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The simulation of concentration values and use of such data for history-

matching is often impeded by the computation time of groundwater

transport models based on the resolution of the advection-dispersion

equation. This is unfortunate because such data are often rich in information

and the prediction of concentration values is of great interest for decision

making. Particle tracking can be used as an efficient alternative under a series of

simplifying assumptions, which are often reasonable at groundwater sinks (wells

and drains). Our approach consists of seeding particles around a sink and

tracking particles backward, up to the source boundary condition, such as a

contaminated stream. This particle tracking approach allows the use of

parameter estimation and optimization methods requiring numerous model

calls. We present a Python module facilitating the pre- and post-processing

operations of a modeling workflow based on the widely used USGS

MODFLOW6 and MODPATH7 programs. The module handles particle

seeding around the sink and estimation of the mixing ratio of water

withdrawn from the sink. This ratio is computed with a mixing law from the

particle endpoints, accounting for particle velocities and mixing in the source

model cells. We investigate the best practice to obtain robust derivatives with

this approach, which is a benefit for the screening methods based on linear

analysis. We illustrate the interest of the approach with a real world case study,

considering a drinkingwater well field vulnerable to a contaminated stream. The

configuration is typical of many other drinking water production sites. The

modeling workflow is fully script-based to make the approach easily

reproducible in similar cases.
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1 Introduction

Drinking water contamination is a major matter of concern

for worldwide public health, with worldwide economic and

social effects (Daud et al., 2017; Sharma and Bhattacharya,

2017; Gwimbi et al., 2019; Turner et al., 2021). This emphasizes

the need for decision-support modeling tools that could provide

1) reliable predictions of the risk associated with water

contamination in prospective scenarios and 2) optimized

production settings to mitigate the impact of reported

contamination. To this end, models may be of great interest

provided a series of conditions are satisfied (Doherty, 2015;

Hermans, 2017; Doherty and Moore, 2020). First, that models

should properly account for the processes governing the

outputs of interest. Second, that an appropriate and reliable

observational dataset constrains the parameters of importance.

Third, that the model is “practical”, which implies reasonable

computation time and effective tools to automatize time

consuming operations (Bakker et al., 2016; White et al.,

2020a). Such conditions may not be easy to fulfill, in

particular when dealing with the complex process of

contaminant transport in heterogeneous aquifers.

In such a context, a thorough analysis of the simplicity-

complexity trade-off becomes a critical step for which guidelines

are now available (Hrachowitz et al., 2014; Guthke, 2017;

Schwartz et al., 2017; Hugman and Doherty, 2022). In

practice, appropriate choices have to be made on 1) the

parameterization of hydraulic and transport properties and

2) the simulated physio-chemical processes driving the

propagation of contaminant. For the parameterization of

hydraulic properties, the options range from homogeneous

equivalent hydraulic conductivity zones to heterogeneous

fields with discrete features (de Marsily et al., 2005; Carniato

et al., 2015; Pool et al., 2015). For the selection of processes

governing transport, the options range from simplified models

that rely on assumptions such as steady-state and dominant

processes (e.g., advection), to complex, advection-dispersion

reactive transport models to provide a detailed description of

the physics of the problem (Anderson et al., 2015). Several studies

highlighted that the best balance in terms of robustness,

efficiency and reliability may be achieved with relatively

simple “surrogate” models based on simplified representations

of the physics (Razavi et al., 2012; Asher et al., 2015; Burrows and

Doherty, 2015). Surrogate transport models present fast run

times allowing for thousands of model executions of transport

calculations, which are necessary for history matching of highly

parameterized models. The interest of including a diverse

observational data types has been highlighted by Hunt et al.

(2006) and concentration in particular has been recently

discussed by Schilling et al. (2019) and Knowling et al. (2020).

Furthermore, fast run time allows the use of more robust but

demanding algorithms for uncertainty quantification (Rajabi

et al., 2018).

