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In recent years, with the emergence of new artificial intelligence (AI) technology

and more observational data from automatic meteorological stations, radars

and satellites, the deep learning has very broad application scenarios in the

context of meteorological big data. The deep learning has powerful data

learning ability and feature capturing ability of complex structures, which has

now occupied an important position in the meteorological field and also

become a hot topic in meteorological research. Especially, AI has shown

great potential advantages in image recognition, which can provide new

ideas and new directions for typhoon monitoring and forecasting. In this

study, the data used include the typhoon best track data set provided by the

China Meteorological Administration and the Himawari-8 and FY4 satellite

image data from 2005 to 2020. We use the deep learning model to conduct

the typhoon vortex identification, the determination of typhoon location and

intensity, and the detection of typhoon intensity mutation with AI techniques.

The main research content includes a typhoon vortex identification model

based on deep image target detection, an intelligent typhoon intensity

determination model based on image classification and retrieval, and a

typhoon rapid intensification identification model. Then, a typhoon

intelligent monitoring and forecasting system is constructed. The results

show that the system can correctly identify typhoon vortices above the

strong tropical storm grade in a percentage of 88.6%. The mean absolute

error (MAE) and Root mean square deviation (RMSE) of typhoon intensity

estimation are 3.8 m/s and 5.05 m/s, respectively, and the comprehensive

accuracy of rapid intensification estimation of annual independent samples

reaches 92.0%. The system is capable of performing the automatic

identification, location and intensity determination, and intelligent tracking of

tropical cyclones in real time by using high spatial and temporal resolution

satellite images. This studymay help further improve the operational techniques

for typhoon monitoring and forecasting.
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1 Introduction

Typhoon disaster is one of the natural disasters with the

highest frequency and the most serious impact in the world

(Chen et al., 2004, 2006; Duan et al., 2020). China is located on

the west coast of the Pacific Ocean. The coastal provinces affected

by typhoon activities are densely populated and economically

developed, and are also the most vulnerable to typhoon disasters

(Chen, 2010; Xu et al., 2010; Zhang et al., 2010;Wu et al., 2017). It

poses a serious threat to the socio-economic development of

China (Lei et al., 2009; Duan, et al., 2012, 2014). In particular,

with the global warming, the probability and proportion of

typhoon enhancement in the Northwest Pacific are on the rise

(Emanuel, 2005; Webster et al., 2005; Wu et al., 2022). The

increase of typhoon intensity and strong typhoon frequency and

the low moving speed result in a longer impact time and stronger

intensity of landing typhoons. The hazards brought by typhoons

are gradually increasing, leading to more casualties and property

damage. Moreover, the prevention of typhoons is becomingmore

and more difficult. With the rapid development of artificial

intelligence (AI), as a means of artificial intelligence, machine

learning has been proved to become a new method to overcome

the bottleneck of typhoon prediction (Chen and Chavas. 2020).

To be specific, the machine learning is used to conduct the fusion

of satellite data, radar data and numerical model outputs, so as to

improve the forecast performance on typhoon intensity and wind

field structure (Chen and Chavas. 2020).

Moreover, the deep learning has also been gradually applied

in the assessment and prediction of typhoon intensity. Wimmers

et al. (2019) used the convolutional neural network to estimate

typhoon intensity based on satellite cloud pictures. Wang et al.

(2015) predicted TC (Tropical Cyclone) intensity according to

the artificial neural network. Baik and Paek (2000) used the back-

propagation (BP) algorithm to optimize the multilayer

perceptron Multi-layer Perceptron (MLP) network and

established a 12–72 h forecast model on TC intensity in the

Northwest Pacific. Through the application of the

multidimensional predictors same as the multiple linear

regression model (MLR), the average error of MLP model is

reduced by 7%–16% compared with that of MLR model.

