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Fluvial sediment supply (FSS) is one of the primary sources of sediment received by
coasts. Any significant change in sediment supply to the coast will disturb its
equilibrium state. Therefore, a robust assessment of future changes in FSS is
required to understand the coastal system’s status under plausible climatic
variations and human activities. Here, we investigate two modelling approaches
to estimate the FSS at two spatially heterogeneous river basins: the Irrawaddy River
Basin (IRB), Myanmar and the Kalu River Basin (KRB), Sri Lanka. We compare the FSS
obtained from a process-based model (i.e., Soil Water Assessment Tool: SWAT) and
an empirical model (i.e., the BQART model) for mid- (2046–2065) and end-century
(2081–2100) periods under climate change and human activities (viz, planned
reservoirs considered here). Our results show that SWAT simulations project a
higher sediment load than BQART in the IRB and vice versa in KRB (for both
future periods considered). SWAT projects higher percentage changes for both
future periods (relative to baseline) compared to BQART projections in both
basins with climate change alone (i.e., no reservoirs) and vice versa when planned
reservoirs are considered. The difference between the two model projections (from
SWAT and BQART) is higher in KRB, and it may imply that empirical BQART model
projections are more in line with semi-distributed SWAT projections at the larger
Irrawaddy River Basin than in the smaller Kalu River Basin.
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1 Introduction

Fluvial sediment transport from catchment to coast is a complex process predominantly
affected by geology, climate, geography, and human activities within the basin (Syvitski and
Milliman, 2007). Based on the contemporary global trends of fluvial sediment supply, Syvitski
et al. (2005) indicate that despite the generally increased soil erosion at river catchments (basin),
sediment volume received by the world’s coast is decreasing due to anthropogenic retention.
Many studies indicate that the future changes in climate (e.g., increased temperature and varied
precipitation) and human activities (e.g., development or removal of dams, changes in land-use
patterns, and urbanization) within river basins are most likely to result in significant changes to
their hydrological responses (Syvitski and Milliman, 2007; Overeem and Syvitski, 2009; Syvitski
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et al., 2009; Bamunawala et al., 2018a; Ranasinghe et al., 2019). In
addition to affecting the coastal ecosystems, any substantial variation
in fluvial sediment supply received by coasts will have severe
implications for the coast itself and the total sediment budget of a
coastal system (Syvitski et al., 2003) and hence, plays a crucial role in
shaping up the coasts and delta systems (Syvitski et al., 2009;
Bamunawala et al., 2018a; Bamunawala et al., 2020a; Dunn et al.,
2018; Dunn et al., 2019; Ranasinghe et al., 2019). If such changes along
coasts are to occur, they will inevitably associate with significant socio-
economic consequences. This is because the Low Elevation Coastal
Zone (LECZ), defined as areas within 10 m of mean sea level (Vafeidis
et al., 2011), is home to ~10% of the world’s population, with more
than a billion expected by 2050 (Merkens et al., 2016) and heavily
utilized by humans for myriad activities (e.g., navigation, defence, and
military, tourism, agriculture, use of various marine/ecosystem
resources and services, waste disposal, development of various
coastal infrastructures, research, art, and recreational activities)
(McGranahan et al., 2007; Nicholls et al., 2008; Nicholls et al.,
2011; Wong et al., 2014; Neumann et al., 2015; Oppenheimer et al.,
2019). Substantial variations of streamflow and sediment load can be
observed in many river systems worldwide. Recent studies have
reported that many large rivers (i.e., Yellow River, Yangtze River,
Chao Phraya River, Pearl River, and Nile River) show a considerable
reduction of sediment supply to the coast due to reservoirs and land-
use changes (Walling, 2009; Miao et al., 2011; Yang et al., 2015; Besset
et al., 2019; Ranasinghe et al., 2019). Therefore, it is necessary to
understand the physical response of river basins (fluvial sediment
supply in particular) under any substantial variation in climate-
change-driven impacts and anthropogenic activities.

Several numerical models have been developed over the past
decades to understand this complex phenomenon of sediment
erosion and the transport process at the basin scale. Some of them
are the Area Relief Temperature sediment delivery model (i.e., the
ART model) presented by Syvitski (2003), the BQART model
presented by Syvitski and Milliman (2007), Annualized Agricultural
Non-Point Source Pollution Model (i.e., the AnnAGNPS model) by
Bingner and Theurer (2001), Soil Water Assessment Tool (i.e., the
SWAT) presented by Neitsch et al. (2011), Limburg Soil Erosion
Model (i.e., the LISEM) by De Roo et al. (1996), Pan-European Soil
Erosion Risk Assessment (i.e., the PESERA) by Kirkby et al. (2008),
SPAtially Distributed Scoring model (i.e., SPADS model) presented by
De Vente et al. (2008), Pelletier (Pelletier, 2012), WATEM–SEDEM
(Rompaey et al., 2001) and WBMsed (Cohen et al., 2013). Some of
these models (e.g., LISEM, SWAT, and SPADSe) are highly detailed
and need many catchment-specific inputs, substantial computing
capacity and time. On the other hand, empirical (e.g., BQART and
AnnAGNPS) are much more efficient in computing capabilities and
are often forced with a smaller number of model inputs that can be
found via globally available datasets. While both these modelling
approaches have their advantages, the use of data-parsimonious
and computationally efficient models (i.e., reduced-complexity
models) to project the hydrological responses in the river basin, is
becoming a common practice, especially for integrated assessment of
catchment-coastal systems (Ranasinghe et al., 2012; Bamunawala
et al., 2018b; Bamunawala et al., 2020a; Bamunawala et al., 2020b;
Ranasinghe, 2020).