During the last decades, parameter estimation and

uncertainty quantification algorithms have been made

available with an ever growing variety of approaches

(Doherty, 2016; White et al., 2020b). Their use is now

facilitated by Python interfaces (White et al., 2016). More

recently, studies provided repeatable script-based workflows

which greatly facilitate the replication of the presented

approaches (White et al., 2020a; Fienen et al., 2022). Though

facilitated, the interfacing of parameter estimation and

uncertainty quantification algorithms with complex models

remains difficult for transport models, which are

characterized by long computation times and numerical

instabilities.

Focusing on the widely reported risk of contaminant transfer

from contaminated rivers to groundwater production units, we

present a framework based on particle tracking as a fast and

effective surrogate model for contaminant transport. The

approach, initially presented by (Cousquer et al., 2018), is

made available in a newly developed Python module,

TrackTools which will facilitate its replication. The module

provides particle seeding capabilities and post-processing

options that are valuable for analyzing drinking water

vulnerability of production wells or drains to pre-defined

sources of contamination. The script facilitates exploratory

parametric analysis, which can be useful to investigate the

system response to different configurations. The interfacing

with the PEST + + suite (White et al., 2020b) is detailed on a

real-world case study which paves the way for history matching,

hypothesis testing, and optimization of decision variables, which

are essential to support decision related to the definition of

wellhead protection area and the optimization of production

settings.

The theoretical background and numerical tools related to

the developed Python module are described in Section 2. A

simple synthetic model is presented in Section 3 and a

parametric study is conducted to investigate the driving

factors of mixing ratios computed with this approach. In

Section 4, the interest of the method is illustrated on a

drinking water production site with a fully script-based

approach from model setup to pumping optimization

through parameter estimation.

2 Methodology

A common practice in vulnerability analysis is to investigate

the origin of water withdrawn at a groundwater sink (well or

drain) originating from one, or a series of potential or effective

contaminant sources. This can be conducted from the analysis of

the flow contributions of each source to the discharge rate of the

sink. The methodology described hereafter is an extension of the

approach described by Cousquer et al. (2018) initially designed

for a single river reach. The method may now be applicable to
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multiple weak or strong source boundary conditions (e.g., fixed

head, river, general head boundary condition).

Consider a groundwater flow model with a groundwater

sink (well or drain) subject to a potential are effective

contamination originating from one of the model boundary

conditions. A set of N starting points is seeded around the

model cells where the sink condition is applied. Given the flow

field, the origin of flow to the sink can be described by backward

particle tracking.

The sink discharge rateQ can then be decomposed as follows:

Q � ∑N
i�1qi, where qi is the contribution of the i-th particle to the

discharge rate at the sink. This can be rewritten considering

particle velocities, vi: Q � ∑N
i�1vi · Si where Si is the area of the

surface crossed by qi. When particles are evenly distributed

around the model cell, it can be assumed that Si � S
N for all i.

Assume that from the N particles seeded around the sink, nj
originate from the j − th boundary condition, subject to

contamination. The contribution of this boundary condition

to the sink contamination can be written as follows:

αj � 1
Q

∑
nj

k�1
vk · βkSk( ) (1)

where βk is the mixing ratio in the source model cell where the k-

th particle ends. βk = 1 for “strong” sources and 0 ≤ βk ≤ 1 for

“weak sources” where a mixing occurs (Pollock, 2016). In the

latter case, βk can be quantified from the cell water budget at the

endpoint cell (Cousquer et al., 2018). This allows the method to

account for mixing in the source aquifer cell, where the boundary

condition (typically a river) is applied.

The approach is now integrated in the TrackTools Python

module. Our approach relies on the USGS MODFLOW6

(Langevin et al., 2017) and MODPATH7 (Pollock, 2016)

programs to simulate fluid flow and transport processes,

respectively. We rely on the FloPy module (Bakker et al.,

2016) for the processing of model input and output files.

