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The limit equilibrium method (LEM) or finite element method (FEM) for slope

problemsmost frequently focusses on the stability analysis. There are, however,

still some problems with the LEM or FEM when considering damage and failure

evolution of a rock slope because of the distortion of mesh. In this work, a

mesh-free particle approach, named the smoothed particle hydrodynamics

(SPH) method, is presented and is improved to analyze the damage and failure

process of a rock slope. In order to better describe the cause andmechanism of

brittle failure for a rock slope, the plastic factor was suggested and introduced

into the SPH algorithm, and the conservation equations of SPH for brittleness

characteristics were obtained. Based on the variation of displacement and time,

an effective criterion was proposed to define the factor of safety in SPH

simulation. The Drucker-Prager Mohr-Coulomb strength criterion was

implemented into the SPH algorithm to describe the elastic-plastic behavior.

Then, three rock-slope models with different precast cracks were analyzed to

illustrate the performance of the proposed method. It is shown that the

proposed SPH algorithm can be effectively applied in the prediction of the

deformation and failure process of rock slope.
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1 Introduction

Collapse is a widespread phenomenon in both natural and excavated rock slopes. It is

a mass movement of rock characterized by downslope sliding, which can involve damage

extension, penetration, and collapse. Therefore, the collapse of a rock slope has the

obvious characteristics of a large deformation. The large deformation and failure process

of rock slopes are so complex that obtaining an analytical solution is very difficult. In this

sense, how to correctly describe the large deformation characteristics of rock slopes has

been a hot but difficult problem in recent years. Compared with the complexities of

experimental research and the limitations of theoretical research (Li et al., 2012),

numerical simulation can give accurate solutions and predictions as long as
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reasonable constitutive relations and calculation parameters are

given. Hence, the simulation of the deformation and failure of

rock structures has been more and more popular among scholars

all over the world.

In recent years, some numerical methods have become

increasingly popular to analyze large deformation and post-

failure of slope, such as the Discrete Element Method (DEM)

(Cundall and Strack, 1979; Wong et al., 1996), the Discontinuous

Deformation Analysis (DDA) (Shi, 1991), the Remeshing and

Interpolation Technique with Small Strain (RITSS) method (Hu

and Randolph, 1998; Sitar et al., 2005; Tian et al., 2014) and

Eulerian finite element methods (Wang et al., 2013). The most

common software implementation of DEM is PFC2D and

PFC3D, which was developed by Itasca. Although the DEM

has the advantages of capturing the micromechanics of rock

materials and handling large deformation of rock mechanics

engineering (Zhang, 2012; Cao et al., 2016; Lin et al., 2019; Wang

et al., 2020; Zhang et al., 2021), it is limited to small-scale

problems because of the computational cost and large

amounts of micro parameters. The DDA is mainly used to

study the failure of rock engineering; the entire rock failure

process of the slope has not yet been considered and there are

difficulties in realistically modelling (Ning et al., 2012; Liu et al.,

2019). The other two methods have significant drawbacks are,

respectively, computational cost of remeshing in RITSS, and

difficulty in handling free surfaces, multiple materials, and

history variables in Eularian methods. On the other hand,

several mesh-free methods have been developed and applied

to solving rock fracture mechanics with large deformation and

high non-linearity. Zhang et al. (2005) and Kwok et al. (2015)

studied the stability and large deformation failure of the soil slope

using the reproducing kernel particle method (RKPM). Wang

et al. (2011) presented an efficient Galerkin meshfree formulation

for the large deformation failure simulation of soil slope. Guo and

Nairn (2006) applied the material point method (MPM) to

simulate the large deformation of solids. Although meshless

methods are suitable for solving the large deformation failure

problem, they have difficulties in imposing an essential boundary

condition and still have some limitations (Li and Liu, 2002). For

example, the MPM method needs to match the material points

through background grids (Zhang et al., 2009). Therefore, a

suitable numerical simulation method is urgently needed for

better modeling of the evolution process and interpretation of the

mechanism of collapse.

A pure Lagrange mesh-less recently numerical method,

namely, the smoothed particle hydrodynamics (SPH), was

originally used in astrophysical problems (Gingold and

Monaghan, 1977; Lucy, 1977). Subsequently, it has been

widely applied in solving complex geotechnical problems. For

example, Chen et al. (2012) applied the SPH method to the

simulation of granular materials under large deformation. Bui

and Fukagawa (2013) used the SPH to simulate large

deformation and post-failure of the soil slope. Due to its

Lagrangian properties, it has a unique advantage in dealing

with problems of large deformations and discontinuities.