Chaudhuri et al. (2013) also used MLP to predict typhoon

intensities. They used the variables such as central pressure,

maximum sustained surface wind speed, pressure drop, total

atmospheric ozone column and sea surface temperature as the

input matrix of the model, and found that the minimum

prediction error of the model is 4.07%. Since the intensity

variation of typhoon can be considered as a time series, the

recursive neural networks (RNN) can be used in the modeling of

temporal dynamic behavior. Pan et al. (2019) constructed

24–48 h prediction models by using RNN. The model has a

better performance in reducing the final error compared to the

traditional dynamic model. The average error is 5.1 m s−1 for 24 h

prediction and 6.7 m s−1 for 48 h prediction. Chen et al. (2019)

established a convolutional neural network and a long short-term

memory neural network model, which focused on the spatio-

temporal correlation of atmospheric and oceanic variables. The

error of this model is smaller than those of some existing

numerical models, statistical models and traditional machine

learning methods. In addition, Jin et al. (2020) studied the

relationship between remote sensing data and TC intensity,

and developed a “ring segmentation method” to extract

satellite data features. Then, using a gradient enhancement

model-XGBoost model, they established a typhoon intensity

prediction model for the South China Sea based on FY-2

satellite data, environmental data and typhoon best track

dataset. Generative adversarial networks combined with long

and short-term memory networks are used to solve the problem

of satellite cloud-image sequence prediction (Xu et al., 2019). A

research group from the Japan Agency for Marine Research and

the Kyushu University jointly developed a method to identify

tropical depression clouds with high accuracy from the Global

Cloud System Resolution Model climate experiment data. The

method can identify the signs a week before the occurrence of

tropical depressions in the Northwest Pacific Ocean in summer.

Meanwhile, it can predict typhoon paths and intensities, and the

occurrence of heavy rainfall (Matsuoka et al., 2018). Further

studies have shown that deep learning algorithms can also be well

integrated with model forecast data. Hurricane-WRF is a widely

used typhoon forecast model in numerical simulation studies,

and its forecast output can be well integrated with feedforward

neural networks (FFNN) for TC intensity prediction, especially

for the typhoons with rapid intensification (Cloud et al., 2019).

The output meteorological analysis field from the global forecast

system (GFS) can drive the Bayesian model to conduct TC

intensity prediction (Schaffer et al., 2020).

In order to improve typhoon monitoring and forecasting

capabilities and serve national sustainable development and

disaster prevention and mitigation, this study chooses several

AI-based deep learning models based and applies them in

operational typhoon monitoring and forecasting. The models

include a typhoon vortex identification model based on deep

image target detection, an intelligent typhoon intensity

determination model based on image classification and

retrieval, and a typhoon rapid intensification discrimination

model based on spatio-temporal sequence features. Based on

the aforementioned models, a whole set of AI-based typhoon

monitoring and forecasting system is proposed in this study. In

the next two sections, both data and models are described
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followed by the design and applications of AI-based system in

Section 4. The problems of the current AI techniques in typhoon

monitoring and forecasting applications and the outlook of

future work are discussed in the last section.

2 Data

The TC data used in this paper include the best track dataset

from 2005 to 2021 (http://tcdata.typhoon.org.cn/zjljsjj_sm.html)

provided by Shanghai Typhoon Research Institute, China

Meteorological Administration. This data set includes the

position of TC once every 6 h, the lowest central air pressure,

the maximum wind speed near the center, etc. The Himawari-8

satellite data from 2005 to 2017 were selected as the training set,

the satellite data from 2018 as the validation set, and the FY4A

satellite data from 2019 to 2021 as the test set. The horizontal

resolution of the satellite cloud map is 0.05°. Based on the best

typhoon path information compiled by the Shanghai Typhoon

Research Institute of China Meteorological Administration, a

400 × 400 pixel cloud map (about 2000 × 2000 km) of the

typhoon center at the corresponding moment is intercepted,

and the sample labels are labeled according to the real typhoon

intensity in the best path as the training set of deep learning data

samples (15730 cloud maps in total).

3 Brief introduction of deep learning
models

In order to build an artificial intelligence-based typhoon

monitoring and forecasting system to achieve automated and

objective localization, intensity determination and intensity

trend discrimination of tropical cyclones, this paper mainly

selects a typhoon vortex identification model based on deep

image target detection, a typhoon intelligent intensity

determination model based on image classification and

retrieval, and a typhoon fast enhancement discrimination

model incorporating spatio-temporal sequence features.

