggers based on the full consideration of long-

term regional environmental impacts. To address the above

problems, this paper constructs a cross-time scale joint

response mechanism based on quantitative interval thresholds.

Combining the information entropy theory to correlate the

assessment processes of different time scales dynamically and

FIGURE 2
Selection rules for cross-time scale factors.
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quantitatively, which can systematically couple the implicit

mechanism and explicit characterization of ancient landslide

development and evolution. In-depth analysis of the temporal

correlation characteristics existing between long-term disaster-

inducing conditions and sudden dynamical triggers, finally

achieve the updated optimization of ancient landslide

reactivation riskiness.

Step1: Regional rainfall is seasonal, sudden and diverse, and

different intensity of rainfall will lead to different degrees of

surface deformation and landslide displacement, which will in

turn affect the evolutionary process of ancient landslide

reactivation in a sudden manner. Therefore, we screen the

interval threshold of high intensity of surface deformation

subject to rainfall effects with a high landslide susceptibility

level based on the wet season for the construction of the joint

response mechanism across time scales. To take into account

factors at different scales and stages, the joint constraints are

expressed formally by wet season (WS), surface deformation

(SD) and landslide susceptibility (LS) triads:

C � ({WS}, {SD}, {LS})

The quantitative interval thresholds set in Table 1 are

adopted as the constraints for optimizing the entropy method

model. (Where, ST = stability threshold, IST = instability

threshold, NWS= non-wet season, sus. = susceptibility, Vlos

denotes the surface deformation velocity in the line of sight

direction).

Step2: This paper quantifies the degree of importance of

long-short time scale evaluation models for ancient landslide

reactivation based on information entropy theory combined with

the above joint constraints, as a weighted joint basis for single

scale models. Of which, it is crucial to abstract the long-short

time-scale assessment model into information factors and use the

information entropy weight model to quantitatively calculate the

contribution of both. The optimized entropy weight method

model was regarded as the basis for updating the risk of ancient

landslide reactivation.

The information entropy weight method is a means to

determine objective weights, which measures the weights of

influencing factors of different scales according to entropy

value and the degree of discreteness between evaluation

indicators. The entropy value is negatively correlated with the

information entropy, and the information entropy can reflect the

amount of information among the indicators, which is suitable

for the study of complex relationships and correlation

characteristics among factors of different scales (Yang and

Qiao, 2009). The information entropy weight method has

been widely used to determine the weight index of natural

hazards, including comprehensive environmental evaluation of

natural processes such as landslides and debris flows (Yang and

Qiao, 2010; Pourghasemi et al., 2012). The information entropy

weight method is calculated by the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WEi � 1 − Ei∑n
i�1(1 − Ei)

Ei � − 1
ln k

∑k
j�1
pij ln(pij)

pij � FRij

∑k
j�1FRij

(1)

whereWEi is the weight, Ei is the information entropy, and FRij

is the landslide frequency ratio of the jth graded category under

the ith influencing factor. The larger value of weight WEi, the

greater the amount of information in the single-scale evaluation

model, the greater the contribution of this evaluation model to

the development of ancient landslide reactivation, and the

condition is favorable to the occurrence of ancient landslide

reactivation either.

Step3: The contribution of the single-scale model calculated

by the optimized entropy weight method model is used as the

weight, and the nonlinear weighted superposition of the long-

short time scale evaluation results is carried out to achieve the

cross-time scale joint assessment of the reactivation probability

of ancient landslides.

3 Materials

3.1 Study area

The experimental area adopted in this study is the

geographical range between 109°1′17″ and 109°45′58″ east

longitude and 30°29′19″ and 31°22′23″ north latitude, which

is located in the northern part of Fengjie County, Chongqing

(Figure 3, China’s administrative zoning map is derived from the

TABLE 1 Constraints on the construction of the joint response mechanism.

Stability WS SD LS Constraints

ST wet season SD1= {|Vlos|≤10 mm/year} LS1 = {sus. ≤ Low} C1 = {WS, SD1, LS1}

IST non-wet season SD2= {|Vlos|>10 mm/year} LS2 = {sus. ≥ Moderate} C2 = {NWS, SD2, LS2}
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department of natural resources standard map service website

(http://211.159.149.56/index.html), whose figure number is: GS

(2020) 4632).