Hence, it also seems promising for a complete rock failure

analysis.

The object of this paper is to use the SPH method to model

the large deformation and failure process of rock slopes. For large

deformation and failure process of slope problems, its essence is

the elastic-plastic deformation (Gao et al., 2006; Kong et al., 2014;

Drucker and Prager, 2013). In this paper, the Drucker-Prager

(D-P) constitutive model with a non-associated plastic flow rule

is implemented in the SPH code to simulate the large

deformation and failure of a slope. In the following sections,

numerical examples involving the collapse of a slope are carried

out to demonstrate the effectiveness of the proposed method,

which show that SPH is much more efficient than FEM in

simulating slope problems, especially where large deformation

and failure process are involved. The research results can provide

some references for the applications of the SPH method to

understand the mechanisms of crack propagation and early

warning of rock slope instability.

2 Fundamental theory of SPH

2.1 Basic formulation of SPH algorithms

In the SPH method, an object is expressed as an assembly of

particles with associated variables, such as mass, energy, and

stress tensors. The basic idea behind this method is to provide

stable and accurate numerical solutions for partial differential

equations (PDEs) using a group of particles. The SPH method is

based on interpolation theory. The governing equations, in the

form of PDEs, can be transformed into SPH form through two

main steps. The first step is to represent a function in continuous

form as an integral representation using an interpolation

function:

〈f(x)〉 � ∫
Ω
f(x′)w(x − x′, h)ⅆx′ (1)

where the angle brackets < > denote a kernel approximation, x

represents the location vector of the particle, Ω is the volume of

the integral that contain x, and x′ is a neighboring particle in the

support area. The parameter h defines the size of the kernel

support, known as the smoothing length. W(x − xj, h) is the

smoothing or kernel function. The second step is named the

particle approximation, and is expressed as follows:

〈f(x)〉 � ∑N

j�1mj

f(xj)
ρj

W(x − xj, h) (2)

where N is the total number of neighboring particles, m is the

mass, ρ is the density, and j is the j-th particle. This stepmakes the

SPH method simple without requiring a background mesh for
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numerical integration. W is the smoothing or kernel function,

which can be expressed as:

W(q, h) � αd ×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
3
− q2 + 1

2
q3, 0≤ q< 1

1
6
(2 − q)3, 1≤ q< 2

0, q≥ 2

(3)

where αd � 10
(7πh2) for two dimensional conditions, q is the

normalized distance between particles i and j, defined as

q � r
h � |x−x′|

h , and h is the smoothing length.

2.2 Governing equations and
discretization

In this study, the governing equations are mainly based on

the solid mechanics. So, the equations of continuity and motion

can be expressed as follows:

Equation of continuity:

Dρ

Dt
� −1

ρ

zvα

zxα
(4)

Equation of motion:

Dvα

Dt
� 1
ρ

zσαβ

zxβ
+ gα (5)

where xα, vα, and σαβ are, respectively, elements of the spatial

coordinate, velocity vector, and Cauchy stress tensor (σ), which is

given by:

σαβ � ταβ − pδαβ (6)
d
dt is the time derivation taken in the moving Lagrange

framework, and the superscripts α, β = 1, 2 are integer indices

for the two spatial directions. g is the component of acceleration

caused by external force, which is the gravity force in this study.

The differential form of the conservation equations can be

converted to a discretized weak form as:

dρi
dt

� ∑
j
mjv

β
ijWij,β (7)

dvαi
dt

� −∑
j
mj

⎛⎝σαβi
ρ2i

+ σαβj
ρ2j

⎞⎠Wij,β (8)

where vαij � vαi − vαj , and Wij,β � zW(xj−xi,h)
zxβi

is the kernel gradient

with smoothing length h.

2.3 Elastic-plastic constitutive model

Here, the elastic-plastic constitutive model of soil material

implemented in the SPH code is described in detail. The

component of the total strain rate tensor is given by:

_εαβ � 1
2
(zvα
zxβ

+ zvβ

zxα
) (9)

For the elastoplastic material, the total strain rate tensor _εαβ is

obtained by the following formula:

_εαβ � _εαβe + _εαβp (10)

where the elastic strain rate tensor _εαβe can be expressed as

_εαβe � _sαβ

2G
+ 1 − 2v

3E
_σγγδαβ (11)

where G is shear modulus, _sαβ is the deviatoric stress rate tensor,

E is the elasticity modulus, and v is Poisson’s ratio. δαβ is named

Kronecker’s delta, where δαβ � 1.0 when α � β, and δαβ � 0.0

when α ≠ β. The plastic strain rate tensor, _εαβp , of any particle can

be given by the plastic flow rules:

_εαβp � _λ
zg
zσαβ

(12)

where _λ is the rate of change of the plastic multiplier λ. The value

of plastic multiplier λ can be calculated by using the consistency

condition.