Pre-processing capabilities of the TrackTools module are

provided in the ParticleGenerator class, which can handle:

• Particle seeding around groundwater sinks, which can be

described by a Python geometry or ESRITM shapefile,

• Adding, removing and merging particles into groups for

FloPy and MODPATH7.

After the simulation of flow with MODFLOW and particle

tracking with MODPATH, the TrackingAnalyzer class of

TrackTools can be used to process particle pathline data and

derive the values of mixing ratios at each groundwater sink. The

MODFLOW cell-by-cell water budget file is also required to

derive the source cell mixing ratio βk. Results can be provided in

the form of a data frame and plotting options are proposed for

the description of the origin of groundwater withdrawn in the

series of sinks where particles were seeded.

3 Synthetic case

3.1 Model description

In order to illustrate the presented Python module, a

synthetic 2D case is considered with a production well in an

unconfined aquifer in interaction with a stream. The domain

(3,750 × 5,000 m) is discretized with a 2D regular mesh (25 ×

25 m cells) with a local refinement around the stream and the

well (6.5 × 6.5 m cells). A Cauchy-type boundary condition is

applied to the upper limit of the model domain with a stage of

40 m and conductance of 10–3 m2 s−1, while a Dirichlet-type

condition is prescribed to the lower boundary with a stage of

20 m. They are simulated with the General Head Boundary

(GHB) and Fixed Head (FH) MODFLOW packages,

respectively. The left and right domain boundaries are

considered as impermeable. The stream is simulated with a

head-dependent flux (Cauchy-type) boundary condition with

the dedicated MODFLOW river package (RIV), with a head

ranging from 35 m to 25 m from the upper to the lower boundary

condition. The stream conductance is set to 10–3 m2 s−1. Steady-

state flow conditions are considered and the transmissivity is

assumed to be independent of water level fluctuations, which

corresponds to the Boussinesq assumption. The well is

considered as fully penetrating and is located at position (x,

y) = (1212, 1363).

We consider both homogeneous and heterogeneous

hydraulic conductivity fields, the heterogeneous cases being

generated with an isotropic exponential variogram for

log 10(k) defined by a sill of one and a nugget of 0.1 for two

different ranges of 200 and 500 m as presented in Figure 1. These

fields are generated using the geostatistical python package

GSTools (Müller et al., 2021). During the following

simulations, the mean hydraulic conductivity value will evolve

in heterogeneity patterns (Figures 1B,C).

3.2 Parametric study

The synthetic case previously described is used to illustrate

the behavior of the mixing ratio α depending on key parameters

such as the hydraulic conductivity K and pumping dischargeQ. β

from Eq. (1) is quantified from the river cell water budget and can

vary from 0 to 1. Figure 2 shows the distribution of α for

parameters K and Q ranging from 10–5 to 10–3 m s−1 and from

0 to 200 m3 h−1, respectively, considering a homogeneous

distribution of K. Boundary conditions remain the same

throughout this parametric study. We also present in Figure 3

three examples of the spatial distribution of the hydraulic headH

with K set to (A) 10–5, (B) 10–4 and (C) 10–3 m s−1 and the same

configuration but with a pumping discharge of 90 m3 h−1 for D, E

and F. These values have been chosen as representative of the

three main tendencies that are observed for α: 1) the yellow
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region in which example D is located corresponding to the