Fengjie County is a mountainous area in the eastern part of

the Sichuan Basin, which is a geological disaster-prone area in

the Three Gorges reservoir area of China. The terrain of

Fengjie is undulating and the geological conditions are

relatively fragile and it has abundant rainfall and high

intensity of short-term storms. The entire area is severely

affected by sudden changes in rainfall and reservoir levels

throughout the year, leading to increasingly frequent landslide

hazards caused. According to statistics, more than

1,000 landslides have occurred in the region since 1970,

including 952 ancient landslides that were revived by the

rainfall. Meanwhile, the relevant departments have

deployed a large number of landslide monitoring

instruments and obtained a large amount of data.

Therefore, the conditions in the region are suitable for

exploring the risk of ancient landslide reactivation at

different time scales for research validation.

3.2 Data used for modeling

3.2.1 Dataset of influencing factors of ancient
landslide reactivation

This paper collects the characteristic data on the disaster-

causing factors of ancient landslides in Fengjie County, involving

surface topography and geomorphology, deep geological

structure, hydrology, and human engineering activities, for

conducting risk assessment analysis of ancient landslide

reactivation in the study area.

Data sources include:1) 30 m resolution DEM data 2) 2.5 m

resolution slope and aspect data 3) 1:200,000 vector geological

map for extracting information on stratum and faults 4) 1:

5,000 national geo-monitoring data for extracting data on

roads and river systems 5) 30 m resolution Landsat 8 satellite

digital products for extracting normalized difference vegetation

index (NDVI) 6) Monthly precipitation generated by processing

China Surface Climate Information Daily Value Dataset V3.0

7) 952 ancient landslide points, contained in the 2018 historical

landslide dataset, for analysis of the distribution status and

patterns of historical landslide sites. Other primary data

information is shown in Table 2.

3.2.2 SAR images
Single Look Comple (SLC) SAR image data in

Interferometric Wide (IW) mode from the Earth observation

satellite Sentinel 1A are acquired in this study. 46 Sentinel-1A

ascending orbital data covering the study area from January

2018 to December 2019 are selected for SBAS-InSAR processing

to analyze the surface deformation characteristics ancient

landslide at short time scales. In addition, Sentinel 1A has

good baseline control and shorter revisiting times (12 days),

which accumulates a large amount of high-precision radar image

data in a relatively short period of time and can obtain time-

domain continuous surface deformation characteristic

information through its phase information (Huang et al.,

FIGURE 3
Location of the study area.
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2020). Sentinel 1A has been widely used in the fields of ground

subsidence monitoring and landslide deformation monitoring.

At the same time, the surface runoff and infiltration generated

during the rainfall process are quite prone to the reactivation of

larger-scale ancient landslide, so we specifically selected SAR

image data containing before and after the wet season to extract

information on the landslide surface deformation generated

during this period.

4 Modeling process

4.1 Long-time scale developmental
evolution mechanism model

Ancient landslide reactivation is generally the

consequence of coupled deep-surface multi-factors. The

deformation and damage mechanism during the long-term

development and evolution of ancient landslides is relatively

complex with numerous deformation influencing factors. This

study combines the basic geographic conditions of the

experimental area and the knowledge pattern of ancient

landslides to summarize and analyze the response pattern

of long-time scale feature evaluation factors to the regional

disaster environment and the mechanism of ancient landslide

development and evolution. By quantifying the influence of

spatial-temporal effects of historical observation data on deep

geological conditions (e.g. faults, geological rock formations,

etc.) and topographic and geomorphological conditions (e.g.

slope, aspect, NDVI, etc.) during the development of ancient

landslides, we hierarchically quantify the magnitude of the

probability of occurrence of the ancient landslide reactivation

hazard. In this research, the XGBoost model was adopted to

construct the long-time scale developmental evolution

mechanism model for ancient landslide susceptibility

evaluation.

