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Editorial on the Research Topic

Carbon cycling in aquatic critical zones

Understanding the processes and mechanisms controlling carbon biogeochemistry in

aquatic ecosystems, under the influence of human activities and climate change, is

essential in global change studies and Earth System Models. New physicochemical

boundaries in aquatic systems, created in the Anthropocene, are providing corridors

for rapid biogeochemical and organismal change. Here, we define such aquatic critical

zones (ACZs) as the interfaces where crucial geological, chemical, biological and physical

processes operate together to sustain systematic functionalities of aquatic systems

(Bianchi and Morrison, 2018). Natural ACZs have always existed, such as fjords,

lakes, reservoirs, river reaches below dams, river confluences, river plumes, riverine

floodplains, irrigation ditches, wetlands, mobile mud belts, and estuarine turbidity

maximum zones (Figure 1). However, land-use and climate change have in some

cases enhanced biogeochemical gradients in ACZs and in other cases created new

types of ACZs such as hypoxic and harmful algal bloom (HAB) regions. Some of

these changes have resulted in unusually steep concentration gradients in abiotically

and biotically derived dissolved and/or particulate constituents that have significantly

altered elemental cycling from micro-to mesoscales. The highly dynamic character of

ACZs provides unique opportunities for examining the global impact of human activities

on carbon cycling across land-ocean boundaries.

Carbon composition and transport behavior in ACZs have changed greatly due to

anthropogenic and climate effects in recent decades. For example, global estimates of the

erosion and transport of higher plant detritus and soil carbon from land to rivers via

surface water runoff are highly variable, in part due to spatial heterogeneity of land-use

change, deforestation, water and soil conservation, droughts, and storms (Lal, 2003).

Similarly, the production of autochthonous organic carbon (OC) has dramatically

increased in rivers, lakes, reservoirs, estuaries, and marginal seas, where OC
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processing rates are unusually high (Cloern et al., 2014; Maavara

et al., 2017; Mendonça et al., 2017; Gao et al., 2021). A better

understanding of the controls on water residence time and biotic/

abiotic decay kinetics of organic matter in these ACZs is key to

improving predictions by Earth System Models (Li et al., 2017).

In this Research Topic, six studies provide a broad range of

spatial-temporal data on carbon cycling in ACZs, from

drainage basins to estuaries, coastal bays, coral islands, and

the deep sea.

River restoration aimed at rewetting the valley floor has the

potential to increase OC stocks in the form of floodplain soil

carbon, downed wood, and riparian vegetation. To quantify the

carbon sequestration potential of different restoration

approaches in diverse geographic settings (Hinshaw and

Wohl), developed a conceptual framework to identify the

conditions that maximize carbon storage in relation to

characteristics of the river corridor and specific restoration

practices. This conceptual model may help to identify levels of

hydrologic connectivity, channel and floodplain dynamics,

floodplain vegetation, and other variables that may optimize

carbon storage at treatment sites.

An estimation for inland waters showed that autochthonous

production (AP) has been strengthened during recent decades,

due chiefly to increasing aquatic photosynthesis caused by global

warming and intensifying human activities (Liu et al.). The

increasing AP resulted in the decreasing of CO2 emissions

from inland waters and the increasing of dissolved OC storage

and/or OC burial in inland waters. The residual land sink (or

missing carbon sink) associated with the strengthening AP in

inland waters may range from 0.38 to 1.8 Gt C yr−1, indicating

that APmay play an important role in the further evolution of the

global carbon cycle.

Anthropogenic inputs have significant Influences on particulate

and dissolved OC (POC and DOC) cycling in estuaries and coastal

seas, including coastal bays. An investigation on the characteristics

and distributions of DOC in three costal bays (Jiaozhou Bay, Sishili

Bay, and Taozi Bay) in North China showed that the optical and

isotopic characteristics of DOC in these coastal bays were regulated

by multiple sources (river inputs, aquaculture activities, waste

dumping, and sewage discharge) and processes (biological

production and photodegradation), with river inputs as the main

factor that causes the variation of DOC in these coastal bays (Li et al.

FIGURE 1
Typical aquatic critical zones (ACZs) along the aquatic continuum.
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). Similarly, riverine discharge was also identified as the major

source for particulate and dissolved black carbon (PBC andDBC) in

another two coastal bays (Bohai Bay and Laizhou Bay) in North

China. The quantity and quality of PBC and DBC in these two bays

varied seasonally and interannually due to significant changes of

fluvial hydrological regimes, solar radiation and sediment dynamics

(Fang et al.).

Submarine groundwater discharge (SGD) can be an important

source of carbon to coastal regions. Lui et al. found that the SGD of

two isolated coral islands (Liuqiu Island and Dongsha Island),

located in the northern South China Sea discharge high

dissolved inorganic carbon (DIC) and low pH water to

surrounding areas all year round. This acidic SGD waters may

cause observable dissolution of carbonate skeletons or shells of some

marine organisms, especially those with high Mg:Ca ratios. This

work indicated that the impact of SGD on coastal biogeochemical

cycles and ecosystems deserves further investigation.

Climate change and human activities can impact OC cycling

in deep ocean waters. The Tropical Western Pacific Ocean

(TWPO) is one of the most sensitive areas in response to

global change, and the oxygen minimum zone (OMZ) in this

region has expanded greatly during past decades. According to an

investigation in the Kocebu seamount area of the TWPO, the

presence of an OMZ in the water column of 590–1,350 m

reduced the decomposition rate of POC, causing more POC

to sink into deeper waters (Ma et al.). The interaction between

OMZ and POC sinking flux has far-reaching influence on deep

sea carbon cycling and burial in the context of global change.

In summary, both inorganic and organic carbon in ACZs are

characterized by steep concentration gradients and diverse

processes, and the spatial-temporal evolution of carbon

cycling in ACZs has been significantly modified by climate

change and human activities. Multidisciplinary approaches to

trace carbon cycling in ACZs from source to sink are necessary to

better understand transport and transformation of carbon

species in diverse habitats along the aquatic continuum and

land-ocean margin in the Anthropocene.
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