These emerging reduced complexity models that assess coastline
changes employ empirical models such as BQART model to compute
fluvial sediment supply to simulate coastline position change over

50–100 years at a reasonable computational cost and time
(Ranasinghe, 2020). However, these coastline change projections
inevitably contain significant uncertainties due to both variabilities
in modelling techniques adopted (i.e., model uncertainties) and
climate-related impact drivers and human activities (i.e., input
uncertainties) considered (Bamunawala et al., 2020a; Bamunawala
et al., 2020b). Therefore, it is also imperative to be able to quantify the
uncertainties associated with coastline change projections to facilitate
risk-informed decision-making by coastal zone planners and
managers (Bamunawala et al., 2020a; Bamunawala et al., 2020b;
Bamunawala et al., 2021). Computationally efficient reduced
complexity models like empirical methods are more suitable for
this purpose than the process-based modelling approaches that
require a high level of input data and sizeable computational
power. The empirical lumped method to estimate sediment load
enables fast computations in such reduced complexity models of
coastline change. On the other hand, a lumped empirical model
missed some spatial variabilities that may affect the model’s
accuracy when applied on different scales. However, which model
type (lumped-empirical or (semi-) distributed process-based)
performs better in a particular application depends on many
factors, e.g., existing variability in the catchment, quantity-quality
of input and calibration data, spatial-temporal scales of application,
etc. Therefore, it is necessary to have a better understanding and more
insights into the sediment load projections by empirical models
compared to the projections obtained by more distributed and
process-based models in different basin conditions. Such insights
into fluvial sediment load assessment would significantly enhance
its subsequent applications with coastline change models and their
projections.

Here, we compare sediment load estimations from a process-based
model (i.e., SWAT) applied in a distributed setting (by dividing the
basin into sub-basins and further into hydrological response units)
with the projections obtained from a lumped empirical model
(i.e., BQART model) to gain insights on the appropriateness of
using the latter modelling techniques in reduced complexity
models to assess the long-term evolution of coastlines. To achieve
this objective, two case study sites were selected: the Irrawaddy River
Basin (IRB) in Myanmar and the Kalu River Basin (KRB) in Sri Lanka,
so that they encompass a broad range of spatial scales (very large to
small). Compared to other major rivers in South and Southeast Asia,
these two basins’ main rivers are mostly unregulated and can be
considered pristine systems.

2 Materials and methods

2.1 Study areas

The Irrawaddy (Ayeyarwady) is the largest river basin in
Myanmar, covering more than 50% of the land area. The
Irrawaddy river is ~2,100 km long, while the drainage area of
410,000 km2 is primarily located in Myanmar (91%) and small
parts in China (4%) and India (5%) (Figure 1A). The Irrawaddy
River originates at the confluence of the Mali and N’Mai rivers and is
fed by its main tributary (the Chindwin River) at Pakokku. It is the
most important commercial waterway in Myanmar and ends in the
Andaman Sea to form the second-largest delta system in Southeast
Asia. The delta system begins ~120 km downstream of the Pyay
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station and propagates ~2.5 km/100 years (on average) into the
Andaman Sea (Rodolfo, 1975). The basin’s topography varies from
hilly mountain ranges upstream and low-lying delta downstream,
passing through middle flood plains and plateaus. More than 65% of
the basin area is covered by forest and agricultural lands. The most
commonly found soil type of the IRB is clay-rich Acrisols. The basin
receives a spatially varied annual rainfall of 500–4,000 mm, mainly
during the monsoon season (May to October), with the average daily
temperature ranging between 11 and 34°C within a year. The
Irrawaddy river carries ~380 Billion m3 of water and ~325 Million
tons of sediment annually at Pyay station.

The Kalu River Basin is the second largest river basin in Sri Lanka
and receives high rainfalls leading to high river flows. The Kalu River
(Kalu Ganga) originates from the Samanala mountain range in the
South-central part of Sri Lanka and falls out to the sea at Kaluthara
after traversing ~129 km (Figure 1B). The drainage area of the Kalu
River is ~2,787 km2. The coastal zone adjacent to the Kalu river outfall
comprises a small tidal inlet system experiencing a .6 m oceanic tidal
range. Much of the basin is utilized for rain-fed paddy cultivation,
rubber, tea, and other commercial crops scattered throughout the

basin. Clay-rich Acrisol is the most dominant soil type found in the
basin. The average annual rainfall in the basin is ~3,800 mm, mainly
driven by the southwest monsoon (May–September). The average
daily temperature in the basin is ~25°C. The Kalu river carries
~4,000 Million m3 of water and ~0.7 Million tons of sediment load
annually (on average) to the sea.

