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Geothermal heat flow (GHF) data measured directly from boreholes are sparse.

Purely physics-based models for geothermal heat flow prediction require

various simplifications and are feasible only for few geophysical observables.

Thus, data-driven multi-observable approaches need to be explored for

continental-scale models. In this study, we generate a geothermal heat flow

model over Africa using random forest regression, originally based on sixteen

different geophysical and geological quantities. Due to an intrinsic importance

ranking of the observables, the number of observables used for the final GHF

model has been reduced to eleven (among them are Moho depth, Curie

temperature depth, gravity anomalies, topography, and seismic wave

velocities). The training of the random forest is based on direct heat flow

measurements collected in the compilation of (Lucazeau et al., Geochem.

Geophys. Geosyst. 2019, 20, 4001–4024). The final model reveals structures

that are consistent with existing regional geothermal heat flow information. It is

interpreted with respect to the tectonic setup of Africa, and the influence of the

selection of training data and observables is discussed.
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1 Introduction

Temperature gradients measured directly from boreholes are sparsely available.

Estimates of continental geothermal heat flow (GHF) can, therefore, only be derived

indirectly from geophysical and geological quantities such as geomagnetic, seismic,

gravity, topographic, and compositional data. This holds in particular for recent

studies of Antarctica [e.g. (Burton-Johnson et al., 2020; Lösing and Ebbing, 2021; Stål

et al., 2021)] but also for Africa, where advanced methods are required to incorporate

sparse direct measurements with such indirect observables. Studies by (Shahdi et al., 2021;

He et al., 2022) compared several machine learning (ML) methods for geothermal heat

flowmodeling at regional scales and indicated that these methods can perform as good as,

and sometimes better than, physics-based models. Physics-based models [such as, e.g.

(Lösing et al., 2020; Sobh et al., 2021)] often require various simplifications and are
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feasible only for few geophysical observables. Thus, if one wants

to include several different geophysical and geological

observables for the prediction of GHF, as seems necessary for

continental-scale models, purely physics-based models become

unfeasible. Data-driven machine learning approaches for

Greenland and Antarctica, both with very sparse direct GHF

information, have been presented, e.g., in (Rezvanbehbahani

et al., 2017; Lösing and Ebbing, 2021; Stål et al., 2021), with

the former two publications using gradient boosted regression

trees and the latter one a similarity detection approach. A

random forest approach for modeling marine heat flow has

been investigated in (Li et al., 2022).

In this paper, we follow such a random forest approach to

generate a GHF model for Africa, initially based on sixteen

different geophysical and geological observables. However, due

to an intrinsic importance ranking of the random forest

approach, we reduce the number of used observables to eleven

for the final GHF model (namely, the used observables are Moho

depth, lithospheric density, LAB depth, geoid, free air and

Bouguer anomaly, topography, S wave velocity, shape index,

Curie temperature depth and P wave velocity). This final model

coincides well with already existing regional geothermal heat flow

information. A more detailed evaluation and interpretation can

be found in Section 4.

2 Data and geological background

2.1 Geothermal heat flow data

The New Global Heat Flow (NGHF) is a compilation of

previous GHF databases containing 69,730 data points, with an

average continental GHF of about 67 mWm−2 (Lucazeau, 2019).

The NGHF rates the quality of the measurements as follows:A, B,

C, D, and Z. To filter training data, we extract records with A and

B ratings that correspond to less than 10% and less than 20%

variation of GHF measurement in boreholes, respectively. As a

result, the number of records is reduced to 12,707, with

minimum and maximum values of -3.0 and 5,146.0 mWm−2,

respectively, and a mean of 66.1 mWm−2. Furthermore, we

exclude records from NGHF with missing spatial coordinates

and missing GHF values. Additionally, we exclude records at

high latitudes beyond -60° and 80°, respectively, and oceanic

records (deeper than 1,000 m below sea level).