highest values of α, 2) the dark blue region in which example

E is located corresponding to the lowest values of α and,

3) the green region in which example F is located

corresponding to intermediate values of α. This shows

that increasing K for a given value of Q results in

decreasing (from D to E) and then increasing (from E to

F) α, except for very small values of Q for which α directly

increases (from E to F). These different behaviors are

explained by the different sources of water that contribute

to the pumped water, which are characterized by the particle

paths represented on the hydraulic head distributions in

blue. For small values of K (example D), most of the

particles comes from the portion of the river that is

located right next to the well, implying that the river

provides a substantial proportion of water to the pumping

well. Increasing K (example E) results in reducing the impact

of the pumping on the natural hydraulic head distribution,

implying that the top boundary condition contributes to the

pumping. When we keep increasing K (example F), we reach

configurations that do not depend on the pumping rate (green

triangular region on the right side of Figure 2). For these cases,

the pumping does not modify the natural hydraulic head

distribution and the particle paths are fully driven by the

boundary conditions, resulting in particles coming from the

top of the river and thus high values of α. For small values of Q

and K (black region of the bottom of the figure), the impact of

the pumping on the natural hydraulic head distribution is still

negligible but the values of K imply that there is no

contribution of the river to the pumping (α = 0).

Figure 4 shows the distribution of α when considering the

heterogeneous hydraulic conductivity fields provided in Figure 1.

The three main tendencies described above for the homogeneous

case are also observed for the heterogeneous cases, showing that

these behaviors are mostly driven by the boundary, river and

pumping conditions. However, small differences are noticeable,

in particular for small values of Q and large values of �K, which

correspond to configurations with a small impact of the pumping

on the natural hydraulic head distribution. For example, the

extent of the dark blue region observed at the bottom of Figure 3

is reduced and increased in Figures 4A,B, respectively, showing

that the river does not contribute to the pumping for different

values of Q and �K. We also observe the presence of yellow areas

for large values of �K in the heterogeneous cases,

corresponding to high values of α and thus a strong

contribution of the river to the pumping. These different

FIGURE 1
(A) Synthetic case model structure and boundary conditions with a General Head Boundary Condition (GHB) of 40 m to the upper boundary
and a Fixed Head (FH) of 20 m to the lower boundary. No flow is imposed at the left and right domain boundaries. The stream is simulated with a
head-dependent flux (Cauchy-type) boundary condition and the well position is represented with a red dot. The hydraulic conductivity field patterns
correspond to an exponential viariogram with a sill of 1, a nugget of 0.1 and a range of (B) 200 m and (C) 500 m.

FIGURE 2
Distribution of the mixing ratio α depending on the hydraulic
conductivity K and pumping discharge Q.
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behaviors are due to different flow paths induced by the

heterogeneities of the hydraulic conductivity fields. Note

that, as mentioned before, the impact of these

heterogeneities is reduced when increasing the

pumping rate.

3.3 Derivative analysis

This synthetic case is also used to set some rules in order to

obtain robust derivatives which is essential for parameter

estimation and model analysis based on linearization methods.

FIGURE 3
The spatial distribution of the hydraulic head H(x, y) for hydraulic conductivity K set to 10–5 m s−1 (A,D), 10–4 m s−1 (B,E) and 10–3 m s−1 (C,F).
Cases (A,B,C) are without pumping, while a pumping rate of 90 m3 h−1 is set for cases (D,E,F). The red dot represent the pumping well locations, the
vertical bold black line represents the stream and the blue lines in cases (D,E,F) are the path of the particles from the backward particle tracking.

FIGURE 4
Distribution of the mixing ratio α depending on the average hydraulic conductivity �K and pumping discharge Q for the hydraulic conductivity
patterns presented in (A) Figures 1B and (B) Figure 1C.

Frontiers in Earth Science frontiersin.org05

Pryet et al. 10.3389/feart.2022.975156

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.975156


The sufficient number of particles corresponding to this synthetic

case is evaluated with the derivative calculation of zα
zK which

constitutes the Jacobian matrix used for model linearization. The

use of gradient based methods for parameter estimation (e.g., the

Gauss-Marquardt-Levenberg method on which PEST and

PEST++ are based (Doherty, 2015; White et al., 2018))

requires that model outputs are differentiable or at least

continuous with regard to model parameters (Doherty, 2010).

Doherty and Hunt (2010) mentioned that this assumption often

does not hold because of poor model performance and the lack of

differentiability can be due to, among others reasons, a low

number of particles in the MODPATH particle tracking

model. In order to avoid this issue, we explore the

differentiability of model output regarding particles number.