3.1 Vortex recognition model based on
deep image target detection

3.1.1 Methodology
Using the satellite cloud map and the best typhoon path

information to construct a large sample annotated data set, the

classical target detection SSD (Single Shot MultiBox Detector)

model with fast operation and high recognition accuracy in the

field of artificial intelligence is used as the base model for typhoon

vortex recognition, and the model is modified to propose an

iterative SSD target detection model for the uniqueness of

typhoon vortex recognition, especially the difficulty of weak

vortex recognition (Figure 1). SSD model of target detection is

a one-stage multi frame detection model. Because of its fast

running speed and high recognition rate, SSD model is the most

widely used basic model of target detection at present. SSDmodel

adopts the method of multi-scale feature mapping, using six

convolution blocks with different scale sizes to convolute images

with different scales, so as to detect target objects with different

sizes. The satellite raw data is converted into a disk map, and the

disk map is cropped into an 1800*1800 area image according to

the area to be monitored, and the 1800*1800 area image is labeled

with data to perform vortex recognition and localization of the

cloud map by the model of the trained SSD.

According to the best typhoon track data, the images are

marked one by one. Firstly, we read the best track file, get the list

of files to be labeled, find the corresponding best track, and

generate a label file, so as to build a large sample label data set.

The construction of sample label data set is a very time-

consuming and labor-intensive task, and it is also the primary

key work in the research and development of this technology.

The sample data set includes typhoon samples of all levels

(tropical depression, tropical storm, severe tropical storm,

typhoon, strong typhoon and super typhoon). From the

specific sample distribution number of each wind speed, the

sample size of severe tropical storm is the largest, while the

sample size of tropical depression and super typhoon is the

smallest. In addition, if a picture contains multiple images with

different intensity levels, each typhoon vortex will be labeled, so

the total number of samples will be more than the original 1800 ×

1800 samples. After a lot of processing above, the target

monitoring data set of Typhoon Vortex recognition is finally

constructed.

According to the experimental results as follows, the

thresholds of 0.2 and 0.7 were selected respectively. Firstly,

fuzzy localization is performed by inputting 1800 × 1800 size,

performing the first round of detection and coarse localization

with 0.2 lower confidence threshold, de-weighting the output

results based on the center distance, and intercepting 640 ×

640 images as the second round of input with the center of

localization as the origin; then precise localization is performed:

inputting 640 × 640 size, performing recognition with 0.7 higher

confidence threshold, de-weighting the second time, and The

400 × 400 final output image is further intercepted, which is used

to finely localize the vortex and output the final vortex

localization results (latitude and longitude coordinates with

confidence scoring).

3.1.2 Verification
The iterative model (after improvement) and the non-iterative

model (before improvement) were tested using 2020 data (Figure 2),

with a total of 702 samples. The experimental results show that,

compared with the non-iterative model, the iterative model has a

better recognition effect at all typhoon intensity levels, significantly

improving the recognition ability of vortices at typhoon level and
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below, and the correct recognition rate of vortices at tropical

depression and tropical storm level and below. The correct

recognition rate is 40%–80%, which is a significant improvement

to the original SSD model (the original correct recognition rate is

only 15%–50%), and the correct recognition rate of typhoon vortices

of strong tropical storm level and above is over 90%.

FIGURE 1
Flowchart of vortex recognition model based on depth image target detection.

FIGURE 2
Vortex recognition rate test results (blue columns represent non-iterative algorithm; red columns represent iterative algorithm).
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3.2 Intelligent intensity model based on
image classification and retrieval

3.2.1 Methodology
According to the best track data (location and moment) at

an interval of 1, 3 or 6 h, the 400*400 pixel cloud image of the

typhoon center at the corresponding time is intercepted as the

cloud image data set of deep learning, with a total of

15730 samples. From the wind speed distribution in the

typhoon data set, we can see that the distribution of each

wind speed is not uniform, in which the number of wind

speeds such as 18 m/s, 20 m/s, 22 m/s, 25 m/s is significantly

more than other wind speeds, while the number of wind speeds

with particularly low values (such as 10 m/s, 12 m/s, 13 m/s,

etc.) and wind speeds with particularly high values (such as

68 m/s, 70 m/s, 72 m/s, etc.) is significantly less. We divided

each wind speed into the training set and the test set according

to the ratio of 7:3, so as to ensure that the model can learn the

characteristics of typhoons with different wind speeds. There

are 12550 samples in the final training set and 3138 samples in

the test set.