Exploratory data analysis revealed the presence of

63 measurements with GHF values (>200 mWm−2) and

13 measurements with GHF values (<10 mWm−2) inside the

A labeled data and 115 measurement points (>200 mWm−2) and

36 measurement points (<10 mWm−2) inside the A and B labeled

data. Supplementary Figure S2 in the supplementary material

depicts the locations of those measurements. These values,

together with negative values, are questionable and could be

attributed either to some local thermal activities such as

hydrothermal circulation or errors in measurements (Bachu,

1988). Hence, we exclude these values for our further

continental-scale evaluations. As a result, we obtain a final

dataset containing both A and B ratings. This GHF data will

serve as our reference throughout the course of this paper.

Additionally, we generate a reference dataset containing only

A labeled data. Results for the latter data set can be found in

Supplementary Figure S5 in the supplementary material and are

briefly discussed in Section 4.1. The GHF model presented in the

main body of the paper is based on reference data labeled A

and B.

Figure 1 shows density plots and the basic statistics of the

eventually used data. It also depicts the histogram of binned GHF

measurements in Africa involving all records, records after

removal of questionable and incomplete information, records

after removal of deep-sea information, and records based on

different quality ratings n the NGHF database. Additionally,

Supplementary Figure S1 describes the same information

regarding global GHF measurements.

2.2 Geological and geophysical
observables

We chose sixteen further geological and geophysical

observables for the GHF model prediction, including global as

well as regional datasets for Africa (see Table 1). They are of

mixed types, categorical and continuous. Crossplots between

these observables and the available GHF reference data from

Section 2.1 are shown in Figure 2.

Curie temperature depth (CTD) is obtained from the global

model of (Gard and Hasterok, 2021). Moho and LAB depths are

provided by the WINTERC-G global model from (Fullea et al.,

2021). Upper mantle velocity models may shed light on the

mantle and lithospheric components of the GHF (Shapiro and

Ritzwoller, 2004). S wave velocities are derived from the global

model SL 2013sv, and the African regional model AF2019 is

obtained from (Schaeffer and Lebedev, 2013) and (Celli et al.,

2020b), respectively. The P wave velocity global model, DETOX-

P1, and the African regional model, AFRP20, are obtained from

(Hosseini et al., 2020) and (Boyce et al., 2021). In our set of

observables, we consider the P and S wave velocities at a depth of

150 km. The Digital Elevation Model (DEM), which represents

the topography in m, is obtained from ETOPO1 (Amante and

Eakins, 2009). ETOPO1 is a global relief model of the earth’s

surface with 1-arcminute resolution. We used the

EMAG2v3 geomagnetic anomaly map in nT from (Meyer

et al., 2017). EMAG2v3 is a global grid of geomagnetic

anomalies compiled from satellite, shipboard, and airborne

magnetic measurements at 2-arcminute resolution. Due to the

variation of geomagnetic anomaly data over several orders of

magnitude, we transformed it via Mlog = sgn(M) ln (1 + M/400)

and clipped it to the interval [ − 1, 1], where M is the original
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FIGURE 1
(A)Density plot of GHFmeasurements in Africa labeled Awithout questionable values (B)Density plot of GHFmeasurements in Africa labeled A
and Bwithout questionable values, (C)Histogram of binned GHFmeasurements in Africa involving all records, records after removal of questionable
and incomplete information, records after removal of deep-sea information, and records based on different quality ratings in the NGHF database.
(Lucazeau, 2019). �z = mean, ~z = median, s = standard deviation.

TABLE 1 The observables used in this study with their sources, number of records and range.

Observable Source Records Range

1 CTD (Gard and Hasterok, 2021) 65,341 (15, 74)

2 LAB Depth (Fullea et al., 2021) 12,232 (61, 300)

3 Moho Depth (Fullea et al., 2021) 12,232 (11, 67)

4 Proximity − to − Volcano (Siebert et al., 2015) 2,652 (0, 1)

5 Global Sv velocity (Schaeffer and Lebedev, 2013) 260,281 (-0.078, 0.095)

African Sv velocity (Celli et al., 2020b) 28,497 (-0.078, 0.095)

6 Global Pv velocity (Hosseini et al., 2020) 260,281 (-0.025,0.02)

African Pv velocity (Boyce et al., 2021) 124,609 (-0.025,0.02)