4.1.1 Preparation of the sample dataset
In this research, landslide units and non-landslide units

formed the sample dataset for the experiment, and the

landslide units consisted of 952 historical landslide events. We

finally chose a ratio of 1:10 to construct non-disaster negative

sample points after several experiments (Sun et al., 2021).

Moreover, in order to select truly “non-landslides” as closely

as possible, the 500 m buffer zone of historical landslide points

and major river system were avoided. Subsequently, the multi-

source heterogeneous experimental data were pre-processed

spatially, including data format and spatial reference

unification. Since there were two types of continuous and

discrete in the evaluation factors of ancient landslide

reactivation features, they were quantified by classification or

discretized by grading in order to unify the model inputs,

respectively. The final processed sample data is a two-

dimensional array of 10474×8 (10474 is the number of

samples and 8 is the number of features) with element values

of 0 or 1, where 1 is for landslide samples and 0 is for non-

landslide samples.

4.1.2 XGBoost for landslide susceptibility
evaluation

XGBoost is a high-efficiency integrated learning algorithm

based on decision trees. In this algorithm, the stepwise forward

additive model is adopted to reduce the risk of overfitting by

optimizing the structured loss function, and multiple preferred

weak learners (decision trees) are combined to accomplish the

learning task and thus achieve a superior classification model

(Sahin, 2020; Can et al., 2021; Stanley et al., 2021). With the

addition of the regularization term, the algorithm will select a

simple and well-performing model. The regularization term at

the right end of the loss function is designed to suppress

overfitting of the weak learner in each iteration, but is not

involved in the integration of the ultimate model. The

objective function of XGBoost is as follows:

TABLE 2 Data and data sources.

Data Data sources Resolution

DEM SRTM data 30 m

Slope Chongqing Geomatics and Remote Sensing Center 2.5 m

Aspect

Stratum Chongqing Municipal Bureau of Land and Resources 1：200000

Faults

Roads National Geographic Monitoring Data 1：5000

River system

NDVI Landsat 8 30 m

Precipitation China Surface Climate Information Daily Value Dataset V3.0

Landslide inventory Chongqing Geomatics and Remote Sensing Center

SAR images NASA Alaska Satellite Facility 20 m
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L(t) ~−∑n
i�1
[l(yi, y

Λ(t−1)
i ) + gift(xi) + 1

2
hift(xi)2] + Ω(ft) (2)

Where t denotes the number of iterations, yi represents the

actual value, yΛ(t−1)
i is the predicted value in round i − 1,

∑n
i�1l(yi, y

Λ(t−1)
i ) represents the prediction error in round

t − 1, ft(xi) is the weight of the ith sample classified to the

leaf where it is located in the tth round, ft denotes the tree model

generated in the tth round. Optimal solution ωj and objective

function value Otof the objective function in the form of a

quadratic function:

ωj � − Gj

Hj + λ
(3)

Ot � −1
2
∑T
j�1
( G2

j

Hj + λ
+ γT) (4)

where j represents the leaf node, T represents the total number of

leaf nodes, γ and λ denote the pre-designed hyperparameters. Let

∑
i∈Ij

gi � Gi, ∑
i∈Ij

hi � Hi, and Ij be the set of samples on the jth

leaf. Substituting it into the optimized above equation. Then the

loss function in the process of modeling the evolutionary

mechanism of ancient landslides on long time scales is:

J(f)t � ∑n
i�1
(yi, y

Λ(t−1)
i + ft(xi)) + Ω(ft) + C

Ω(ft) � γTt + 1
2
λ∑T
j�1
ω2
j (5)

where xi denotes each data point, Tt is the number of leaf nodes

in the tth iteration, and wj is the weight of leaf node j.

In this work, the processed long-time scale feature evaluation

factor data are used as the input of the XGBoost model, and 70%

of the sample data are extracted for training the model and 30%

are applied for prediction to verify the model accuracy using the

random selection and 5-fold cross-validation methods. Then, on

the basis of XGBoost algorithm, a long-time scale evolution

mechanism model was established to quantitatively calculate

the spatio-temporal probability of the reactivation of the

ancient landslide development process. Eventually, the

FIGURE 4
Landslide susceptibility map based on XGBoost.
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obtained ancient landslide susceptibility maps were reclassified

into five classes using the quantile method: very low

susceptibility, low susceptibility, moderate susceptibility, high

susceptibility, and very high susceptibility (Figure 4).