Let the mixing ratio α be the output of interest, the hydraulic

conductivity K is the parameter and ΔK is the parameter

increment. The sensitivity of α to K is approximated as follows:

zα

zK
|Ki

~
α Ki + ΔK( ) − α Ki( )

ΔK . (2)

The estimate of zαzKmay be biased when 1)ΔK is too small, due

to numerical noise, 2) when ΔK is too large due to model non-

linearity, or 3) when the number of particles is not high enough

to correctly simulate the mixing ratio. These three points are

evaluated by calculating the value of the derivative for several

numbers of particles and different values of Ki considering two

values of ΔK set to 0.01 × Ki and 0.1 × Ki (Figure 5).

For both ΔK = 0.01 × Ki and ΔK = 0.1 × Ki, Figure 5 shows

changes in the derivative sign that are visible when the color

representing the derivative goes from blue (negative values) to

red (positive values) and vice versa. For a given line, these

changes depend on the number of particles Np used in the

model, showing wrong estimations of the derivative when Np

is too small (due to wrong estimations of the mixing ratio). This

results in instabilities of the derivative along K for small number

of particles (Np < 200−500, columns that are located on the left

side of Figure 5). For parameter estimation and inversion

purposes, these instabilities could be interpreted as local

minima and lead to wrong estimates and optimized values.

When Np is high enough (columns on the right side), the

derivative values are stable in the sense that they do not

change with the value of Np. In this case, changes in zα
zK along

K are due to the non-linearity of the model, which needs to be

taken into account for parameter estimation and optimization.

Furthermore, comparing Figures 5A,B shows that the choice

of the increment of K influences the stability of the derivative.

The number of particles that is required to observe stable values

of zα
zK is lower when increasing ΔK.
Although they are expected, these results clearly show that

the derivative calculation requires to carefully choose the

parameters Np and ΔK with 1) a sufficient number of particles

to correctly simulate the mixing ratios and its derivative, and

2) an increment that is neither too small to avoid that the

derivative calculation is tainted by numerical problems, nor

too large to take into account the non-linearity of the model.

In all cases, increasing the number of particles is a systematic

method to improve the definition of the derivative whatever the

value of the discretization step of the derivative.

4 Case study

4.1 Model description

The method described above is embedded in a workflow

designed for model-based decision making and applied to a

FIGURE 5
Exploration of derivatives quality behaviour regarding the number of particles with the hydraulic conductivity Ki ranging from 10–5 to 10–3 m s−1

and the increment ΔK set to (A) 0.01 × Ki and (B) 0.1 × Ki.
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complex real world case study. We describe the script-based

modeling workflow and interfacing with the PEST + +, which

provides an illustration of the interest of the method and

facilitates the replication of the approach to other cases. All

scripts are available on a GitHub® repository.
The well field is located in South-West France and is critical

to the water supply for the city of Bordeaux (Cousquer, 2017;

Valois et al., 2018; Delbart et al., 2021) as it accounts for about

20% of the needs. The aquifer lies in Oligocene limestone

overlain by sandy and alluvial deposits. Limestones are

locally subject to karstification, leading to strongly

heterogeneous hydraulic properties. Two wells (W1, W2)

and two horizontal drains (D1, D2) are used for

groundwater extraction. Due to industrial activities, the main

stream crossing the well field from west to east is prone to

contamination. The vicinity of pumping wells and drains to the

stream is favorable to stream-aquifer exchanges. The end-

purpose of this modeling exercise is to maximize

groundwater production while meeting drinking water

quality standards.