7 DEM (Amante and Eakins, 2009) 1,257,502 (-5140, 5109)

8 Geoid Height (Förste et al., 2013) 65,341 (-96, 67)

9 Geomagnetic Anomaly (Meyer et al., 2017) 1,257,502 (-1, 0.7)

10 Shape Index (Ebbing et al., 2018) 1,618,201 (-1, 1)

11 Free Air Anomaly (Förste et al., 2013) 65,340 (-0.18, 0.26)

12 Bouguer Anomaly (Ince et al., 2019) 65,341 (-0.55, 0.33)

13 Lithospheric Density (Afonso et al., 2019) 16,200 (3260, 3360)

14 Crustal Density (Afonso et al., 2019) 16,200 (2650, 2950)

15 Tectonic Regions (Schaeffer and Lebedev, 2015) 16,472 (1, 6)

16 Lithological Map (Gard et al., 2019) 1,257,502 (1, 16)

17 NGHF (A) (Lucazeau, 2019) 5,792 (6, 197)

NGHF (A&B) (Lucazeau, 2019) 12,707 (1, 197)
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geomagnetic anomaly data and Mlog the transformed quantity

that we use in the course of this paper. The four observables that

reflect gravity information are derived from the EIGEN-6C4

global model (Förste et al., 2013). Calculations of the geoid in m,

free-air gravity, and Bouguer gravity in mGals are performed by

ICGEM (Ince et al., 2019). We also include the gravity field

curvature shape index (Ebbing et al., 2018) derived from the two

horizontal and independent components of the satellite gravity

gradient from GOCE data (Pail et al., 2010). This is a

dimensionless quantity with an interval of [ − 1, 1]. The

average densities of the crust and lithosphere in kg/m−3 are

obtained from the LithoRef18 (Afonso et al., 2019) global model.

The proximity to the nearest young volcano is calculated

from the Global Volcanism Program (Siebert et al., 2015). The

distances between our target locations and a specific volcano are

computed along great circles and this distance is then

transformed into proximity via 1 − (dist/100) and clipped to a

unitless range of [0, 1]. Volcanoes farther away than 100 km from

the specific target location are excluded. We also included

categorical data on lithologies and tectonic regions. The global

lithology map (GLiM) database was compiled by (Gard et al.,

2019). It groups the surface lithologies into sixteen classes. As for

the tectonic regionalization, the model proposed by (Schaeffer

and Lebedev, 2015) delineates six tectonic regions.

FIGURE 2
Cross plots of the GHF measurements against geological and geophysical observables; the orange lines indicate the linear regression results.
Categorical observables are illustrated by boxplots. Red dots indicate outliers. Classes for tectonic regionalizations refer to: 1 = Cratons; 2 =
Precambrian Fold Belts and Modified Cratons; 3 = Phanerozoic Continents; 4 = Ridges & Backarcs; 5 = Oceanic; 6 = Oldest Oceanic. Classes for
GLIM inside Africa refer to: 1 = Unconsolidated sediments; 2 = Siliciclastic sedimentary rocks; 3 = Pyroclastics; 5 = Carbonate sedimentary
rocks; 6 = Evaporites; 7 = Acid volcanic rocks; 8 = Intermediate volcanic rocks; 9 = Basic volcanic rocks; 10 = Acid plutonic rocks; 11 = Intermediate
plutonic rocks; 14 = Water Bodies; 16 = No Data.

Frontiers in Earth Science frontiersin.org04

Al-Aghbary et al. 10.3389/feart.2022.981899

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.981899


We choose the IsolationForest routine (Liu et al., 2008;

Buitinck et al., 2013) to detect outliers in the data described

above. Those removed outliers are depicted as red points in

Figure 2. The Pearson correlation matrix for the given

observables before and after deleting the outliers is

provided in Supplementary Figures S3 and S4 in the

supplementary material. Figure 3 illustrates those eleven

observables (among the original sixteen observables) that

have eventually been used for the generation of the GHF

model presented in this paper. These observables are Moho

depth, lithospheric density, LAB depth, geoid, free air and

Bouguer anomaly, topography, S wave velocity, shape index,

Curie temperature depth and P wave velocity. The remaining

observables have been neglected due to an importance

ranking described later on in Section 3.3.