4.2 Short-time scale dynamical trigger
model

Since the dynamic evolution of ancient landslide reactivation

hazards are remarkably influenced by external dynamic-induced

factors such as heavy rainfall and sudden changes in reservoir

water level, the process of transforming ancient landslides from

stable to unstable states is extremely short. However, the

triggering factors do not simply obey the relevant laws of

mathematical statistics in spacetime. When the ancient

landslide has a tendency of peristaltic deformation in the long

time series development and evolution, the cumulative

displacement of the ground surface will show “stepwise”

sudden changes in a short time series under the influence of

external dynamics factors. Single-scale static long time series

analysis is unable to simply obtain the correlation characteristics

between dynamic triggers and landslide deformation. The

amount of information on the spatial and temporal evolution

of landslide hazards based only on data-driven landslide

susceptibility analysis is relatively one-sided and lagging, and

is prone to the problem of underfitting and overfitting of risk

assessment analysis results, which directly affects the accuracy

and reliability of ancient landslide reactivation risk

assessment. Therefore, this study uses SBAS-InSAR

technology to establish dynamic correlations of short-term

kinetic trigger processes, and generalize and analyze the

dynamic triggers (e.g., heavy rainfall, reservoir level

changes) that induce the ancient landslide reactivation at

key nodes of developmental evolution. To establish a short

time-scale kinetic trigger model to cope with the shortage of

short-term triggers such as suddenness and randomness.

Finally, a short-time scale dynamical trigger model is

established to overcome the shortage of short-term triggers

such as suddenness and randomness.

4.2.1 SBAS-InSAR technique
SBAS-InSAR acquires the surface deformation time series by

the least squares method and performs temporal fitting with

singular value decomposition (SVD), which effectively improves

the temporal resolution of monitoring. Further, the minimum-

parametric least-squares value of the surface deformation rate

between image sequences is sought (Berardino et al., 2002). The

basic principle of SBAS-InSAR is as follows (Figure 5):

The M-scene SAR images of the same region are acquired in

the time period from t1 to tM, and one of them is selected as the

main image, and then the N-scene interferogram is generated

according to the principle of interferometric combination, which

satisfies the following relationship:

FIGURE 5
Processing flow of SBAS-InSAR technology.
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M

2
≤N≤

M(M − 1)
2

(6)

The interferometric phase produced at the point (x, r) for the

i (i=1, 2, ..., N) view interferogram generated from the master

image A and the image B can be expressed as:

Δφi(x, r) � φA(x, r) − φB(x, r)
≈Δφi

def(x, r) + Δφi
ε(x, r) + Δφi

α(x, r) (7)
+Δφi

noi(x, r)

where tA, tB (tA > tB) are the SAR image acquisition times

corresponding to the ith interferogram, Δφi
def(x, r) is the

deformation on the slope distance corresponding to the

moment from tB to tA, Δφi
ε(x, r) is the topographic phase

error, Δφi
α(x, r)is the atmospheric phase error, Δφi

noi(x, r) is

the noise phase error. Supposing that the deformation rate

between different interferograms is vi,i−1, the cumulative

deformation from tB to tA can be expressed as follows:

Δφi
def(x, r) �

4π
λ

∑tA,i
k�tB,i+1

(tk − tk−1)vk,k−1 (8)

Finally, the phase unwinding of the interferograms of N SAR

images can obtain the deformation rates of different SAR images

at the acquisition time.

4.2.2 Surface deformation analysis based on
SBAS-InSAR

In this study, the surface displacement and deformation

velocity in the line of sight direction (Vlos) of the

experimental area were finally measured by SBAS-InSAR

technique using Sentinel1-A ascending orbit images through a

series of processing such as connection graph generation,

interferometric workflow, orbit refinement and re-flattening,

deformation inversion and geocoding. The line-of-sight (LOS)

direction average surface deformation velocity distribution map

for Fengjie from January 2018 to December 2019 was classified

FIGURE 6
Average deformation velocity in the line of sight direction.
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into five classes (Figure 6). The velocity here is obtained by

dividing the total amount of deformation by the total time span.