2.2 The SWAT description and input data

The Soil Water Assessment Tool (SWAT), developed by USDA
Agricultural Research Service (Arnold et al., 1998; Neitsch et al., 2011),
is a process-based continuous-time model for catchment simulations.
In SWAT, a river basin is partitioned into sub-basins and further
divided into hydrological response units (HRUs) based on land use,
soil type, and slope classes. HRUs are the primary computational units
of SWAT. Major catchment processes modelled in SWAT are
hydrology, soil erosion, nutrients/pesticides (water quality), plant
growth, and channel routing. SWAT estimates the surface runoff of
each HRU using the Soil Conservation Services-Curve Number (SCS-

FIGURE 1
Irrawaddy river basin in Myanmar (A), Kalu river basin in Sri Lanka (B).

Frontiers in Earth Science frontiersin.org03

Sirisena et al. 10.3389/feart.2022.978109

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.978109


CN)(Soil Conservation Service, 1971; Soil Conservation Service
Engineering Division, 1986) or the Green and Ampt infiltration
method (Mein and Larson, 1973). In this study, the SCS-CN
method was used in all the simulations. The model estimates the
soil erosion at each HRU caused by rainfall and runoff using the
Modified universal Soil Loss Equation (MUSLE) (Williams and
Berndt, 1977; Wischmeier and Smith, 1978) and assumes that all
eroded sediments reach the channels. MUSLE (Eq. 1) is the modified
version of the Universal Soil Loss Equation (USLE). In this version, the
rainfall energy factor in USLE is replaced with the runoff factor, which
improves sediment predictions and allows for the simulation of
individual storm events (Neitsch et al., 2011).

sed � 11.8 · Qsurf · qpeak · areahru( )0.56KUSLE · CUSLE · PUSLE · LSUSLE
· CFRG

(1)
where, sed is the sediment yield (tons), Qsurf is the surface runoff (mm),
qpeak is the peak runoff (m3/s), areahru is the area of HRU (ha),
KUSLE, CUSLE, PUSLE, and LSUSLE are USLE soil erodibility factor,
cover, and management factor, support practice factor, and
topographic factor, respectively, and CFRG is the coarse fragment factor.

The sediment transport model used in SWAT consists of two
processes (i.e., deposition and degradation) which determine the
magnitude of sediment generated within a river reach. The amount
of sediment deposition or degradation depends on several factors,
such as the maximum sediment concentration transported with river
flow (Eq. 2), according to Bagnold’s Equation (Neitsch et al., 2011),
flow velocity, flow rate, soil cover, and erodibility of the reach.

concsed,ch,mx � csp · vspexpch,pk (2)

where, concsed,ch,mx is the maximum sediment concentration
transported by water (ton/m3), csp is the sediment transport
coefficient; vch,pk is the peak velocity in the river (m/s), and spexp
is the exponent of the velocity.

When the maximum sediment concentration that can be carried
by the water flow is less than the sediment concentration of the reach,
sediment deposition (Eq. 3) occurs and vice versa for sediment
degradation (Eq. 4).

seddep � concsed,ch,i − concsed,ch,mx( ).Vch (3)
seddeg � concsed,ch,mx − concsed,ch,i( ).Vch ·KCH · CCH (4)

where, seddep and seddeg are the deposited and reentratined sediment
volumes in the reach, respectively (tons), concsed,ch,i is the sediment
concentration of the reach at the initial time (ton/m3), concsed,ch,mx is
the maximum sediment concentration, which can be carried by water
(ton/m3), Vch is the water volume in the reach (m3),Kch is the erodibility
factor of the channel, and CCH is the cover factor of the channel.

The amount of sediment (in tons) flowing out from a river reach
(Eq. 5) is calculated based on the sediment amount (in tons–based on
the initial amount of suspended sediment in the reach, deposited and
degraded sediments), and volume of outflows.

sedout � sedch · Vout

Vch
(5)

where, sedout is the amount of sediment outflow from the reach (tons),
sedch is the suspended sediment load in the reach (tons), and Vout is
the outflow volume (m3).

As model inputs, SWAT requires surface elevation data (digital
elevation model (DEM)), land use, soil characteristics, land
management, and daily climatic data (i.e., precipitation, maximum
and minimum temperatures). In this study, all the spatial data
(i.e., DEM, landuse, and soil) were obtained from freely available
global products. Hydro-meteorological data (i.e., precipitation,
temperature, streamflow, and sediment load) were obtained from
local authorities in the two countries (i.e., Myanmar and Sri Lanka)
and previous studies and reports. The SWAT model setup for each
basin was calibrated and validated for streamflow and sediment loads.
At first, streamflowwas calibrated and validated with the available data
at eight stations in IRB and 3 stations in KRB. These models were
subsequently calibrated and validated for sediment load at 3 stations in
IRB and at the basin outlet of KRB. The detailed information on input
data, calibration, and validation of the SWAT models for streamflow
and sediment loads at the Irrawaddy and Kalu River Basins are
presented in Sirisena et al., 2018, Sirisena et al., 2021a, and Sirisena
et al., 2021b.