2.3 Gridding of the data

We imported the previously described observables and

stacked them into a multi-dimensional grid of 0.5° × 0.5°

resolution using Xarray (Hoyer et al., 2016). In grid cells

where no data for the geological or geophysical observable

under consideration is available or where the resolution of the

FIGURE 3
Illustration of the observables used in this study (A) Measured GHF, (B) Moho depth, (C) Lithospheric average density, (D)
Lithosphere–Asthenosphere Boundary (LAB) depth, (E)Geoid, (F) Free air gravity anomaly, (G) Bouguer anomaly, (H)Digital ElevationModel (DEM), (I)
Sv velocity, (J) Shape index, (K) Curie temperature depth, (L) Pv velocity.
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original data is not sufficient, we interpolate via inverse distance

weighting (IDW) if the observable is of continuous type. The

samples of the GHF data described in Section 2.1 are not

interpolated but simply reassigned to the grid cells nearest to

the sample locations. In the course of the paper, we refer to the

samples at grid cells where GHF data is available as reference data

(including GHF as well as all further geological and geophysical

observables). All samples at grid cells where no GHF information

is available are denoted as target data (including all geological

and geophysical observables other than GHF). These are the

locations at which we want to predict GHF values.

2.4 Geological background of africa

The African continent is composed mainly of Precambrian

terranes, assembled in the Late Neoproterozoic-Early Paleozoic Pan-

African orogeny (Begg et al., 2009). Confer Figure 4 for an

illustration. Three major cratons identified in Africa are the West

African, Congo and Kalahari Cratons, with the smaller Tanzanian

Craton located east of Congo, and SaharanMetacraton at the North

(Sobh et al., 2020)). The greater Kalahari Craton consists of Kaapvaal

and Zimbabwe cratons separated by the Limpopo Belt (deWit et al.,

1992) and the Rehoboth basin (Muller et al., 2009) to the west. The

Congo Craton in central Africa hosts three Archean shield areas,

parts of which are probably covered by the Congo basin: the Gabon-

Cameroon (GC) in the Northwest, Kasai block (KB) in the central

East, and Angolan craton (AC) along the western border south of

the Gabon Cameroon (Celli et al., 2020a).

Toward Northern Africa, the West African Craton (WAC) and

the Saharan Metacraton (SMC) are separated by the West African

Mobile Zone (WAMZ). In the Cenozoic, widespread volcanism

affected the African continent, mainly related to Pan-African crustal

reactivation (Ashwal and Burke, 1989), continental rifting (Thorpe

and Smith, 1974), hotspots (e.g., Hoggar, Tibesti, Darfur and

Cameroon Volcanic Line), and the East African Rift System

(EARS). The EARS is a seismically and volcanically active rift

system (Sengör and Burke, 1978), whose geodynamic origin is

under debate. Some studies support the origin of EARS as plume

origin; Afar plume (Ebinger et al., 1989) or multiple plumes (Rogers

et al., 2000) or even connected to the African Superplume (Hansen

and Nyblade, 2013). The EARS is formed of Eastern and Western

Branches. The Eastern Branch is a volcanic reach system consisting

of Afar and Main Ethiopian Rifts. The Western Branch is younger

with less volcanic activity (Ebinger et al., 1989).

3 Methodology

3.1 Random forest regression

A random forest (RF) is a collection of T decision trees,

with each tree being able to provide a separate GHF prediction

for the set of target observables T . Each tree within the forest

is built from a subset of the available reference observables R,

where each subset contains information on at most P

randomly chosen observables (among the sixteen available

observables). Furthermore, by D we denote the maximum

possible depth of each tree, by S the minimum number of

samples required in a leaf node of a tree, and by K the required

minimum number of samples in an internal node of a tree in

order to allow a further split this node. We call h = (T, P, D, S,

K) the hyperparameters of the random forest. Once a RF is

built for a certain set of hyperparameters, the predicted GHF

value is obtained by averaging over the separate predictions of

all T decision trees. The GHF model obtained this way will be

denoted by AFQ. A detailed description of the concept of RF

regression can be found in the original publication (Breiman,

2001).