Related studies have shown that Vlos between -10 and 10 mm/

year indicates that the slope is in a state of weak deformation and

the probability of landslide is smaller, when Vlos>10 mm/year or

Vlos< -10 mm/year indicates that the slope is in a state of highly

active deformation (Wang, 2021). Consequently, the threshold

value for the quantitative interval of deformation velocity for the

joint response mechanism across time scales in this study is

|Vlos| >10 mm/year. A positive rate means that the surface is

moving close to the satellite along the line of sight (LOS)

direction of the radar satellite, which is usually considered as

a surface uplift movement, on the contrary, a negative rate is

considered as a landslide subsiding downward.

4.3 A cross-time scale joint quantitative
assessment model for ancient landslide
reactivation risk

In this section, based on the above joint response mechanism,

a cross-time scale joint enhanced quantitative assessment model

TABLE 3 Results of the information entropy weight method.

Information entropy weight method

Item Information sEntropy value Information utility value Weights

Long time scale evaluation model 0.996 0.004 0.439

Short time scale evaluation model 0.995 0.005 0.561

FIGURE 7
Landslide risk map based on joint response mechanism.
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for ancient landslide reactivation risk is developed. First, the

single-scale quantitative assessment model was reclassified into

five classes separately. In which, the interval threshold of surface

deformation instability is |Vlos| >10 mm/year. Then, the entropy

weighting method based on the joint constraints of quantitative

interval thresholds was used to calculate the degree of

contribution of the long-short time scale evaluation model for

the ancient landslide reactivation, and a weight of 0.439 was

assigned to the evaluation result of XGBoost model and 0.561 to

the evaluation result of SBAS-InSAR model, respectively. The

weighting results are shown in Table 3. The nonlinear joint

mapping of the two assessment models with optimal weights was

carried out in the GIS platform, and the optimized and update

results of the ancient landslide reactivation risk were finally

displayed, as shown in Figure 7.

5 Result and analysis

5.1 Experimental results

A cross-time scale riskiness map of ancient landslide

reactivation based on the joint response mechanism with

constraints is derived. After setting the quantitative interval

threshold, the optimized entropy weight method calculates the

optimal weight to minimize the density of historical landslides in

very low and low susceptibility areas and maximize the density of

historical landslides in high susceptibility areas. Compared with

the landslide susceptibility map, the ancient landslide

reactivation risk map is consistent with the geospatial

characteristics of historical landslide occurrence, fixing the

overfitting and underfitting that occurred in the data

processing. The refinement of landslide susceptibility using

surface deformation data enables the assessment results to be

more realistic, objective and reliable, making the evaluation

results of ancient landslide reactivation risk more reasonable

(Figure 8). Consequently, the optimized landslide reactivation

risk map has absolute stability and relatively high precision.

5.2 Analysis and discussion

5.2.1 Local comparison of evaluation models on
long-time scale and cross-time scale

From the optimized riskiness map of ancient landslide

reactivation, we found that the very-high-risk areas are mainly

distributed in a band pattern on both sides of the Yangtze River

and its major tributaries. This area has an extremely large

number of ancient landslides, with 572 ancient landslides

points, accounting for more than 60% of the ancient

landslides in the study area. The ancient landslides occurring

in the area are mainly influenced by the erosion of the Yangtze

River and its tributaries by washing. The lithology is mainly soft

rocks such as the Middle Triassic Badong Formation, and the

joint action of stratum and geological structure has formed a

penetrating soft zone, which provides favorable conditions for

the occurrence of ancient landslide reactivation disasters. After

the Three Gorges Reservoir was fully impounded, the long-term

action of groundwater due to rainfall exacerbated the deep

deformation of the reservoir bank slopes, leading to many

apparent historical landslide events over a long time series.