For this model purpose, the geographical data describing

the domain and geometry of boundary conditions was first

processed with QGIS (QGIS Development Team, 2022). The

model setup was fully script-based with the FloPy Python

library (Bakker et al., 2016) for the pre- and post-processing

of MODFLOW6 and MODPATH7 input and output files. A

2D single layer was considered under the Dupuit-

Forchheimer approximation to represent the aquifer of

interest. The model domain was discretized by Gridgen

(Lien et al., 2015) with a quadtree grid with four

horizontal refinement levels so that square cell dimensions

range from 200 m to 12.5 m (Figure 6). External boundaries

have been defined from the regional groundwater levels as

no-flow or 3rd type head-dependent flow boundary

condition. The streams and drains are simulated with

head-dependent (Cauchy-type) flux boundary conditions

and the wells are represented by sink terms in the aquifer

cells corresponding to their location.

In order to consider contrasting settings while avoiding

the burden of transient simulations, pseudo steady-state flow

conditions are considered (Haitjema, 2006; Moore and

Doherty, 2021). This hypothesis is supported in the present

case since the permeable aquifer responds quickly to changes

Cousquer (2017). The TrackTools module is used to seed

particles around the two wells and the two drains and to derive

the mixing ratio of the water withdrawn. It was found that

FIGURE 6
Model domain with boundary conditions inferred from the regional groundwater flows. Mesh refinement is conducted in the area of interest
around the production and observation wells and drains (see inset). The parameterization of hydraulic conductivity has been conducted with pilot
points.
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simulated mixing ratios were relatively stable with

500 particles seeded around each production unit (wells

and drains). As detailed in Section 2 and references

herein, the mixing ratios at source cells where particles

stop (β) is inferred from the cell water budget. This allows

to account for mixing of aquifer and river water in model

cells where a river boundary condition is applied. Note that

only the main river is prone to contamination, water

originating from the tributaries is not considered as

contaminated.

4.2 Parameter estimation and
optimization

The model interfacing with the PEST + + suite has been

performed by means of PyEMU (White et al., 2016). The

hydraulic conductivity field was parameterized with a dense

set of pilot points. Hydraulic conductivity values at pilot

points lying at the center of the study area were all

considered as independent, but they were tied in the

outer portion of model domain (Figure 6). This is

motivated by the lack of observations in the outer zone

and it is unlikely that model predictions are sensitive to

details in this remote area.

A series of 10 field surveys, spread over 4 years (2014–2018)

have been considered for history matching, considering pseudo

steady-state conditions for contrasting stream levels and

operating conditions. Though it was challenging for a well

field in activity, we have made our best for operating

conditions (well discharge rates and drain levels) to remain

relatively stable on the period preceding each of the surveys.

The observation data set is composed of hydraulic heads, drain

discharge rates, and mixing ratios. The latter were derived by

end-member analysis from HCO3− and Ca2+ concentrations

(Delbart et al., 2021).

In order to reduce run times, all model files for each of these

surveys were setup in separate folders (Figure 7). Doing so, file

operations during parameter estimation were limited to writing

parameter files and reading output files. These operations were all

conducted with the dedicated methods of the PyEMU Python

package.

The parameter estimation was conducted with the widely

used Gauss-Levenberg-Marquardt Algorithm (GLMA) as

implemented in PEST + + suite (White et al., 2020b).

Parameter increments (DERINC) values were adjusted by

trial and error. Best results were obtained with relative

parameter increments of 15% for hydraulic conductivities

and 10% for all the other parameters. Both zero order

(preferred value) and first order Tikhonov regularizations

were employed (Doherty, 2015).

After parameter estimation, the resulting model was used

to optimize the total abstraction rate. The optimization

problem consists in maximizing the total abstraction rate

Q while verifying the drinking water quality standards after

mixing. It can be expressed as follows:

FIGURE 7
Directory tree structure used for parameter estimation and optimization workflow.
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max
Qi,hi

Q � ∑
N

i�1
Qi

s.t. α � 1

∑
i
Qi

∑
N

i�1
Qiαi ≤ αcrit

Qi ≤Qmax ,i i ∈ 1; 2{ }
hi ≥ hmin ,i j ∈ 1; 2{ }.