3.2 Training the random forest

To clarify the procedure, we denote by R � {(zrn, yrn): n �
1, . . . , N} the set of reference observables yrn (cf. Section 2.2;

FIGURE 4
Simplified tectonic map of Africa with Cratons, Cratonic
blocks, and other relevant tectonic units. Cratons are plotted in
white polygons, KA = Kalahari Craton; CC= Congo Craton; WAC =
West African Craton; SMC = Saharan Metacraton. Cratonic
blocks: BB = Bangweulu Block; ZC = Zimbabwe Craton; TC =
Tanzanian Craton; KC = Kaapvaal Craton; AC = Angola Craton;
KB = Kasai Block; GC = Gabon–Cameroon Block. RB = Rehoboth
Block; NNB = Namaqua-Natal Belt; ASZ = Aswa Shear Zone.
Symbols of circle, triangle, square, diamond and hexagon
represent the Reference GHF with A, B, C, D, and Z ratings
respectively, derived from the global compilation of GHF database
(Lucazeau, 2019). White asterisks = distribution of Volcanoes.
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each yrn contains sixteen entries covering the available

observables) and corresponding reference GHF values zrn
(cf. Section 2.1; for our model we only use reference

samples located within the African continent). The set of

target observables is denoted by T � {ytm: m � 1, . . . , M},
comprising the observables described in Section 2.2 at

locations where no GHF information is available. In order

to train the RF, we use 90% of the samples for actually building

the RF and the remaining 10% for cross-validation, resulting

in Ncv samples for cross-validation (this procedure is iterated

for ten different random choices of subsets). The optimal

hyperparameters h are chosen by minimizing the mean square

error (MSE)

MSE h( ) � 1
Ncv

∑
Ncv

i�1
zri − ẑRFi,h
∣∣∣∣

∣∣∣∣
2
, (1)

where zri denotes the available reference GHF in the cross-validation

subset, and ẑRFi,h denotes the corresponding GHF predicted by the

trained RF for the particular hyperparameters h. We simply test a

range of 150 combinations of hyperparameters and, among them,

choose the h with the minimum MSE(h). The eventual

hyperparameters for our model are: T=450, P=6, D=20, S=2, and

K=7. For the numerical implementation of this RF approach, we use

the code provided by Sklearn (Buitinck et al., 2013) and Scikit-

Optimize (Head et al., 2018). The initial GHF model then comprises

the heat flow values ẑRFm,h predicted for the target observables y
t
m in T ,

using the trained RF with optimized hyperparameters h.

3.3 Observable selection

Related decision tree-based methods have been used, e.g., in

(Rezvanbehbahani et al., 2017; Lösing and Ebbing, 2021) for the

prediction of GHF. However, in the gradient boosted setup used in

these references, the trees are generated iteratively and require a

regularization term to prevent overfitting while in the RF setup, the

trees can be computed in parallel and overfitting is prevented by the

random selection of observables for each tree and the eventual

averaging of the predictions over all trees. What both methods have

in common is that they can provide the user with an importance

ranking of the involved observables. The importance is based on

measuring the reduction of variance within a single decision tree due

to that particular observable (the higher the reduction of variance,

the more important is the observable; the importance is

subsequently normalized to a relative importance with values in

the interval [0, 1]). The importance of the observable for the entire

RF is obtained by averaging over the importances for all trees.

The ranking due to the importance criterion from above is

indicated by the green bars in Figure 5A. At this point, we want to

mention that the ranking procedure turned out to be very sensitive

to the choice of training data (e.g., only including GHF values up to

160 mW/m2 in the training process for the RF significantly changed

the ranking compared to including values up to 200 mW/m2, as we

have done for our final model). Figure 5A reveals that the proximity

to volcano has hardly any importance. This seems counterintuitive,

considering that proximity to volcano had fairly high importance in

other studies [e.g., in Lösing and Ebbing (2021)]. This deviationmay

be explained by the sparsity of this observable in our dataset for

Africa. However, we do not want to overinterpret the explanatory

power of the importance ranking, but we rather use it as an

orientation for the selection of a subset of observables for our

final GHF model.