2.4 Drucker-Prager (D-P) model

Rock material is a kind of brittle material. When the load

reaches the yield strength, it will be damaged and weakened, at

which point it is an elastic-plastic body. In this paper, the D-P

criterion is selected as the yield criterion of elastoplastic

materials. The expression is as follows:

f (σ, c) � �����
J2(s)

√ + αφI1(σ) − kc (13)

FIGURE 1
π-plane section of the Drucker-Prager yield surface.
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where

αφ � tanφ����������
9 + 12tan 2φ

√ (14a)

for 2D plane strain conditions and

kc � 3c����������
9 + 12tan 2φ

√ (14b)

where c and φ are the cohesion internal and friction angle of

geomaterials. In the principal stress space, the yield surface of the

D-P criterion is a cone, and the yield curves corresponding to

different material parameters are circles of different sizes on the

off plane (see Figure 1).

In the present study, the non-associated flow rule is

considered to determine the stress-strain relationship. The

plastic potential function, g, is calculated by:

g(σ, c) � �����
J2(s)

√ + αψI1(σ) − sinψ (15)

where ψ is the dilatancy angle, αψ is a dilatancy factor which is

related to the dilatancy angle, and I1 and J2 respectively denote

the first and second stress invariant.

Here, the D-P yield criterion is employed to determine the

plastic region of soils. Plastic strain is initiated from a particle

when stresses in the particle satisfy the D-P yield criterion. Once

plastic state is reached in one particle, the plastic deformation

is initiated from this particle. Therefore, the discrete

conservation equations of SPH for plastic characteristics can

be expressed as:

dvαi
dt

� −∑N

j ∈ U
mj

⎛⎝σαβi
ρ2i

+ σαβj
ρ2j

⎞⎠Wij,β − fPlastic ·∑N

j ∈ P
mj

⎛⎝σαβi
ρ2i

+ σαβj
ρ2j

⎞⎠Wij,β + gα

(16)
dρi
dt

� ∑N

j ∈ U
mjv

β
ijWij,β + fPlastic ·∑N

j ∈ P
mjv

β
ijWij,β (17)

where vαi denotes the velocity vector of the i-th particle,

vβij � vβi − vβj ; mj is the mass of the j-th particle; ρi is the mass

density of the i-th particle; and fPlastic is the plastic factor, which

defines the plastic level between the i-th and j-th particles. For the

elastic state particles, fPlastic � 1.0, and for the plastic state

particles, fPlastic � 0.0.

3 Boundary treatment and
verification

3.1 Boundary treatment

Particle deficiency might be encountered near or on a

boundary by using the SPH method. Therefore, the boundary

condition is a significant input in achieving accurate simulation

results. Several methods were put forward to resolve this

problem, but the most effective way is to use ghost particles

and dummy particles. For the slope problem, this is divided into

two kinds of boundary conditions: fixed boundary conditions

and free-rolling boundary conditions.

To simulate the fixed boundary, three layers of dummy

particles are generated on boundaries. If the support domain

of particle i intersects with the wall boundary, the dummy

particles in the intersecting region assist to the SPH

calculation like real particles, as shown in Figure 2A. The

velocity of boundary particles is set to zero, which means the

fixed condition. The stress value of boundary particles is given

the stress value of the real particle i. As for free-rolling boundary

condition, it is modeled by adopting ghost particles. As shown in

Figure 2B, if the horizontal distance di (particle i) is less than a

certain distance kh, a ghost particle is placed symmetrically on

the outside of the boundary and if di′ (particle i′) is greater than
kh, the ghost particle is not added. The velocity and stress tensor

of ghost particles can be assigned via

vxxG � vxxi and vyyG � vyyi (18a)

FIGURE 2
The sketch of two types of boundary condition: (A) dummy particles for fixed boundary; (B) ghost particles for free-rolling boundary.
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σαβG � { σαβi , if α � β

−σαβi , if α ≠ β
(18b)

where vxxG denotes normal velocity of ghost particles, vyyG denotes

normal velocity of ghost particles, and vxxi and vyyi are the

velocity of real particles. σαβG is the stress tensor of ghost

particles, and σαβi is the stress tensor of real particles.