Due to the unbalance sample data of typhoon intensity, this

paper uses the data enhancement technology commonly used in

machine learning to improve to a certain extent. The goal of data

enhancement is to increase the training data to prevent over

fitting and enhance the generalization ability of the model. The

main methods are rotation, flip and crop and so on (Qian et al.,

2021).

Deep learning, which can implicitly extract deep abstract

complex features in images through machine analysis and

learning of a large number of samples, is increasingly applied

to the field of estimating typhoon intensity. In order to achieve

intelligent typhoon intensity determination, we introduce an

end-to-end dual estimation Pipeline deep typhoon intensity

determination model (Figure 3), which is a technical model

for typhoon intensity determination based on image

classification and retrieval, based on mature pre-trained

CNN (convolutional neural network) deep learning models

in the field of computer vision, such as: ResNet, VGG (Visual

Geometry Group), etc., to perform typhoon intensity related

to satellite cloud image data Based on the extracted features, a

classification model (regression depth model) and a

similarity-based retrieval model (visualization retrieval

model) are constructed respectively to obtain the decision

results, and finally the recognition results of the two models

are fused (fusion module) to give the final top three

typhoon strengths with the highest confidence level, the

confidence level and the corresponding reference satellite

cloud images.

3.2.2 Verification
Here we select the two most commonly used indicators

which can reflect the error between the estimated value and

the real value to measure accuracy of AI models.

Mean absolute error of wind speed estimation:

MAE � 1
N

∑N
i�1
|Fi − Oi| (1)

Root mean square error of wind speed estimation:

RMSE �

�������������
1
N

∑N
i�1
(Fi − Oi)2

√√
(2)

FIGURE 3
Flowchart of the intelligent intensity determination model of typhoon based on image classification and retrieval.
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Here N is total times of wind speed estimation, i is wind speed

estimation times, Fi is estimated value of the ith wind speed,Oi is

the actual value of the ith wind speed.

For a full-year sample of 2020, the MAE and RMSE of the

ResNet model in determining the typhoon intensity are 3.8 m/

s and 5.05 m/s, respectively (Figure 4). Compared with the

results of Pradhan et al. (2018) who used a deep CNNmodel to

conduct the intensity estimation of 68 TCs over the Atlantic

Ocean and 30 TCs over the Pacific Ocean (their independent

samples have a RMSE of about 5.84 m/s), the ResNet model in

this study has a slight advantage. Compared with the

traditional statistical method for typhoon intensity

estimation from satellite cloud images (Lu et al., 2014),

which has a RMSE of 7.7 m/s for independent samples, the

ResNet model in this study has a clear advantage. It has a good

reference value for the objective determination of typhoon

intensity.

The cloud chart samples for 2020 are classified into

6 classes according to the maximum average wind speed

near the center of TC, which are tropical depression,

tropical storm, strong tropical storm, typhoon, strong

typhoon, and super typhoon class (Table 1), containing a

total of 868 samples. When the maximum average wind speed

near the bottom center of a tropical cyclone reaches 10.8 m/

s–17.1 m/s, it is a tropical depression, when it reaches 17.2 m/

s–24.4 m/s, it is a tropical storm, when it reaches 24.5 m/

s–32.6 m/s, it is a strong tropical storm, when it reaches

32.7 m/s–41.4 m/s, it is a typhoon, and when it reaches

41.5 m/s–50.9 m/s, it is a strong typhoon, It is a super

typhoon if it reaches or exceeds 51.0 m/s. From the MAE

and RSME of the samples of each class, the model has the best

estimation for the samples of tropical depression and tropical

storm, whose MAE and RSME are both the smallest. The MAE

for the samples of tropical storm is 2.66 m/s, and the MAE for

FIGURE 4
MAE (A) and RMSE (B) of the ResNet model for smart intensity determination of typhoons for the annual sample intensity estimation in 2020.

TABLE 1 AI Model analysis of the intensity estimation of the 2020 typhoon cloud samples.

