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In recent years, distributed optical fiber acoustic sensing (DAS) technology has

been increasingly used for vertical seismic profile (VSP) exploration. Even

though this technology has the advantages of high spatial resolution, strong

resistance to high temperature and pressure variations, long sensing distance,

DAS seismic noise has expanded from random noise to optical abnormal noise,

fading noise and horizontal noise, etc. This seriously affects the quality of the

seismic data and brings huge challenges to subsequent imaging, inversion and

interpretation. Moreover, the noise is more complex and more difficult to

simultaneously suppress using traditional methods. Therefore, for the

purpose of effectively improving the signal-to-noise ratio (SNR) of DAS

seismic data, we introduce a denoising network named attention-guided

denoising convolutional neural network (ADNet). The network is composed

of four blocks, including a sparse block (SB), a feature enhancement block (FEB),

an attention block (AB) and a reconstruction block (RB). The network uses

different kinds of convolutions alternately to enlarge the receptive field size and

extract global feature of the input. Meanwhile, the attention mechanism is

introduced to extract the hidden noise information in the complex background.

The network predicts the noise, and denoised data are obtained by subtracting

the predicted results from the noisy inputs. In addition, we uniquely construct a

large number of complex forward models for pure seismic data training set to

enhance the network suitability. The combination design improves the

denoising performance and reduces computational cost and memory

consumption. The results obtained from both synthetic- and field data

illustrate that the network has the ability to denoise the seismic images and

retrieve weak effective signals better than conventional methods and common

networks.
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1 Introduction

As an emerging signal detection technology, distributed

optical fiber acoustic sensing (DAS) has been used to detect

seismic signals. DAS records seismic waves using fiber optic

cables that are continuously distributed from well head to bottom

of the drill hole (Kobayashi et al., 2020). Compared to

conventional seismic geophones, DAS has many advantages

such as wide detection range, high spatial resolution, strong

resistance to harsh environments, convenient layout (Ma et al.,

2018). However, many challenges also result from the application

of the method when it is used in seismic exploration from wells.

The seismic data acquired by DAS technology have different

types of effective signals and high-level noise with complex

properties. The signals contain down-going direct waves, and

up- and down-going reflected waves, which frequently suffer

from a large amount of noise, including random noise, optical

abnormal noise, fading noise and horizontal noise (Mateeva

et al., 2014; Correa et al., 2017; Olofsson and Martinez, 2017).

The noise may seriously decrease the signal-to-noise (SNR) of

DAS seismic data, and subsequently leads to huge difficulties in

imaging, inversion and interpretation. Methods for suppressing

complex noise and improving SNR in geophysical data obtained

from DAS are therefore desired.

In the past years, many denoising methods have been

proposed and developed successively to suppress noise in

seismic data. Examples include wavelet transform (Alali et al.,

2018), band-pass filtering (Stein and Bartley, 1983), f-x

deconvolution (Gulunay, 2017), median filtering (Huo et al.,

2017; Chen et al., 2019), curvelet transform (Naghizadeh and

Sacchi, 2018; Li et al., 2020), empirical mode decomposition

(Gomez and Velis, 2016; Xue et al., 2019), variational mode

decomposition (Yu and Ma, 2018; Feng et al., 2022) and singular

value decomposition (Gan et al., 2015; Wang and Wang, 2021).

These methods are effective when dealing with some random

noise or Gaussian noise, but they all have limitations for DAS

noise. For instance, band-pass filtering cannot separate the

effective signals and noise in the same frequency bands. The

sparse representation methods such as wavelet transform and

curvelet transform depend on threshold functions and the need

for choosing the threshold value manually. In recent years, some

denoising methods have been proposed to suppress specific DAS

data noise. For example, optical abnormal noise can be

suppressed by median filtering and horizontal noise can be

removed by dip filtering (Binder et al., 2020). However, these

denoising methods have only achieved good denoising results for

one or two types of noise. In addition, their application is limited

by noise level and the effective signals are easy loss. When

multiple types of noise exist together, the denoising results are

usually unsatisfactory.