In SWAT simulations for future periods, precipitation and
temperature data were obtained from three General Circulation
Models (GCMs) for the Irrawaddy Basin and three Regional
Climate Models (RCMs) for the Kalu Basin under RCP 2.6 and
RCP 8.5. Here, simulations were performed for the two future
periods considered (i.e., 2046–2065 (mid-century) and 2081–2100
(end-century)). The detailed descriptions of GCMs and RCMs are
provided in Supplementary Table S1 and the selection of the respective
GCMs and RCMs are summarized in Sirisena et al. (2021a), Sirisena
et al. (2021b), respectively. It is assumed that prevailing land-use
conditions will remain invariant throughout the modelling period, and
the inclusion of planned reservoirs is the only future human activity
considered. For the future periods, out of the several planned
reservoirs in the Irrawaddy basin, six large reservoirs having
capacities of 17.7, 2.2, 2.6, 11.2, 13.2, and 8.6 billion m3 were
considered to analyze their impacts on streamflow and sediment
transport using SWAT (more details can be found in Sirisena,
2020; Sirisena et al., 2021a). Each reservoir and its trapping
efficiency are individually represented in the SWAT model.

2.3 The BQART model description and input
data

Many coastal studies have used BQART presented by Syvitski and
Milliman (2007) to project annual fluvial sediment supply to the coast
(e.g. Balthazar et al., 2013; Bamunawala et al., 2018a; Bamunawala
et al., 2020a; Bamunawala et al., 2020b; Bamunawala et al., 2021).
BQART was developed using data from 488 global river basins, and it
estimates the long-term average annual suspended sediment load
using the following equations.

Qs � ωBQ0.31 A0.5 RT forT≥ 20C (6)
whereQs is the sediment load in kg/s orMT/yr withω = 0.02 or 0.0006,
respectively, B is the lithology and human impact index, Q is the
annual streamflow from the basin (km3/yr), A is the basin area (km2),
R is the relief of the basin (km), T is mean annual temperature of the
basin (oC).

The term ‘B’ accounts for geology and human activities, which is
defined as;
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B � IL 1 − TE( )Eh (7)
where I is the glacial erosion factor (I ≥ 1), L is the basin-wide lithology
factor, TE is reservoir trapping efficiency, and Eh is the human-
induced erosion factor.

The term I is defined as

I � 1 + 0.09Ag (8)
where, Ag is the percentage of ice coverage area in the basin.

The main rivers in the two study areas are mostly in pristine
condition. However, as mentioned earlier, six large planned reservoirs
were considered in the hydrological simulations of the Irrawaddy
basin. Since BQART is a lumped model, the trapping efficiency is
defined for the entire basin. Therefore, for BQART applications, the
basin-wide Trapping Efficiency (TE) from the six reservoirs was
estimated using the method proposed by Vörösmarty et al. (2003)
(from Eqs 6–11). Vörösmarty et al. (2003) developed the basin-wide
trapping efficiency model for large reservoirs (>500 MCM) by
considering 633 reservoir data across the world. This basin-wide
trapping (TEbasin) is derived by considering the geographical
locations of the reservoirs and the sediment residence time from
236 regulated river basins. Figure 2 shows the schematic diagram of a
representative basin as considered by Vörösmarty et al. (2003) in this
derivation.

Δτreg,j � ∑n
1Vi

Qj
eg.

V2 + V3 + V4 + V5( )
QB

( ) (9)

TEreg,j � 1 − 0.05					
Δτreg,j

√ (10)

TEbasin � ∑m
1 TEreg,j Qj

Qm
(11)

where, Δτreg,j is the residence time of reservoir areas of jth regulated
sub-basin of the basin (j is A, B, and C here), Vi is the operational
volume of ith reservoir in j, Qj is the discharge at regulated sub-basin j,
TEreg,j is approximated trapping efficiencies of jth sub-basin, TEbasin is
the discharge-weighted trapping efficiency of the basin based on

discharge, Qm is discharge at the basin outlet, n is the number of
reservoirs in each regulated sub-basin j, and m is the number of
regulated sub-basins in the basin

For the Irrawaddy RB, different TEbasin values were calculated for
each General Circulation Model (GCM) under RCP 2.6 and RCP
8.5 for the two future periods considered (i.e., 2046–2065 (mid-
century) and 2081–2100 (end-century)). Since there are no planned
reservoirs for the Kalu basin, reservoir effects are not considered in the
fluvial sediment load estimations. Furthermore, a zero trapping
efficiency was considered while implementing the BQART model
for both river basins to explicitly represent the climate-driven
impacts on fluvial sediment supply. The calculation of TEbasin (Eq.
11) is based on the volume of reservoirs, discharge from reservoirs, and
discharge at the basin outlet. Based on three GCMs and two RCPs, the
average basin-wide trapping efficiency (TEbasin) of the Irrawaddy RB
was computed as 42%. The river basin and reservoir data used by
Vörösmarty et al. (2003) include some Asian River Basins, including
Mekong (0%–20%), Chao-Pharya (20%–40%), Ganges and
Brahmaputra (0%–20%), Krishna (80%–100%), Yangetz Basin
(60%–80%), and Indus (40%–60%). The number of large reservoirs
within each basin varies from 3–20. Furthermore, large reservoirs
(633) and small reservoirs (>40,000) in the world contribute 30% and
23% of sediment trapping, respectively (Vörösmarty et al., 2003).
Considering this wide range of computed trapping efficiencies, the
above calculated TEbasin of the Irrawaddy RB appears to be reasonable.