Using the ranking from above, we have recursively built

several GHF models based on an increasing number of

observables. The normalized root mean square error (NRMSe)

and the coefficient of determination (R2) for each model are

indicated in Figure 5B. It can be seen that both scores do not

FIGURE 5
(A) Relative importance of the observables, coefficient of determination R2, and normalized root mean square error NRMSe ranked by their
contribution to the RF prediction, (B) Same scores as in the left figure but in a cumulative sense for the entire RFmodel based on different numbers of
observables.
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improve significantly when including more than the four most

important observables. However, since we want to give some

weight to the importance ranking, we opted to include eleven

observables (i.e., Moho depth, lithospheric density, LAB depth,

geoid, free air and Bouguer anomaly, topography, S wave

velocity, shape index, Curie temperature depth and P wave

velocity) to have a cumulative importance higher than 90%.

In Supplementary Figure S6 of the supplementary material, GHF

models for different numbers of observables and their residuals

to the final model based on eleven observables are indicated. In

fact, these residuals show that four observables do not suffice to

capture all GHF structures while using all sixteen observables

only leads to minor differences to the model based on eleven

observables. Therefore, the latter model is the one discussed here

in more detail (cf. Section 4).

3.4 Model uncertainty

As described before in Section 3.3, in themain body of the paper,

we only present the GHF model built from the eleven most

important observables. However, we use all obtained GHF

models based on reference GHF data labeled A and B (including

those shown in the supplementary material; altogether this amounts

to twelve models) to compute the quantity

ran xt
m( ) � maxiAFQi xt

m( ) −miniAFQi xt
m( )

2
, (2)

which captures the range among these models at the target location

xt
m (by AFQi we denote the model based on the i most important

observables according to the ranking in Figure 5). This property

should not be considered a statistically proper definition of

uncertainty, but it captures the variations due to the number of

included observables. However, it does not include variations due to

noise in the data (this has been tried to be reduced by a proper data

selection) nor due to sampling bias (i.e., an insufficient

representation of the geology at the target location by the

training data). The latter is briefly discussed in Section 4.1 when

comparing GHF models trained with data labeled A and B and

models trained only with data labeled A.

As a final say, we want to mention that the RF approach used

here, as well as the machine learning approaches used in other

publications mentioned throughout this paper, are solely based

on similarity structures between the geological and geophysical

observables at a single location. They do not reflect spatial

correlations of the observables.

4 Results and discussion

We present the modeled GHF together with the associated

uncertainties. Additionally, we provide an evaluation of the

modeled GHF and its geological implications.

4.1 The GHF model over africa

Figure 6 shows the predicted GHF for Africa based on a

random forest trained with the eleven most important

observables (according to the importance ranking from

Figure 5) and GHF reference data labeled A and B. We name

this model AFQ. A visualization of the same model without

overlain details can be consulted in Supplementary Figure S7,

Supplementary Figures S5 and S6 in the supporting material

show various alternative versions of AFQ, trained with reference

data containing samples labeled A and B as well as with reference

data containing only samples labeled A. Comparing the models

trained solely with GHF data labeled A to those trained with data

labeled A and B, it becomes obvious that the models only trained

with A labeled data do not capture the high GHF zone in Algeria

(which is covered mostly by B labeled reference data). This

underlines the expectation that the capability of generalization

of the trained RF strongly depends on the training data, the so-

called sampling bias. In this case, it would suggest that the

geological and geophysical situation in Algeria is different

from the areas where A labeled GHF data is available. For the

sake of completeness, Supplementary Figure S8 in the

supplementary material also shows the predictions of AFQ for

the oceanic areas surrounding Africa and for the Arabian

peninsula, although we do not provide a more detailed

interpretation here.