(3)

where the decision variablesQi and hi correspond to well discharge

rate and drain level, respectively, and the constraint on water

quality is expressed as a critical stream-aquifer mixing ratio αcrit.

For this illustrative exercise, the optimization is solved with a

sequential version of linear programming as implemented in

PESTPP-OPT (White et al., 2018) considering a 50% risk

(maximum likelihood) configuration. This algorithm is fast

but sensitive to model non-linearity.

4.3 Results

The history matching conducted with the GLMA converged

in approximately 10 iterations (Figure 8A). The fit between

simulated values with their observed counterparts can be
considered as satisfying for heads (Figure 8B) and reasonable
for discharge rates and mixing ratios (Figures 8C,D).
Measurements of drain discharge rates can be considered as
reliable and themisfit may rather be explained by the static, linear
relation that is considered with the MODFLOW drain package.
In contrast, measurement of mixing ratios derived from
concentrations by end-member analysis are prone to
uncertainties (Delbart et al., 2021). The structural error of this
simplified model is therefore strong and surely contributes to the
misfit, but uncertainties in the observation data and historic
operating variables are also important. In this context, it is
unclear whether more detailed process-modeling could
improve the predictive capacity of the model.

The estimated hydraulic conductivity field is highly

heterogeneous (Figure 9A), as expected for partly

karstified limestones. Attempts to smooth these contrasts

with stronger regularization constraints lead to an important

increase of the misfit with historical data. Karst conduits are

expected to be narrow and of limited extension but can be at

the origin of the high values of estimated hydraulic

FIGURE 8
Results of the parameter estimation with the GLMA. (A) Evolution of the measurement objective function throughout GLMA iterations.
Simulated versus measured hydraulic heads (B), drain discharges (C), and mixing ratios (D). Numbers in (B,C,D) refer to the surveys; colors in (B) refer
to the observation wells.
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conductivity (Cousquer, 2017). On the opposite, low values

can be explained by fine deposits in the riverbed (Delbart

et al., 2021).

We followed a deterministic approach, which can be

considered as a first exploratory step for more robust

methods. The “best” calibrated parameter set was therefore

FIGURE 9
(A) Hydraulic conductivity field after parameter estimation. (B) Simulated groundwater table level and particle tracking trajectory for the initial
values of parameters Q and α. Particle trajectory from the contaminated stream are colored in red and those from uncontaminated boundaries in
blue. Particle tracking was conducted from production wells W1, W2 and drains D1, D2 shown in black. Pumping from wells Wx1 and Wx2 was
considered in the flow model but they do not pertain to the studied drinking water facility.

FIGURE 10
Optimization results with (A) total discharge rate and mixing ratio for each optimization iteration of PESTPP-OPT and (B) discharge rate (Q),
mixing ratio (MR), and drain stage (H) for each optimization iteration. it0 represents the initial parameter values, it1, it2 and it3 the values for the first,
second and third iterations, respectively.
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used to conduct the optimization of well and drain discharge

given a quality constraint expressed as a global mixing ratio

αcrit=25%. This corresponds to a 4-fold reduction of contaminant

concentration with respect to river contamination levels. The

optimization algorithm was run from a situation close to the

current operating configuration over three iterations of the

sequential linear programming algorithm (Figure 10).

Compared to the initial settings (iteration 0), the third and

last iteration lead to an increase of production rate by + 25%

for a similar contamination level. The particle pathlines for this

configuration are presented in Figure 9B.

5 Discussion and conclusion

In the context of drinking water contamination issues, we

provided a decision-making tool to investigate the vulnerability

of groundwater production units. The TrackTools Python

module offers pre- and post-processing functions of particle

tracking data simulated with MODFLOW and MODPATH.

Mixing ratios are inferred from flow contributions of each

contaminant source to the discharge rate of a groundwater

sink considering particle velocities and mixing in source cells.