Table 1 summarizes the input parameters of the BQART model.
The river discharge (Q) values were obtained from the SWAT
simulation results presented in Sirisena, 2020; Sirisena et al., 2021a;
Sirisena et al., 2021b over the baseline and mid-and end-century
periods for RCP 2.6 and RCP 8.5. The mean temperature (T) over the
basins was obtained from the three selected GCMs/RCMs (discussed
in Sirisena et al., 2021a; Sirisena et al., 2021b for the same RCPs. The
human-induced erosion factor (Eh) in Eq. 7 is based on land use,
socio-economic situation, and population density. The suggested
optimum range of Eh is 0.3 ≤ Eh ≤ 2.0 (Syvitski and Milliman,
2007). Similar to the assumption made for the land-use change in
SWAT simulations, for future simulations with the BQARTmodel, the
human-induced erosion factor (Eh) is assumed to remain constant
throughout the 21st century (Table 1).

3 Results and discussion

3.1 Irrawaddy River Basin

3.1.1 Annual sediment fluxes to the coast simulated
by BQART

BQART projected sediment loads at the basin outlet under
different scenarios are presented in Figure 3 (Panel 1). The
projected mean annual sediment loads for RCP 8.5 are higher than
that of RCP 2.6 during both future periods considered. Sediment
supply to the coast is projected to increase by 29%–41% (relative to the
baseline period: 1991–2005) by the end-century (2081–2100) when the
future changes are only due to climate change (RCP 8.5). In
comparison, fluvial sediment supply is projected to decrease by
19%–24% due to the combined effect of climate change (RCP 8.5)
and reservoirs during 2081–2100. The BQART projected sediment
load varies between 319 and 356 MT/yr and between 326 and 412 MT/
yr during mid-and end-century periods, respectively, under the

FIGURE 2
Vörösmarty et al. (2003)’s representation of a basin for estimating
basin-wide sediment trapping for large reservoirs. Source - Vörösmarty
et al. (2003). (A–C) are sub-basins.
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assumed zero trapping condition (i.e., no reservoirs). These values are
projected to reduce to 179–210 MT/yr and 189–247 MT/yr for the
same two periods, respectively, when the reservoirs are considered
(with basin-wide trapping efficiencies, see Methods). Due to the
combined effects of climate change and reservoirs, the average
reduction of sediment supply is about 41% for both future periods
relative to that due to climate change alone. Therefore, it is evident that
the basin-wide trapping (TEbasin) is the main influencing factor (TE =
0.42; Table 1) for this reduction.

3.1.2 Comparison of SWAT and BQART projected
sediment loads: The Irrawaddy basin outlet

The SWAT model setup and sediment load projections at the
IRB are described in detail in Sirisena et al. (2018) and Sirisena et al.
(2021b). Therefore, only a summary is presented in Methods. The
SWAT-derived baseline period and future projections of sediment
loads at the Irrawaddy RB outlet are consistently higher than that
obtained from BQART for all three GCMs considered (Figure 3).
For the baseline period (1991–2005), simulated mean sediment
loads from SWAT and BQART are 365–388 MT/yr and
290–307 MT/yr, respectively (Figure 3-Panel 1). These simulated
values are obtained for three GCMs (viz., CSIRO Mk3.6,
HadGEM2-AO, and HadGEM2-ES). The BQART-derived
sediment load values for the baseline period are 17%–23% lower
than those derived from SWAT for the same period. Syvitski and
Milliman (2007) have calculated the average sediment yield in the
Irrawaddy RB as 258.6 MT/yr with input parameters of Q =
13,560 m3/s, A = 405,963 km2, R = 4.8 km, and T = 22°C based
on previous studies by Milliman and Meade (1983), Milliman and
Syvitski (1992), and Syvitski (2003), which is not too different from
the BQART prediction obtained here, considering the level of
aggregation in the model.

During the mid-century period (2046–2065, Figure 3A-Panel
2, the BQART projections are 13%–30% and 48%–57% lower than
the SWAT projections under RCP 2.6 without and with
reservoirs, respectively. Those values under RCP 8.5 are 12%–

28% and 46%–56% for without and with reservoirs, respectively
(Figure 3C-Panel 2). Similarly, during the end-century period,
BQART projections are 23%–29% and 54%–57% lower than the
SWAT projections under RCP 2.6 for simulations without and
with reservoirs, respectively (Figure 3B-Panel 2). Under RCP 8.5,
those BQART projections are 15%–33% (without reservoirs) and
49%–59% (with reservoirs) lower than SWAT projections
(Figure 3D-Panel 2).

In general, BQART projections show smaller increments with
climate change only and a higher reduction of sediment loads with
reservoirs (relative to the baseline period) compared to the
corresponding SWAT-derived projections, except for the SWAT
simulation driven by CSIRO Mk3.6 (Figure 4). With climate change
alone, during the mid-century period, SWAT and BQART model
projections indicate changes in sediment load by -5%–31% and 7%–
10% under RCP 2.6, respectively (compared to the baseline period,
Figure 4A). The same projections under RCP 8.5 are -1%–36% (with
SWAT) and 13%–23% (with BQART) (Figure 4C). Similarly, SWAT
and BQART model projections indicate increases in sediment load by
14%–25% and 9%–13% under RCP 2.6, respectively, during the end-
century period (Figure 4B). Under RCP 8.5 for the same period
(Figure 4D), SWAT and BQART projections show increments of
17%–66% and 29%–41%, respectively. In contrast, with planned
reservoirs, under RCP 2.6, BQART projects sediment load reductions
of 35%–40% and 35%–38% during mid-and end-century periods,
respectively (compared to the baseline period). The same BQART
projections under RCP 8.5 are 27%–34% (mid-century) and 19%–
24% (end-century). On the contrary, SWAT projections indicate
increases of sediment loads by -10%–25% (mid-century) and 9%–
20% (end-century) under RCP 2.6. Similarly, under RCP8.5, the
SWAT simulations indicate -6%–31% (mid-century) and 9%–20%
(end-century) variations in sediment loads supplied to the coast.
Such directional changes in the projections obtained from the two
models are a serious cause for concern, especially when used in reduced
complexity modelling approaches to assess future coastline variations.