3.2 Treatment effect verification

The developed FORTRAN program is validated with a 2D

rectangle model. In the SPH simulation, a total number of

5000 real particles and 3000 boundary particles are used to

form a rectangular area 4.0 m in length and 2.0 m in height,

as shown in Figure 3. The material properties of the simulated

rock are: Young’s modulus, E= 1.8MPa; Poisson’s ratio, μ= 0.3;

density, ρ= 1850 g/cm3; cohesion, c= 5.0 kPa; and internal

friction angle, φ= 30°. The SPH particles are arranged in a

square lattice with an initial lattice constant of 0.04 cm and an

initial smoothing length of 0.048 cm.The time step is 0.0001s.

Under the action of self weight, the vertical stress distribution

of the model is shown in Figure 4. In the model, a fixed boundary

is adopted at the bottom and a free-slip boundary is adopted at

both sides. It can be seen that the vertical stress distribution is

uniform and increases gradually with the depth, which conforms

to the general law. Figure 4B shows the boundary without kernel

interpolation treatment. Since the dummy particles at the bottom

do not generate confining pressure, the constraint on the real

particles at the bottom only depends on the repulsion force of the

fixed dummy particles, and the selection of the repulsion force is

subjective, resulting in obvious layered oscillation of the particle

stress at the bottom. By comparison, in Figure 4A the stress

distribution of particles at the bottom of the boundary treated by

kernel interpolation is uniform, indicating that the boundary

treated by kernel interpolation can effectively ensure the stress

transfer. Therefore, the stress stratification can be effectively

removed by treating the boundary with dummy particles and

ghost particles in the SPH method, and the stability of stress

transfer can be maintained, which shows that this method is

feasible.

4 Application of the SPH numerical
method

In this section, rock slopes with one and three pre-cracks are

simulated using the proposed method. Meanwhile, a determining

method for SPH safety factor based on a strength reduction

method is proposed. The result is then compared with those of

the finite element numerical simulation method (FEM) to verify

the correctness of the proposed method. In all examples, the

linear cohesive law is adopted, and the smoothing length (h) is

chosen to be h � 1.2dx with dx being the initial spacing between

FIGURE 3
Initial setting conditions in SPH model.

FIGURE 4
Comparison of boundary treatment results: (A) Vertical stress distribution of soil after boundary treatment; (B) Vertical stress distribution of soil
without boundary treatment.
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FIGURE 5
Schematic of SPH model, flaw length is 28 cm.

TABLE 1 Physical parameters of SPH model.

Young’s modulus, E/MPa Poisson’s ratio, v Density, ρ/(g/cm3) Cohesion, c/kPa Internal friction angleφ/°

50 0.3 1850 20 25

FIGURE 6
Development of collapse and sliding velocity at different times: Cumulative equivalent plastic strain (A-F); Slip velocity (G-I).
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two consecutive SPH particles. All numerical tests are carried out

in the plane stress condition.

4.1 Simulation of a rock slope collapse
process with one pre-crack

A rock slope model produced by the SPH method is carried

out in this section. The purpose of this test is to verify the

performance of the proposed numerical framework in simulating

slope collapse. The geometry and boundary conditions of this test

are shown in Figure 5. The model is 400 cm long and 200 cm

height. The initial pre-crack has a width of 4 cm and a length of

28 cm. A total of 4368 particles have been used and the initial

distance between particles is Δx � 0.04m in the SPH model. The

boundary conditions are described in Section 3.1. The material

parameters are given in Table 1.

The development process of failure and collapse plotted by

accumulated equivalent plastic strain for the rock slope at

different times is shown in Figure 6. The development of the

velocity of rock failure at different times is shown in Figure 6G–I.

Figure 6A shows the stress concentration at the tip of the pre-

crack under the action of gravity. Figure 6B shows that the pre-

crack development and the slope is in a state of stability but does

FIGURE 7
Relationship between displacement and strength reduction coefficient (SRF).