Deep learning has great potential and remarkable

performance in many fields owing to its flexible modular

architectures and strong representation capability. A common

deep learning algorithm, convolutional neural network (CNN), is

a feed forward neural network that has great feature extract

ability. Many CNN-based deep learning methods have been

applied for seismic exploration fields, such as seismic event

detection (Wu H. et al., 2019; Binder and Tura, 2020; Yang

et al., 2021), first-arrival picking (Wu Y. et al., 2019; Yuan et al.,

2020; Guo et al., 2021) and seismic inversion (Feng, 2020; Wang

et al., 2020; Aleardi and Salusti, 2021). Furthermore, it is also an

effective tool for seismic noise suppression. Zhao et al. (2019)

applied denoising convolutional neural networks (DnCNNs) to

suppress low-frequency random noise. Other recently proposed

noise suppressing algorithms include deep residual encoder-

decoder networks (Yao et al., 2022), deep-denoising

autoencoders (Saad and Chen, 2020), and the use of a CNN

framework with learned noise prior to random noise suppression

(Cui et al., 2022). However, the existing CNN-based denoising

methods still have drawbacks. The full convolution networks

ignore the connection between shallow layers and deep layers,

which is disadvantageous for sufficient feature extraction.

Furthermore, if networks are too deep, they cannot make full

use of the effects from the shallow layers on the deep layers. This

leads to increased difficulty in achieving proper training of the

network. Additionally, DAS data typically contain weak reflected

signals andmore complex multiple noise. Thus, the requirements

for proper noise suppression and signal recovery are higher.

Attention mechanism has attracted a lot of attention in the

current deep learning research field and the method is widely

applied to image denoising tasks. Tian et al. (2020) proposed

attention-guided denoising convolutional neural networks

(ADNet) for suppressing blind noise and real noise of images

and showed excellent deoising effect. However, the application of

attention mechanism in seismic data processing is limited.

Inspired by this, we apply ADNet for DAS seismic noise

suppression. The denoising network ADNet utilizes different

convolutions to learn noise and signal features from the noisy

input data. This allows for discrimination between the effective

signals and different types of noise, which improves the training

efficiency and the denoising performance. The network fuses

global and local features to enhance the expressive ability of

network. The complex noise background of the input DAS data

frequently hides features, which increases the difficulty of

training the network. Thus, we employ an attention

mechanism to extract noise information present in the

complex noisy data background. Additionally, to train the

network, we construct a great number of synthetic DAS

training sets through forward modelling using different

theoretical parameters, such as main frequency of the seismic

signals, well depth, trace interval, and so on. Both synthetic and

field experimental results show that the proposed network can

suppress different types of noise and recover the seismic signals

without almost any loss of DAS seismic data.

The structure of this paper is as follows. In Section 2 we

introduce the architecture of ADNet, the construction of training

Frontiers in Earth Science frontiersin.org02

Wang et al. 10.3389/feart.2022.986470

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.986470


FIGURE 1
Architecture of ADNet (According to Tian et al. (2020), we modified Figure 1).

FIGURE 2
Architecture of the SB (According to Tian et al. (2020), we modified Figure 1).

FIGURE 3
Comparison of denoised results when training the network with different patch sizes. (A) SNR comparison of denoised results, (B) SSIM
comparison of denoised results.
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sets and optimization of network parameters. In Section 3 we

process the synthetic DAS seismic data and compared it with

data obtained via traditional methods and a common network

approach. Moreover, we process a field seismic record to verify

the denoising performance of the network. Finally, Section 4

includes a discussion and conclusion of the paper.

2 Theory and methodology

2.1 Network architecture

In this section, we introduce the architecture of ADNet

composed of 17 layers, and illustrated in Figure 1 It contains

a sparse block (SB), a feature enhancement block (FEB), an

attention block (AB) and a reconstruction block (RB). The SB is

used to extract features from the noisy data to learn and

distinguish between effective signals and noise. The FEB fuses

the global and local features to enhance the robustness of the

denoising model. The AB is used to mine noise information

hidden in the complex background. And the RB predicts noise

and constructs the denoised results.

The 12 forward layers are SB, and the architecture is shown

in Figure 2. It consists of standard and dilated convolutions

layers. The standard convolution layer contains convolution

(Conv), batch normalization (BN), and activation function for

a linear rectification function (Relu). BN can ensure that the

input of each layer has an approximate distribution and

accelerate the convergence speed of network loss function.

Relu can implement gradient descent and back propagation.

The standard convolution layers are set at the first, third,

fourth, sixth, seventh, eighth, tenth, and eleventh layer in

the SB. The dilated convolution layer includes dilated

convolution with a dilated factor of 2, BN, and Relu. The

dilated convolution layers are set at the second, fifth, ninth, and

twelfth layer. All the convolution filter sizes of the SB are 3 × 3.