There could be several reasons for these significant mismatches
between the two models. BQART uses the mean annual streamflow
and thus does not differentiate the inter-annual variability in sediment
load. On the other hand, SWAT simulates daily time steps, thus
accounting for both high and low flow conditions. SWAT simulations
provide the total sediment load at the basin outlet for a given year. It is
based on the sediment erosion within the basin and sediment routing
through the river reaches. Another distinction between SWAT and
BQART is in the use of temperature data. BQART computes the
sediment load as a linear function of the basin’s mean annual
temperature. Furthermore, the mean annual temperatures used in
BQART are not bias-corrected, and these raw GCM temperature
projections may underestimate the basin-wide temperature (see
Materials and methods section). All these factors may have
contributed to the lower sediment load estimates given by BQART.
A significant difference (up to 53%) in sediment load projections
obtained from the two models can be seen in simulations that account

TABLE 1 Summary of model input parameters.

Parameter Irrawaddy basin Kalu basin

Lithology factor (L)a 1.0 0.5

Sediment Trapping (TE) 0.42b 0

Human-induced erosion factor (Eh) c 1 2

Area (A in km2) 371,558 2,787

Relief of the basin (R in km) 5.7 2.25

aobtained from Syvitski and Milliman (2007).
bindicates the average basin-wide trapping (TE) for the entire Irrawaddy basin obtained from different GCMs (CSIROMk3.6, HadGEM2-AO, and HadGEM2-ES), RCPs (RCP 2.6 and RCP 8.5), and

two periods (2046–2065 and 2081–2100), but this value changes for each case (depending on GCM, RCP and periods considered).
cEh represents the current condition obtained from Syvitski and Milliman (2007).
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for planned reservoirs. Such differences may have occurred due to the
estimated basin-wide trapping efficiency used in BQART as opposed
to reservoir-specific TEs used in SWAT. Based on the calculated basin-

wide trapping efficiency, approximately 42% of the sediment load is
expected to be trapped by the reservoirs. However, no records are
available to verify this value for the Irrawaddy basin.

FIGURE 3
Comparison of the mean annual sediment projections (Millions Tons (MT)) at the Irrawaddy basin outlet obtained from SWAT and BQART. Panel 1 shows
the estimates of sediment loads for the baseline period (1991–2005) and Panel 2 shows two future periods (2046-2065 and 2081–2100) under two RCPs (RCP
2.6 (A,B) and 8.5 (C,D), respectively. The shaded area in Panel 2 represents the results under CC + Reservoirs scenario.
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3.2 Kalu river basin

3.2.1 Comparison of SWAT and BQART projected
sediment loads: The Kalu basin outlet

Detailed descriptions of the SWAT model setup and
simulated sediment load projections at the KRB are presented
in Sirisena (2020) and Sirisena et al. (2021a). A comparison of the
above BQART projections with the results obtained using SWAT
(under the same conditions) is shown in Figure 5. Here, the
BQART projections of sediment load at the basin outlet are up to
an order of magnitude larger than that of the SWAT simulation
results. For the baseline period (Figure 5-Panel 1), SWAT and
BQART respectively simulate 0.63–0.66 MT/yr and
2.72–2.75 MT/yr of sediment load with inputs from
3 RegCM4 RCMs. During the end-century period, the BQART
model projections are 234%–281% and 116%–145% higher than
the SWAT simulations for RCP 2.6 and RCP 8.5, respectively
(Figure 5B–D-Panel 2).

In general, during both future periods, the SWAT simulations
show higher increments of sediment loads under both RCPs

(Figure 6). For example, during the end-century period, SWAT
and BQART project increased sediment load by 20%–32% and
3%–6% under RCP 2.6, respectively. For RCP 8.5, the SWAT and
BQART projected increases in sediment loads are 128%–158% and
30%–35%, respectively. All these changes are calculated relative to
the baseline period simulations of the respective models. Less
increment in sediment load projections by BQART (compared to
SWAT projections) relative to the baseline period is likely due to
its low sensitivity to streamflow. In BQART model, the streamflow
is associated with a power of 0.31. Thus, for example, a 10 times
increase in streamflow will only result in ~2 times increase in
sediment load projection with the BQART model. Here,
streamflow is projected to increase by 67%–87% under RCP
8.5 by the end century. However, such significant increases in
streamflow will have considerable implications on increasing the
SWAT projected sediment loads.