The high-risk area is mainly located on both sides of the river

and on both sides of the very high-risk area, which is also

distributed in a band pattern, with 278 landslide points. Other

FIGURE 8
Landslide maps at different scales. (A) Long-time scale landslide susceptibility map (B) Cross-time scale landslide risk map.
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FIGURE 9
Comparative maps of typical areas at different scales. (A) Long-time scale landslide susceptibility map (B) Cross-time scale landslide risk map.
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risk areas are distributed in patches throughout the study area,

and there are fewer landslides developed in these areas. The joint

cross-scale landslide riskiness maps generally exhibited a higher

degree of riskiness than the long-scale landslide susceptibility

maps, which was caused by fusing SBAS-InSAR surface

deformation monitoring results (Figure 9). As a result, this

technique can effectively reduce the possibility of false

negatives in long-scale models and extremely improve the

precision of risk assessment.

Furthermore, in this section, the spatial superposition

analysis of the optimized updated results of the ancient

landslides reactivation risk and the distribution of historical

landslide disaster points is carried out. Also making a

comprehensive statistic of the area ratio, landslide ratio and

landslide frequency ratio of zoning. From the statistical results

(Table 4), it can be seen that the landslide ratio and landslide

frequency ratio increase with the increase of zoning class. Among

them, 92 and 98% of the historical landslide hazard points fall in

the medium-risk area and above of the landslide susceptibility

map and the cross-time scale landslide riskiness map,

respectively. More of the occurred ancient landslide events fall

in the medium-high risk area, indicating that the overall

accuracy of the optimized and updated landslide riskiness

map is greatly improved. Of these, 18.18% of the very high

susceptible zone area covers 56.99% of the historical landslide

hazard sites, and 22.46% of the very high-risk zone area covers

60.15% of the historical landslide hazard sites, with an

increase in both the area of the zone and the number of

ancient landslides that have occurred. The frequency ratio of

landslides in the low-susceptibility area and the low-risk area

are both less than 1. The updated landslide risk map only

accounts for 1.79% of the ancient landslide hazard points and

the density of ancient landslides is extremely low, indicating

that ancient landslide hazard points are concentrated in the

optimized medium-high risk zone. The results of landslide

risk assessment in this experimental study area can better and

realistically reflect the spatial distribution of the occurrence of

ancient landslides, and fully verify the reliability and validity

of the cross-time scale joint response mechanism.

However, the single-scale landslide susceptibility map has steep

landslide frequency ratio curves in the high andvery-high susceptibility

areas with large leap order standard deviations, and the smoothness

and reasonableness of the zoning results are insufficient. The ancient

landslide reactivation risk map fixes the overly varying landslide

frequency ratio of the susceptibility map, making the data more

smooth and more stable and with higher preciseness (Figure 10).

The experimental results indicated that the joint results of the SBAS-

InSAR technology-based ground deformation evaluation model and

the XGBoost model-based landslide susceptibility evaluation model

obtained based on the cross-time scale joint response mechanism

could indeed update and improve the sensitivity of ground

deformation and optimize the final risk assessment results, making

the evaluation results of the model more reasonable and convincing.

5.2.2 Overall analysis of evaluation models on
short-time scale and cross-time scale

The experimental results showed that the average surface

deformation and surface deformation velocity in the study area

varied significantly in the short time series after the beginning of

wet season (Figure 11). Before the wet season (Feb 2018–April

2018), the surface deformation changes were relatively stable, the

deformation displacement of the slope was mainly within the

range of −14.1–18.4 mm, and the minor deformation means

lower probability of ancient landslide reactivation. However,

by plotting of monthly precipitation and surface deformation

against time for the study area in 2018 (Figure 12), we can clearly

observe that: The monthly precipitation in May reached its peak

throughout the year. Starting from the intense wet season (May

2018–September 2018), with the increase of accumulated rainfall,

the geological environment was greatly affected by the change of

water level, which led to an ever-increasing amount of both

surface uplift and subsidence, and the magnitude of displacement

increased with rainfall intensity. Particularly, the surface

deformation increased to the range of −56.7–56 mm in

TABLE 4 Statistical results of landslide susceptibility zoning and risk
zoning based on cross-time scale joint response mechanism.