The input channel of the first layer is 1, whereas other eleven

layers are 64. Dilated convolution can enlarge the receptive

field size and extract global input features, which is beneficial to

reduce the complexity of network. The combination of two

kinds of convolutions can improve the denoising performance

and cut down the computational cost and memory

consumption.

To reduce the influence of the shallow layers on the deep

layers and mine the robust features, an FEB is designed in the

network. It consists of three standard convolution layers, a Conv

and activation function Tanh. The standard convolutions are

installed from 13 to 15 layers and the filter sizes are 64 × 3 × 3 ×

64. The Conv is fitted at the sixteenth layer and its filter size is

64 × 3 × 3 × 1. The 4-layer FEB can enhance feature learning to

better restore weak effective signals. Additionally, a

concatenation operation is added to fuse the input noisy data

and the output of the sixteenth layer to enhance the

representation ability of the denoising model. It can merge the

FIGURE 4
2-D geological model.

TABLE 1Wave velocities andmedia densities of 2-D geological model.

Layer (from
top to
bottom)

1 2 3 4 5 6

P-wave velocity (m/s) 2,000 2,250 2,500 2,700 3,000 3,300

S-wave velocity (m/s) 1,000 1,125 1,250 1,350 1,530 1,800

Media density (kg/m3) 2,010 2,105 2,200 2,200 2,200 2,245
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features extracted from the input into new features for enhancing

the expressive ability of the denoising network. And Tanh is used

to convert the obtained features into nonlinearity.

As mentioned earlier, DAS data have complex noise. The

effective signals are frequently covered by noise and cannot be

identified. Distinguishing between noise and effective signals is a

prerequisite for noise suppression tasks. Therefore, an AB is

added to the network to guide the denoising model training. It

includes a Conv and the filter size is 2 × 1 × 1 × 1. This is used to

guide the previous stage for learning the noise information and to

better distinguish between noise and effective signals. The

convolution of size 1 × 1 from the seventeenth layer

compresses the obtained features into a vector as the weights

to adjust the previous stage. Then AB utilizes the obtained

weights to multiply the output of the sixteenth layer for

extraction of more noise features.

Finally, an RB predicts the residual data and reconstructs the

denoised data. The network adjusts network parameters by

predicted residual results and actual noise data when training.

2.2 Network denoising principle

The optimization of deep learning methods is principally

driven by the loss function. Noisy DAS data can be regarded as a

linear superposition of pure data and noise (Li et al., 2017).

y � s + n (1)

where y, s, and n stand for the noisy data, the pure data and noise.
All types of noise can be represented as n. The denoising model is

to recover the pure data s from the noisy data y. The ADNet

predicts the noise through residual learning to get the predicted

denoised data:

ŝ � y − n̂ � y − A(y; θ) (2)

where ŝ and n̂ are the predicted denoised data and predicted

noise, θ is a set of learnable parameters, and A(·) is the ADNet
model. We use the mean square error (MSE) (Ephraim and

Malah, 1984) to train the denoising model, so the loss function

can be expressed as

FIGURE 5
Synthetic DAS records. (A) Synthetic pure DAS record, (B) real noise record and (C) synthetic noisy DAS record.
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l(θ) � 1
2N

∑N

i�1
����A(yi; θ) − (yi − si)����2F (3)

where yi and si are ith pair of noisy and pure training pairs.

2.3 Quantitative analysis of denoising
performance

SNR and structural similarity index (SSIM) (Wang et al.,

2004) are important indicators to measure the quality of seismic

data. To evaluate the denoising performance, we use SNR and

SSIM to analyze the denoised results. The formula for SNR is as

follows:

SNR � 10log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑M

i�1∑N
j�1(S(i, j) − �S(i, j))2

∑M
i�1∑N

j�1(D(i, j) − S(i, j))2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

where S represents the pure record, �S represents the mean of S,
and D represents the noisy record or denoised record. M and N
represents the trace number and the number of sampling points,

respectively. Lastly, i represents the ith trace and j represents the
jth sampling point. The definition of SSIM (Wang et al., 2004) is:

SSIM � [l(S,D)]α · [c(S,D)]β · [s(S,D)]γ (5)

here l(S,D) represents the luminance comparison function,

c(S,D) is the contrast comparison function, and s(S,D) is the
structure comparison function. The definition of l(S,D) is:

l(S,D) � 2�S �D + C1

�S2 + �D2 + C1

(6)

where �D represents the mean ofD. The constant C1 is included to

avoid instability when �S2 + �D2 is very close to zero. C1 � (K1L)2,
where L is the maximum value of the data matrix, K1 ≪ 1.