FIGURE 6
Modeled GHF of Africa based on eleven observables (AFQ),
overlain with the locations of the reference GHF data. White
polygons represent the major cratonic units in Africa, D = Darfur
Dome; T = Tibesti Massif. Asterisks = distribution of
Volcanoes.
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4.2 Model evaluation

Figure 7A indicates that the agreement of AFQ with direct

measurements is generally good with aNRMSe of 0.21. Also, the R2

value of 0.79 indicates a good fit. On average, the AFQ model

overestimates GHF values by 2.3%. Figure 7B shows the density

plots of reference values and predicted values of AFQ. The model

reveals a certain inability to predict high GHF values. Hence its

standard deviation is lower than that of the reference GHF data.

Also Figure 7A shows that for high values (>125 mWm−2) the

model’s predictions become more unstable. This could be due to

an underrepresentation of such high values in the training dataset,

amounting to only 5.5% of the training data (i.e., 95 samples).

4.3 Model uncertainty

Figure 8A shows the quantity

CV xt
m( ) � AFQ xt

m( ) − AFQ
∣∣∣∣

∣∣∣∣
AFQ

, (3)

similar to the common coefficient of variation at the target

location xt
m (with AFQ denoting the mean predicted heat flow

over Africa and AFQ(xt
m) the predicted heat flow at location xt

m).

In regions without available reference GHF data, elevated CV

values might indicate that AFQ actually “predicts” geothermal

heat flow (based on the underlying trained random forest) and

not just “averages” to a global mean. This is the case, e.g., in the

Gabon craton, EARS, and northern Egypt. However, in contrast

to this, there also exist various regions that are lacking reference

GHF data and which reveal low CV values, i.e., the predicted

value is close to the global mean. In those cases, it is difficult to

distinguish if this is due to the lack of reference GHF information

in these regions or if these values actually reflect valid geological

information. Figure 5B shows the model variation based on the

range (2) among GHF models trained with different numbers of

observables. The predicted heat flow reveals high variations in

eastern and northwestern parts of Africa. One can observe that

these areas of increased variation correlate with areas lacking

reference GHF information or areas covered mainly by reference

values labeled B, e.g., in Algeria. They seem to be particularly

affected by the choice of target observables.

4.4 Interpretation

GHF is known to be broadly correlated with the tectonic

setting of a region (Jaupart et al., 2007). The GHF model shown

in Figure 6 indicates large-scale low-heat flow regions associated

with the more stable tectonic regimes (e.g., KC; CC; and TC).

Such results are highly consistent with the seismic tomographic

results, showing high-velocity values in the upper mantle in these

areas (Fishwick and Bastow (2011); Emry et al. (2019); Celli et al.

(2020a)).

High GHF values are seen most clearly in the most active

tectonics parts (e.g., EARS). Underneath the EARS, pronounced

high-heat flow is modeled. EARS is considered as a remarkable

geothermal potential in Africa due to geothermal sources related

to magmatism and volcanism along the rift axis. There is much

more variability in our model in the western branch compared to

the eastern branch. In general, GHF values decrease away

laterally from the EARS and EARS extends further south

down to the Tanzanian Craton. Comparing geothermal heat

flow with lithospheric thickness derived from seismic

tomography is not straightforward and caution should be

taken due to the effects of partial melting, attenuation, and

rheology changes between asthenosphere and lithosphere.

However, recent seismic tomography studies inferred a

FIGURE 7
Performance indicators for the GHF model over Africa (AFQ) (A) Scatter plot of reference vs. predicted values together with coefficient of
determination R2, NRMSe and Mean Percentage error MPe; (B) Probability density plot of reference and predicted values. Light orange refers to
predicted GHF values denoted by ẑ, whereas light blue refers to measured GHF values denoted by z; �z = mean, ~z = median, s = standard deviation.
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significant mantle velocity reduction of the S wave velocity in

regions of Cenozoic volcanism due to thinning of the lithosphere

(Fishwick and Bastow (2011); Emry et al. (2019); Celli et al.