Levels Number of samples/pc (MAE) m/s (RSME) m/s

Tropical depression 25 3.12 4.62

Tropical storm 413 2.66 3.89

Strong tropical storm 200 5.04 6.08

Typhoon 128 6.16 7.81

Strong typhoon 82 4.45 5.50

Super typhoon 20 3.85 6.67

Total 868 3.93 5.40
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tropical depression is 3.12 m/s, and its intensity estimation

ability has reached the level for operational reference. The

model is less effective in estimating typhoon-class samples,

with the estimated MAE reaching 6.16 m/s and RSME

reaching 7.81 m/s. Therefore, subjective revisions and

analyses by forecasters are required for such typhoons in

operational terms.

3.3 RI discrimination model incorporating
spatio-temporal sequence features

3.3.1 Methodology
According to the sample statistics from 2005 to 2018, it

was found that the RI cases account for less than 5% of all

typhoon cases. Generally, for a data set, if the target event is

FIGURE 5
Flow chart of the fast enhancement discriminative model for typhoons incorporating spatial and temporal sequence features.

FIGURE 6
Comparison of model predicted abrupt change probability (purple asterisks) and actual abrupt change probability (green dots) of Typhoon
Chanthu.
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few and the proportion is less than 10%, it is called an

extremely imbalanced data set. For imbalanced data sets,

machine learning algorithms often fail to achieve

satisfactory classification results. In order to increase the

number of RI cases, to increase the number of positive

samples of a few categories, to and reduce the number of

negative samples of most categories, we defined the cases with

an increase of typhoon speed by more than 7 m/s within 12 h

as the positive samples of typhoon RI. In the training process,

although the number of positive samples increased by

adopting the new threshold of RI (wind speed increases by

7 m/s in 12 h), the ratio of positive samples to negative

samples in the whole data set (with RI samples as positive

samples and non-RI samples as negative samples) was still

about 1:11. As the positive and negative samples were not

evenly distributed, a re-weighting method was applied to the

training data (Zhou et al., 2022). Weighting means giving

different punishments to imbalanced categories. Different

weights were applied to the loss (the difference between the

model predicted value and the true value of the sample)

calculated by different categories in the training process, so

that the model optimization tended to favor the few categories

(RI samples).

Lcros(y, p) � 1
N

∑
i

−[ω1yi*logpi + ω0(1 − yi)*log(1 − pi)]
(3)

where pi � ep̂∑
p,n

er p̂
, Eq. 3 represents the loss weight given to the

actual positive (RI) samples, pi represents the probability that the

samples are predicted to be positive by the RI trend detection

model, ω0 represents the loss weight given to the actual negative

(non-RI) samples, 1 − pi represents the probability that the

samples are predicted to be negative, and yi represents the

FIGURE 7
(A) The FY-4A satellite cloud of Typhoon 2114 at 09–07 18:00; (B) is the heat map obtained by passing through the ResNet model and
convolving the last layer of the ResNet model; (C) is obtained by superimposing (A) and (B) together.

FIGURE 8
Flowchart of AI-based typhoon monitoring and forecasting system.
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FIGURE 9
Artificial intelligence-based typhoonmonitoring and forecasting system (A) FY-4A satellite’s diskmap on 7 September 2021 at 12 UTC (B) Range
70–160°E, 20°S–70°N projection area (C) Cropped cloud map of Typhoon 2114 “Chanthu” on September 7 at 12 UTC (D) Cropped cloud map of
Typhoon 2113 “Conson” on September 7 at 12 UTC.

FIGURE 10
Infrared channel satellite cloud image of Typhoon 2114 “Chanthu” (A) 7 September 2021 00UTC (B) September 8, 00UTC.
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label of the samples (positive samples are 1 and negative samples

are 0).
In order to realize the objective discrimination of the

intensity change trend of TCs, an automatic and objective

technique for rapid enhancement trend discrimination of

typhoons is proposed based on the deep residual network

ResNet model and the spatio-temporal correlation deep

learning model LSTM in the field of artificial intelligence, and

the life cycle indication is introduced by labeling and learning the

key information in satellite cloud map data, which can effectively

solve the typhoon intensity The problem of predicting and

discriminating the rapid intensification trend is effectively

solved. The technical route of the typhoon rapid

intensification discrimination model incorporating spatio-

temporal sequence features is shown in Figure 5. In the

1800*1800 regional image after satellite data resolution, the

typhoon life cycle is marked every 6 h according to the best

path file, and a 400*400 vortex image sequence is cropped. After

that, the image sequence and the marked life cycle are fed into the

model for trend discrimination of whether the typhoon is rapidly

intensifying after 12 h, which improves the accuracy of predicting

and discriminating the trend of rapid typhoon intensity

intensification.