Furthermore, c(S,D) and s(S,D) are defined as:

FIGURE 6
Comparison of different methods for synthetic denoising. (A) Denoised result of VMD, (B) denoised result of band-pass filtering, (C) denoised
result of DnCNNs, (D) denoised result of ADNet.
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c(S,D) � 2�S �D + C2

�S2 + �D2 + C2

(7)

s(S,D) � σSD + C3

σSσD + C3
(8)

where σSD � 1
M × N−1∑M

i�1∑N
j�1[S(i, j) − �S(i, j)][D(i, j) − �S(i, j)],

and σS � ( 1
M × N−1∑M

i�1∑N
j�1[S(i, j) − �S(i, j)]2) 1

2. We also define

C2 � (K2L)2, K2 ≪ 1, C3 � C2/2. Larger SNR and SSIM

values indicate better denoising effect.

2.4 Training set construction and network
parameter optimization

Adequate and accurate training sets can improve the

performance of networks. The training sets of ADNet include

a pure data set and a noisy data set. As there are no existing

training sets for DAS data, we performed forward velocity

modelling with many types of layers (flat, inclined, concave,

convex, and so on) to generate ten models. The models were

obtained through an implementation of the elastic wave equation

utilizing seismic wavelet source functions. From the tenmodels, a

pure DAS data set was generated based on analysis of the signal

dominant frequency, apparent velocity, and wavelet type. The

dominant signal frequencies ranged from 40 Hz to 80 Hz. The

apparent velocities were 1,000 m/s–3,000 m/s and the velocities

increased with formation depth. The wavelet type was a standard

Ricker wavelet with a sampling frequency of 2,500 Hz and a

sampling interval of 1 m. A 256 × 256 moving window was used

to segment the records to generate 5,000 patches of the pure data

samples.

The noisy data set are made by adding DAS noise to

synthetic pure records randomly. To estimate noise

accurately, and to separate signals and noise well, noise in

the noisy data set must be as abundant as possible. Random

noise and fading noise were acquired from passive DAS data.

Horizontal noise and optical abnormal noise were taken from

some real noisy DAS records. We randomly added different

FIGURE 7
Difference maps from the four denoised results. (A) Difference map from VMD, (B) difference map from band-pass filtering, (C) difference map
from DnCNNs, (D) difference map from ADNet.
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types and levels of noise to the synthetic pure records. The

datasets were then divided into 5,000 patches noisy data

samples by a 256 × 256 moving window.

The network randomly takes noisy data samples as the

input and the corresponding pure data samples are regarded as

labels of the network. The initial learning rate was 1e-3 and the

number of epochs were 1,000. The learning rates of the

200th–500th epochs were 1e-4 and the learning rates of the

final 500 epochs were 1e-5. Additionally, an Adam optimizer

(Kingma and Ba, 2015) was implemented to optimize the

network.

In the experiment, we verified the influence of different patch

sizes for denoised results. The patch sizes were set to 16, 32, 64,

128, and 256, respectively, to train the network. We utilized a

synthetic noisy dataset to verify the denoising performance, and a

comparison of the results acquired through SNR and SSIM are

showed in Figure 3. From the results, we can see that the network

with patch size of 256 achieved the best denoising result. Thus, a

patch size of 256 is an optimal choice for DAS seismic data

denoising.

We applied Tensorflow 1.8.0 and Python 3.6.1 to train and

test the ADNet. All the experiments were conducted on a PCwith

Intel Core i5-7500 CPU at 3.40 GHz and an NVIDIA GeForce

GTX 1050 Ti GPU.

3 Experiment results

3.1 Denoised results comparison of
synthetic DAS data

In this section, we illustrate the results from the denoising

performance of ADNet by processing the synthetic DAS data

generated by a six-layer forward modeling. The 2-D geological

FIGURE 8
F-k spectra comparisons of denoised results. (A) F-k spectrum of Figure 5A, (B) f-k spectrum of Figure 5C, (C–F) f-k spectra of denoised results
in Figure 6.
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model is shown in Figure 4, where the horizontal distance is

2,000 m, the well depth is 4,000 m, the inverted triangle

represents the seismic source, and the vertical black line

represents the fiber optic sensor. And the detailed

parameters of the geological model are shown in Table 1.