FIGURE 8
Schematic of SPH model, flaws length are 60, 28, and 24 cm, respectively.
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not completely fail at T=1.5 s, because the accumulated

equivalent plastic strain zone is propagating from the toe to

the crest at this moment. Then, the plastic shear strains band

spreads forwards and upwards, and eventually the plastic shear

strains are connected from the crest to the toe of the slope in

Figure 6C, forming a slip surface. Figure 6D clearly shows that the

slope begins to fail as a block along the surface, and the sliding

body is not completely separated from the slope body. As time

progresses, the sliding body displacement experiences a

significant horizontal direction downwards as completely seen

in the discrete block in Figures 6E,F. It can be corroborated by the

velocity nephogram, as shown in Figure 6I, that the sliding

velocity of slope collapse is zero, which means that the

movement and collapse of the slope has stopped.

4.2 Determination of safety factor

The failure criterion for slope stability analysis in the finite

element method with shear strength reduction (SRF) technique,

proposed by Griffiths and Lane (1999), is based on consideration

of the relation between node displacements and SRF values. If a

sudden change is observed in the node displacement within a

user-specified maximum number of interactions, the

computation is considered to be non-convergent, and the

critical value of SRF yielding a non-convergent solution is

considered to be the safety factor of the slope. However, the

failure criterion for slope stability analysis in SPH is not

applicable to the FEM, because SPH simulation cannot cause

a non-convergent solution with any reduction factor. Rather, a

simple approach is proposed to define the factor of safety in an

SPH simulation.

The approach is based on the maximum displacement at the

feature point (see Figure 5) during a specified time duration for

each value of SRF. If the maximum displacement at the feature

point remains unchanged or the value of this maximum

displacement is relatively small at a reduction factor, the slope

is defined as stable. On the other hand, if the maximum

displacement cannot converge to a small and stable value, the

failure develops, and the corresponding SRF is considered as the

safety factor of the slope.

In this paper, the process of the reduction is described as

follows: The reduction factor of the SRF is initially set as 1.0 and

then is increased by a step size of 0.1 during the next calculation.

FIGURE 9
Development of collapse and sliding velocity at different times: Cumulative equivalent plastic strain (A-F); Slip velocity (G-I).
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Note that if SRF is less than 1.0, this factor would be reduced, and

the criterion determining the safety factor of the slope should be

adjusted. When a sudden increase in feature point displacement

appears, the failure of the slope occurs. Thus, the corresponding

SRF at current computation is considered to be the safety factor.

Thus, Figure 7 shows the calculation result as a safety factor is 1.1.

4.3 Simulation of a rock slope collapse
process with three precast-cracks

Similarly, in order to further verify the effectiveness of the

proposed method in the instability prediction and failure process

of a rock slope, a model produced by the SPH method is carried

out with three precast cracks. The initial pre-cracks have a width

of 4 cm and lengths of 60cm, 28 and 24 cm, respectively (see

Figure 8). The material parameters, initial distance between

particles and boundary conditions are consistent with those

described above (Table 1).

The development process of the failure surface plotted by

accumulated equivalent plastic strain for rock slope at different

times is shown in Figure 9 and also documents the nature of the

slope failure mechanism.

As shown in Figure 9A, under the action of self weight, pre-

crack one shows stress concentration and expands to crack 2.

When the time is equal to 0.9s, cracks one and 2 run through. At

the same time, stress concentration occurs at the bottom of crack

3, as shown in Figure 9B. As can be seen from Figure 9C, with the

increase of calculation time, the top of crack three runs through

the top of the slope, and the stress concentration appears at the

top of crack 2 and extends to the top of crack 3.

With the further increase of time, the cracks completely

penetrated the whole slope body, the slope body became unstable,

and local collapse occurred, as shown in Figure 9D. The collapse

is further aggravated, as shown in Figure 9E, but the sliding body

is not completely separated from the slope body at this time.

Compared with Figure 9H, it is found that the sliding body still

has a certain speed at this time, indicating that the slope collapse

has not stopped. When the time is equal to 2.5 s, the sliding body

completely separates from the slope body. According to the

comparison of Figure 9I, the speed of the sliding body is zero

at this time, which demonstrates the complete collapse of the

slope and reflects the movement characteristics after instability.

5 Conclusion

The SPH code with D-P constitutive model is applied to

investigate the collapse of rock slopes for the first time in this

paper. For slope stability, the development of the shear band or

failure process is well predicted through the accumulated plastic

strain. The numerical results show that the SPH method is a

reliable and robust method to simulate failure and collapse

processes of geomaterials. Meanwhile, the successful

application in rock slope collapse modeling indicates that the

SPH method should be allowed further developments for other

applications in geotechnical engineering.
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