One explanation for the significant differences between the
sediment loads projected by the two models could be the use of
the aggregated quantity human-induced erosion factor (Eh) in
BQART. This factor is based on countrywide GNP/capita (Gross

FIGURE 4
Comparison of the relative changes in mean annual sediment projections under RCP 2.6 (A, B) and RCP 8.5 (C, D) for future periods (2046–2065 and
2081–2100) compared to the baseline periodmodel estimates at the Irrawaddy basin outlet using SWAT and BQART. The shaded area in each plot represents
results under CC +Reservoirs scenario. The positive changes (+%)mean that the sediment load is projected to increase in the future compared to the baseline
period, while negative changes (- %) mean that the sediment load is projected to decrease.

Frontiers in Earth Science frontiersin.org08

Sirisena et al. 10.3389/feart.2022.978109

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.978109


Net Product per capita) and population density. Hence using the value
for all of Sri Lanka, by following Syvitski and Milliman (2007), an Eh

value of 2.0 was used in the calculations for the Kalu River Basin.

However, as the Kalu River Basin contains large areas of forest reserves
and settlements of low-income communities, this Eh value is likely to
be a different value.

FIGURE 5
Comparison of the mean annual sediment projections (Million tons (MT)) at the Kalu basin outlet obtained from SWAT and BQART. Panel 1 shows the
estimated sediment loads for the baseline period (1991–2005) and Panel 2 shows two future periods (2046–2065 and 2081–2099) under two RCPs (RCP
2.6 (A,B) and RCP 8.5 (C,D), respectively.
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3.3 BQART projections with updated Eh values

The parameter ‘B’ in the BQART represents the geology and
human activities in the basin. The human-induced erosion factor (Eh)
is one of the main influencing factors and is linearly correlated with B
and consequently with the fluvial sediment load computed by BQART;
Syvitski and Milliman (2007) have derived the Eh factor based on land
use, socio-economic situation and population. However, recent studies
by Balthazar et al. (2013); Bamunawala et al., 2020b; Bamunawala
et al., 2020a; Bamunawala et al., 2021 have shown that the human
footprint index (HFPI) presented by Wildlife Conservation Society-
WCS and Center for International Earth Science Information
Network-CIESIN-Columbia University (2005) can be a better
representation of the anthropogenic influences on fluvial sediment
load estimation via BQART. The HFPI was developed based on several
global datasets, including population, urban areas, land use, navigable
waterways, roads, and electrical infrastructure (Sanderson et al., 2002).

As a further test of SWAT and BQART projected fluvial sediment
loads, the BQART projections were re-calculated with the updated Eh

(using HFPI) and re-compared with the corresponding SWAT
projections. To do this, HFPI values, which range from 0–100,
need to be rescaled to the global range of Eh (0.3 ≤ Eh ≤ 2.0)

estimated by Syvitski and Milliman (2007) for use in the BQART.
HFPI values across the Irrawaddy and Kalu River Basins were obtained
from 0.25° × 0.25° resolution data (Wildlife Conservation Society-
WCS and Center for International Earth Science Information
Network-CIESIN-Columbia University, 2005) and rescaled
accordingly. Subsequently, the basin average rescaled HFPI values
were used with BQART to re-compute the fluvial sediment load at the
outlets of the two basins. The comparison of projected sediment loads
from SWAT and BQART (with the two different Eh factors; one
derived from HFPI and one following Syvitski and Milliman (2007)
with climate change only (i.e., no reservoirs) is shown in Table 2. With
the HFPI-based Eh, BQART projects lower sediment loads in both
basins than its previous estimations. This is because the HFPI-based
human-induced erosion factors (Eh) for the two basin areas are almost
half the Eh values suggested by Syvitski andMilliman (2007) (Table 1).

3.4 Comparison of the modelled results in the
two basins

The sediment load projections by SWAT and BQART are different
in the two river basins. In Irrawaddy RB, SWAT simulations project a

FIGURE 6
Comparison of the relative changes of mean annual sediment projections under RCP 2.6 (A, B) and RCP 8.5 (C, D) for future periods (2046–2065 and
2081–2099) compared to the baseline periodmodel estimates at the Kalu basin outlet using SWAT and BQART. The positive changes (+%)mean that sediment
load is projected to increase in the future compared to the baseline period.
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higher sediment load than those predicted by BQART and vice versa in
the Kalu RB. For example, when using the human-induced erosion
factor (Eh) obtained from Syvitski and Milliman (2007), for the
baseline period (1991–2005), simulated sediment loads by the
models differ by 18%–22% in the Irrawaddy RB and 315%–331%
in the Kalu RB. During the end-century period under RCP 8.5, those
differences in projected sediment loads are 15%–33% in the Irrawaddy
RB and 116%–145% in the Kalu RB. During the same period and
under the same RCP, the projected sediment supply is further reduced
in the Irrawaddy RB due to the proposed reservoirs. Therefore, the
difference in sediment loads between BQART and SWAT projections
is 48%–59%. Compared to the baseline period (1991–2005) model
estimations, BQART projections generally show lower increments
than SWAT projected increments in the Irrawaddy and Kalu River
Basins when the reservoirs are not considered (i.e., climate change
only).

When adopting the human-induced erosion factor (Eh)
derived from the human footprint index (HFPI), the baseline
period (1991–2005) projected sediment loads by BQART and
SWAT differ by 46%–50% and 93%–101% in the Irrawaddy RB
and the Kalu RB, respectively. For the end-century period under
RCP 8.5, those differences in the sediment load projections are
70%–72% and 1%–14% in the Irrawaddy RB and the Kalu RB,
respectively.