Class Susceptibility
zoning

Risk zoning

L% A% FR L% A% FR

Very low and low 7.47 42.59 0.17 1.79 23.51 0.08

Moderate 12.83 20.21 0.63 8.83 26.17 0.34

High 22.71 19.02 1.19 29.23 27.86 1.05

Very high 56.99 18.18 3.13 60.15 22.46 2.68

Where, L= Landslide ratio, A= Area ratio, FR (Landslide frequency ratio) = L/A. FIGURE 10
Statistical chart of area ratio, landslide ratio and landslide
frequency ratio. Where, SLR = susceptibility landslide ratio, RLR =
risk landslide ratio, SLFR = susceptibility landslide frequency ratio,
RLFR = risk landslide frequency ratio.
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September, and the accumulated deformation displacement added

to the maximum. As a result, the risk of ancient landslide

reactivation has also been increased throughout the region due to

a sharp and extremely rapid increase in surface deformation

triggered by major external triggering factors such as rainfall,

resulting in a particularly large area of high and very-high risk areas.

Comparing the updated optimized cross-time scale model and

short-time scale model in temporal and spatial dimensions, the

following summary can be drawn: 1) Temporally, during the non-

wet season, the surface deformation changes less and most areas

should show non-sensitive characteristics. However, during the wet

season, when cumulative rainfall increases from May to September,

the surface deformation increases sharply and areas of increased risk

are widely distributed over the study area, with a consequent

enhancement in the probability of ancient landslide reactivation. 2)

Spatially, the areas of surface deformation are mainly distributed

around rivers and special geological formations. Especially after the

rainfall, the sudden change of reservoir water level may also be an

important influencing factor for the ancient landslide reactivation. As

the reservoir water level rises, the rapid deformation of the reservoir

bank landslide under the action of pore water pressure, and the

influence range of reservoir water fluctuation increases accordingly,

leading to the rising risk of reactivation of ancient landslide. At this

point, the contribution of the long-time scale factor water system is

relatively larger. The very-high risk area of the ancient landslide

reactivation requires focused attention from decision makers.

FIGURE 11
Partly surface deformation in short-time series in 2018.

FIGURE 12
Monthly precipitation and surface deformation in the study
area plotted against time in 2018.
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6 Conclusion

In this study, the XGBoost algorithm is used to excavate

the deformation damage mechanism during the long-term

evolution of the ancient landslide, and the surface

deformation inversion by SBAS-InSAR technique is used to

clear the potential sensitivity of some area in landslide.

Compared with the conventional model, the enhanced

assessment based on cross-time scale joint response

mechanism highlights the risk classes improved by the

surface deformation velocity, and the classification of

landslide riskiness is more accurate, realistic and reliable. It

is specifically reflected in the follows:

1) From the perspective of extracting the significant hazard, the

false negative of each landslide susceptibility class is reduced

by more than 20% based on cross-time scale joint response

mechanism. It indicated that t the cross-time scale joint

response mechanism can effectively update the risk level

and reduce misreporting and omission, which has

outstanding advantages for avoiding false negatives.

2) From the perspective of extracting the potential hazard, the results

of landslide risk assessment based on cross-time scale joint

response mechanism show that about 18.18% of the area is

updated to a high risk level. It indicated that the cross-time

scale joint response mechanism can capture the signal of

accelerated ground deformation before the ancient landslide

reactivation, improve the risk level of landslides characterized

by ground motion.

3) From the perspective of model scalability and migratability, the

reactivation of ancient landslides is not only significantly

associated with rainfall, but also with short-scale factors such as

earthquakes and reservoir rise-fall. Combining this information

based on cross-time scale joint responsemechanism canmake the

assessment results more accurate in different environments.

Consequently, we believe that the cross-time scale joint

enhanced quantitative assessment method of ancient landslide

reactivation risk may be a more effective method to assess the

potential riskiness of secondary landslides, and can be applied to

landslide mapping and quantitative risk management on a

regional scale, which is of great value for effective land use

management and project planning.
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