3.3.2 Verification
Taking Typhoon No.2114 “Chanthu” in 2021 as an example

(Figure 6), the number of information on the optimal path is 166,

and by labeling the 166 information, a total of 9 mutation

moments are marked (labeling 1 for T moments means that

the typhoon wind speed will increase ≥7 m/s within T-T+12 h).

Since the model input is serial data, 4 consecutive data messages

(with an interval of 6 h) are used as an input in the prediction,

and a total of 166 messages are obtained in this way, of which

9 data are abruptly changed (4 abruptly changed data are

obtained in addition). The threshold value above 0.55 is

considered as rapid intensification (Zhou et al., 2022), while

the opposite is considered as no rapid intensification. The result

of sample No.2114 typhoon “Chanthu” has an accuracy rate of

FIGURE 11
Satellite remote sensing cloudmaps of Typhoon 2114 at four consecutive times (A) 00UTC on 7 September 2021 (B) 06UTC on September 7 (C)
12UTC on September 7 (D) 18UTC on September 7.
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91.6%, an omission rate of 44.4%, and a false alarm rate of 6.4%,

which shows that the technique is able to discriminate the trend

of rapid intensification of the objective intensity of typhoons.

In addition, the test analysis of the independent sample of

operational typhoon cloud maps for 2021 showed that the

composite accuracy of the sudden change of typhoon intensity

estimation in 2021 reached 91.8%, and the test results showed

that the AI-based typhoon rapid strengthening trend

discrimination technology is better than the traditional

subjective intensity forecasting method, and has certain

operational application value.

Heat maps are a common visualization tool that aggregate a

large amount of data and represent it with progressive color

bands, which can visually show the similarities and differences

between data. One of the important roles is to show the

correlation between different indicators and different samples.

As shown in Figure 7, there was a positive correlation between

the cloud structure of the typhoon vortex and the wind speed and

rapid intensification of the typhoon at the same time, especially

the vortex structure near the center of typhoon. When the cloud

pattern and its corresponding intensity are subjected to LSTM,

there is high confidence in the ability to discriminate the RI trend

in the next phase.

4 Artificial intelligence-based
typhoon monitoring and forecasting
system

Figure 8 shows the Flowchart of AI-based typhoon

monitoring and forecasting system. The integrated AI-based

TC monitoring and forecasting system starts from the original

satellite data, crops the disc map into an 1800*1800 area image

according to the area to be monitored, and then uses the 400 ×

400 final image output by the typhoon vortex model, combined

with an end-to-end visualized intelligent typhoon intensity fixing

model, and fuses the strategies according to the typhoon intensity

trend cycle and typhoon intensity abrupt change detection, and

finally outputs the typhoon intensity abrupt change trend

discrimination results to achieve automated intelligent

identification and positioning of intensity fixing and intensity

trend discrimination, with the final product for further analysis

and utilization by forecasters.

Figures 9A,B shows the full disk grayscale and 1800*1800

(range 70–160°E, 20°S–70°N) projection maps of the FY-4A

satellite cloud map through 7 September 2021 at 12 UTC,

respectively. The two typhoon vortices were first identified

with a lower confidence threshold (0.2), and then identified

with a higher confidence threshold of 0.7, and the secondary

de-weighting was performed to further truncate the 400 ×

400 final output images, giving confidence probabilities of

0.91 and 0.98, respectively (see Figure 9B), and the identified

vortex images of small areas of the typhoon were given separately,

along with the estimated intensity of the typhoon. The estimated

intensity of Typhoon 2114 “Chanthu” is 28 m/s (Figure 9C),

which is slightly weaker than the observed intensity (30 m/s). The

estimated intensity of Typhoon Conson is 26 m/s (Figure 9D),

which is also slightly stronger than the observed intensity of

28 m/s.