BQART does not provide information on sediment erosion,
transport, and deposition in the flood plains, as it only estimates
the sediment delivery rate at/near sea level of the basin outlet (Syvitski
and Milliman, 2007). The empirical BQART equation is developed

based on 488 global river datasets comprising catchments sizes
spanning a large range (160 km2–5,853,804 km2) with high
accuracy in calibration (R2 = 0.96 for 292 basins) and validation
(R2 = 0.94 for 196 basins) (Syvitski and Milliman, 2007). However, an
analysis by De Vente et al. (2013) summarized that non-linear
regression models like BQART might provide more accurate results
than distributed models such as SWAT would for sediment yield in
basins larger than 10,000 km2. Nevertheless, a study of the Blue Nile
and Atbara river systems showed that a global flux model such as
BQART is less suited for capturing highly spatially varied sediment
yields ranging from thousands of ton/km2/year in a basin (Balthazar
et al., 2013). Although, spatially distributed models such as SWAT
demand more input data and high calibration efforts they are more
suitable for assessing environmental change scenarios such as those
due to climate change, land use, and management practices (Neitsch
et al., 2011). Therefore, both models have their advantages and
disadvantages in sediment load estimation for a selected region
under diverse environmental and geographical conditions.

4 Conclusion

This study aimed to estimate fluvial sediment supply to the
coast using a distributed process-based model (SWAT) and an
empirical lumped model (BQART) in the Irrawaddy River
(Myanmar) and Kalu River (Sri Lanka) Basins. Similar to the
SWAT simulations described in Sirisena (2020), the BQART
simulations were undertaken with and without reservoirs over

TABLE 2 Projected average annual sediment loads in Million tons per year (MT/yr) for the Irrawaddy and Kalu basins under RCP 2.6 and RCP 8.5, without reservoirs.

GCM/RCM inputs RCP Mid-Century End-Century

Sediment load (MT/yr) Sediment load (MT/yr)

A B C A B C

Irrawaddy River Basin

CSIRO Mk3.6 RCP 2.6 370 323 207 443 341 218

RCP 8.5 386 341 218 454 386 247

HadGEM2-AO RCP 2.6 483 337 215 461 334 214

RCP 8.5 455 352 225 618 412 264

HadGEM2-ES RCP 2.6 397 319 204 458 326 209

RCP 8.5 495 356 228 572 409 262

Kalu River Basin

MIROC5 RCP 2.6 0.76 2.92 1.36 0.76 2.90 1.35

RCP 8.5 0.88 3.04 1.41 1.45 3.54 1.65

MPI-ESM-MR RCP 2.6 0.77 2.81 1.31 0.87 2.89 1.35

RCP 8.5 0.97 3.06 1.42 1.69 3.66 1.70

NORESM1-M RCP 2.6 0.71 2.81 1.31 0.79 2.83 1.32

RCP 8.5 0.80 2.94 1.37 1.61 3.65 1.70

A: Estimated load from SWAT simulations (shaded values), B: Estimated load from BQARTwith human-induced erosion factor; Eh = 1 for the Irrawaddy Basin and Eh = 2 for the Kalu Basin obtained

from Figure 7 in Syvitski and Milliman (2007) and C: Estimated load from BQART with human-induced erosion factor Eh = 0.64 for the Irrawaddy Basin and Eh = 0.93 for the Kalu Basin obtained

from the human footprint index. SWAT results for both basins are from simulations with the calibrated parameter set presented in Sirisena (2020).

Frontiers in Earth Science frontiersin.org11

Sirisena et al. 10.3389/feart.2022.978109

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.978109


the two future periods considered (i.e., 2046–2065 and 2081–2100)
for the RCP 2.6 and 8.5.

Our results show significant differences between the sediment
loads projected by the two models in the two basins. In the Irrawaddy
River Basin, SWAT simulations project higher sediment loads than
BQART. In contrast, SWAT simulations project lower sediment loads
than BQART projections in the Kalu River Basin. For both future
periods, relative to the baseline period (1991–2005), BQART-derived
projections show lower future increases than SWAT in both basins
with climate change alone (i.e., no reservoirs). Our results also indicate
that empirical BQART model-based projections are more in line with
the semi-distributed SWAT model-based projections in the larger
Irrawaddy RB than in the smaller Kalu RB.

Both SWAT and BQART model projections possess
considerable variabilities due to the inherent uncertainties in
projected future climatic inputs (i.e., precipitation and
temperature) and other variables such as human-induced
erosion factor and model calibration parameters. An aggregated
global model such as the BQART does not always guarantee equally
good results in all regions, as it is not explicitly calibrated for
individual study regions. SWAT, as a standard practice, is
calibrated to the specific basin, thus, the quality of SWAT
model results also depends on the quality/quantity of data
available for calibration. On the other hand, reservoir
simulation with SWAT requires detailed information, such as
operational capacity, high flood level, operation rules/practices,
and sediment data. In practice, some of these reservoir-specific
information/data are often unavailable, and approximations are
commonly used. Thus, both model approaches adopt certain
approximations, adding to the uncertainty of the projected
sediment loads.
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