This can be appropriate where a production well or drain is

vulnerable to a boundary condition such as a river. However, the

method is not relevant when the source of the contamination is

diffuse, such as agricultural contaminants driven by groundwater

recharge. In the latter case, forward particle tracking is more

appropriate [see e.g., Fienen et al. (2022)].

The synthetic case presented in this work illustrates that

contrasting behaviors can be observed even for simple

configurations. It highlights the interest of the method to

explore the sensitivity of mixing ratios to operating variables

(pumping rates, drain levels) and model parameters. The impact

of the number of particles seeded around each sink, and the size

of the increment used for model linearization was also evaluated

through the analysis of the derivatives of α. Derivative

instabilities are mitigated when increasing the number of

particles or increasing the parameter increment for estimating

model derivatives (DERINC). However, adding particles tends to

increase the computation time, so that a reasonable particle

number should be considered.

Relatively fast and easy to implement, this approach will

facilitate the use of contaminant transport models for history

matching, uncertainty quantification or optimization. It also

presents the advantage to be didactic and can be used to

represent contaminant transfer in a visual and potentially

interactive manner, which is important for end-users.

The method was implemented on a real world case study and

is providedwith a series a script for the interfacing with the PEST +

+ suite. The parameter estimation with the GLMA and

optimization by linear programming illustrated the interest of

the approach. Difficulties in reproducing observations can be

explained by errors in the historic dataset (observations and

operating variables) and model structural error. In spite of our

efforts to obtain a robust linear version of the model, the methods

based on the Jacobian matrix have shown their limitations. This

advocates for the use ofmore robust ensemblemethods such as the

Iterative Ensemble Smoother (IES (White et al., 2018)) for

parameter estimation and uncertainty quantification, and

evolutionary algorithms for optimization [PESTPP-MOU

(White et al., 2022)]. The presented workflow may easily be

extended to these methods recently available in the PEST + + Suite.

The method was illustrated on 2D horizontal models

assuming steady state flow conditions. This simplifies the

implementation and leads to particularly fast run times, but

3Dmodels and transient conditions may have to be considered in

other contexts. The method may be extended to these

configurations with some additional processing. The

implementation of the method on 3D models will be

straightforward so long the wells and drains penetrate a single

model layer. Otherwise, particles should be seeded in each of the

intersected layers and mixing in the multi-layer well should be

accounted considering the respective flow contributions

provided by the dedicated Multi-Aquifer Well package

(MAW) from MODFLOW6 (Langevin et al., 2017). The

impact of transient flow dynamics on the mixing ratio at a

specific instant will be easy to consider with backward particle

tracking over historic conditions. However, it would be more

challenging to quantify mixing ratios averaged over a period as it

would require multiple runs of the particle tracking algorithm.

Among the simplifying assumptions of this approach, we

assumed the respective flow contributions of particles evenly

placed around the sink to be proportional to their velocities

(Eq. 1). The validity of this approach has been investigated by

Cousquer et al. (2018) with an advective-dispersive model on a

synthetic, homogeneous model. Results were encouraging but the

performance of the simplified model based on particle tracking

may be put into question in other contexts. The use of a paired

simple-complexmodel approach (Doherty and Christensen, 2011)

can be suggested, where the complex model would be based on the

resolution of the advection-dispersion equation.

Future work will also focus on improving the reliability of the

simplified transport models by considering additional processes,

such as dispersion. For this matter, various recent particle-based

methods (Noetinger et al., 2016; Gouze et al., 2020; Roubinet

et al., 2022) and machine learning techniques (Kang et al., 2021;

Zhou et al., 2021) could be considered in order to consider more

realistic configurations while keeping the low computational cost

of the forward models.

As mentioned in the introduction, the optimal complexity

level is to great extent, case- and purpose-specific, as it will

depend on the purpose of the modeling exercise and the quality

of the available observation dataset. In this perspective, it is likely

that simple and effective methods such as the one presented in

this study remain of interest in numerous situations.
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