From the live intensity, Chanthu experienced a rapid increase

in intensity from 30 m/s (Figure 10A) to 58 m/s (Figure 10B)

from 0000 UTC on September 7 to 0000 UTC on September 8. As

we can see in Figures 11A–D, based on the historical data of the

typhoon up to the current moment (7 September 2021, 18 UTC),

the spatial and temporal characteristics of the remote sensing

cloud maps and the known intensity information series are

extracted for Typhoon 2114, and it is predicted that 06UTC

on 8 September 2021) the probability of the typhoon showing

rapid intensification is 0.84, labeled as a sudden intensity change

of 1, and the RI process does occur in reality (wind speed

increases by 10 m/s to 58 m/s after 12 h). If it is difficult to

distinguish whether the rapid intensification process will occur

by manual simply looking at the satellite images, and the model

discriminations give a more objective and accurate

judgment. This artificial intelligence-based typhoon

monitoring and forecasting system has now been carried out

on a trial basis in the typhoon operations of the National

Meteorological Center.

In Table 2, the accuracy index of the model was tested by

comprehensive accuracy (Acc), TS score (TS), missing rrate

(FNR), and false rate (FPR), where TP represents frequency

counted when the actual RI is predicted as RI, TN represents the

frequency counted when the actual non-RI is predicted as non-

RI, FN represents the frequency counted when the actual RI is

predicted as non-RI, and FP represents the frequency counted

when the actual non-RI is predicted as RI.

TABLE 2 Comparison table between AI algorithm and different subjective and objective forecasts.

TP FP TN FN FPR (%) FNR (%) TS Acc (%)

NCEP 8 25 487 15 5 65 0.16 90

CMA 8 49 732 17 7 68 0.11 89

JTWC 12 45 409 16 10 57 0.16 87

AI 19 70 1004 21 6 52 0.19 92
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The comprehensive accuracy represents the proportion of

the correct prediction of RI among the total samples.

ACC � TP + TN

TP + FN + FP + TN
(4)

The TS score represents the proportion of the correct

prediction of RI after excluding the correct prediction of non-RI.

TS � TP
TP + FN + FP

(5)

The missing rate represents the proportion of prediction

errors (non-RI) for the instant of RI in reality.

FNR � FN
TP + FN

(6)

The false rate represents the proportion of prediction errors

(RI) for the real non-RI.

FPR � FP
TN + FP

(7)

According to further statistics comparison in 2021, it can be
found comparison between AI and different forecast results. TS of
NCEP model is 0.16, TS of JTWC’s forecast is 0.16, TS of CMA’s
forecast is 0.11, and TS of our AI algorithm is 0.19. The combined
accuracy rate of NCEPmodel is 90%, that of JTWC’s forecast is 87%,
that of CMA’s forecast is 89%, and that of our AI algorithm is 92%.
Compared with other different subjective and objective forecasts,
our method has high prediction accuracy for actual RI samples. The
results also show that the technology based on artificial intelligence is
superior to the traditional subjective intensity forecasting method.

5 Conclusion

Artificial intelligence has shown great potential in typhoon

monitoring and forecasting applications. This paper introduced

an artificial intelligence-based typhoon monitoring and

forecasting system to achieve automated and objective

localization, intensity determination and intensity trend

discrimination of tropical cyclones. The main research

content includes a typhoon vortex identification model based

on deep image target detection, an intelligent typhoon intensity

determination model based on image classification and

retrieval, and a typhoon rapid intensification identification

model. The results show that the system is capable of

performing the automatic identification, location and

intensity determination, and intelligent tracking of tropical

cyclones in real time by using high spatial and temporal

resolution satellite images.

However, there are still many difficulties and challenges in the

application of AI technology in typhoonmonitoring and forecasting.

In the future, we may deeply explore the various large-scale

influencing factors and the typhoon internal forces which affect

track and intensity of TCs. Secondly, we may comprehensively use

the cloud images of other 13 channels to extract more effective

information and feature vectors for typhoon monitoring and

forecasting. Moreover, the combination of AI technology and

other methods (such as numerical models and ensemble

forecasts) will certainly give a great impetus to typhoon

monitoring and forecasting, greatly reduce the manual work of

forecasters, and improve the effectiveness of disaster prevention and

mitigation.
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