(2020a); Sobh et al. (2020)). Moderate to high GHF exists in

northern Morocco, where GHF values partially exceed

100 mWm−2. This is in agreement with the results of (Rimi,

2000). Similar high GHF values (>80 mWm−2) are present in a

large area of western Algeria. Heat flow in this area has been

previously modeled by (Lesquer and Vasseur, 1992). Along the

West African Rift System (WARS) in the northeast of Nigeria,

the modeled GHF values are >90 mWm−2, which has been

recorded also in (Kwaya et al., 2016). Beneath the Darfur hot

spot, our model correctly predicts high GHFs. This is also the

case along the Tibesti volcanic region, however, with lower

values. Overall, our modeled heat flow values correlate with

the lithospheric thickness, low heat flow is associated with

cratonic blocks (e.g. CC), and high heat flow coincides with

mobile belts and rifting areas (e.g, EARS), which is in good

agreement with surface wave tomography estimates at global and

continental scales (Fishwick and Bastow (2011); Emry et al.

(2019); Celli et al. (2020a); Sobh et al. (2020). Consistent with

how GHF relates to thin LAB, thin Moho, and low lithospheric

density, an elevated GHF occurs in central Madagascar. In

addition, an elevated GHF in western and southern Arabia

agrees well with slow S and P wave velocity, high free air and

high Bouguer anomalies, low lithospheric density, thin Moho, as

well as thin CTD (confer Supplementary Figure S8 for a

visualization of AFQ that includes the Arabian peninsula).

Similarly, an increased heat flow in South Sudan shows

correlations with LAB, CTD, lithospheric density, and seismic

tomography. The estimates in these three spots clearly correlate

with increased elevation relative to their surroundings. On the

other hand, an increased heat flow occurs in southern Senegal

that does not follow such patterns relating GHF to some of the

observables. Furthermore, the model could not describe the

actually known high GHF in the Hoggar area of Algeria.

A physics-based geothermal heat flow map of Southern

Africa obtained from a single observable (namely, the Curie

depth as inverted from magnetic anomaly information) has been

presented in (Sobh et al., 2021). It is notable that the multi-

observable based model AFQ presented here predicts lower heat

flow along South African cratonic blocks (KC and ZC), while the

model by (Sobh et al., 2021) exhibits very high heat flow regions,

especially in the Kalahari Magnetic Lineament.

5 Conclusion

The objective of this paper is to present the geothermal heat flow

model AFQ over continental Africa, based on RF regression. It tries

to address the challenges encountered with direct GHF

measurements in Africa, namely, sparsity, non-uniformity, and

uncertainty. Due to this limitation, estimates of continental GHF

are derived indirectly from various geophysical and geological

quantities. Conventional ways to address these issues, e.g., by

implementing physics-based models, require various

simplifications and are feasible only for few geophysical

observables. Therefore, approaches that allow for multiple

observables, like RF regression, need to be explored. RF is a

decision tree-based algorithm where overfitting is reduced by

FIGURE 8
(A) Coefficient of variation for AFQ as defined by “CV” in (3), indicating the deviation of the predicted heat flow from the African mean; (B)
Variation of predicted heat flow as defined by the quantity “ran” in (2), indicating the range of predicted heat flow values due to different numbers of
observables used for training the random forest (a larger range means an increased variation among the different models). The residuals between
reference GHF and the predicted values of AFQ (the final model trained with eleven observables) are overlaid as circles.
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averaging the predicted values of each estimator within the

generated ensemble. Due to an intrinsic importance ranking,

AFQ trains with the eleven most important observables among

sixteen available observables (i.e., Moho depth, lithospheric density,

LAB depth, geoid, free air and Bouguer anomaly, topography, S

wave velocity, shape index, Curie temperature depth and P wave

velocity) at a resolution of 0.5° × 0.5°. The ability of the model to

predict GHF values has been discussed and compared to several

models trained with a different number of observables. In agreement

with available geological andGHF information, AFQ shows elevated

GHF around the red sea and along the east and west African rift

systems, low GHF values around major cratons as well as cratonic

blocks, and intermediate values elsewhere. For future work, it would

be important to provide a more sophisticated quantification of

uncertainty as well as to incorporate spatial correlation into

random forest approaches as used here for GHF modeling.
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