We constructed a synthetic DAS record with 2,000 traces

and 1,000 ms, shown in Figure 5A. The wavelet type used is

a zero-phased Ricker wavelet with a dominant frequency of

50 Hz. The trace interval was set to 1 m and the sampling

frequency to 2,500 Hz.

The synthetic noisy record was constructed by adding noise

to the synthetic pure record. Figure 5B shows the real DAS noise

record and Figure 5C shows the synthetic DAS record with added

noise. We can see that most of effective signals are contaminated

by noise and cannot be identified easily.

To verify the denoising performance of our method, we

compare the ADNet-approach with variational mode

decomposition (VMD), band-pass filtering, and DnCNNs. The

denoised results are shown in Figure 6. VMD has four modes.

Band-pass filtering is from 20 Hz to 110 Hz. The DnCNNs used

the same network layers and basic parameters as the ADNet, as

well as the same training sets. As shown in Figures 6A,B, VMD

and band-pass filtering cannot suppress horizontal noise and

fading noise well, which is marked with red box. Compared to

conventional methods, DnCNNs has better noise suppression

ability. However, there is a reflected signal lost in part of the

image highlighted with the blue box, and some optical abnormal

noise remains, as seen in Figure 6C. By contrast, ADNet can

suppress almost all the noise, and the denoised result is closest to

synthetic pure record seen in Figure 5A.

FIGURE 9
F-k spectra of difference maps. (A) F-k spectrum of Figure 5B, (B–E) F-k spectra of the difference maps in Figure 7.
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To verify the signal recovery ability, we compared the

differences between the noisy record and the denoise results

obtained via the four denoising methods. The results are shown

in Figure 7. In Figures 7A,B, the direct waves are muted. The

difference map obtained from DnCNNs has a great number of

reflected waves, which is shown in Figure 7C. Thus, all three

methods lose effective signals, whereas in Figure 7D, we can see

that difference map obtained via ADNet has almost no effective

signal residual. This result is also closest to the noise example

illustrated in Figure 5B. That demonstrates that ADNet has better

noise suppression ability and stronger effective signals

restoration ability.

FIGURE 10
Local SNR comparison of denoised results. (A) Local SNR of Figure 5C, (B–E) local SNR of denoised results in Figure 6.

TABLE 2 Comparison of denoising performance of different methods.

Noisy record VMD Band-pass filtering DnCNNs ADNet

SNR (dB) −2.9260 2.3098 2.8239 11.9488 15.3275

SSIM 0.0286 0.1799 0.3406 0.6231 0.7864

Training time (hr) — — — 52.00 34.33
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Additionally, we analyzed the denoised results in the

frequency domain. The f-k spectra of the denoised results are

illustrated in Figure 8. From the f-k spectra shown in Figures

8C,D, we observe that the noise has a wide frequency band

compared to the effective signals. The denoised results from

VMD and band-pass filtering have plenty of noise residual. By

contrast, the f-k spectra in Figures 8E,F are closer to the pure

record spectrum. Furthermore, the f-k spectra of the difference

maps are plotted in Figure 9. We see here that part of effective

signals is left in Figures 9B,D. This again indicates the ADNet has

the best denoising effect.

To compare the denoising results in even more detail,

we show the local SNR in Figure 10. The local SNR and

global SNR have the same formula. From the results, we can

see that local SNR of ADNet is closer to yellow, which

indicates higher SNR. Additionally, to quantitatively

analyze the denoising performance, we compare SNR,

SSIM and training time in the Table 2. The denoised

results from ADNet increases approximately 18 dB. The

higher SNR and SSIM values indicate better denoising

performance than the results obtained with the three

other methods. In addition, the training time of ADNet

is shorter than that of DnCNNs.

3.2 Field DAS data denoised results

Next, we processed a field DAS record from the Tarim Basin

of Xinjiang located in the northwest China to test the denoising

performance of ADNet and compare the result with the denoised

results of VMD, band-pass filtering and DnCNNs. Figure 11

shows the real DAS record. The red arrow represents the direct

wave, and the yellow and blue arrows represent up-going

reflected waves and down-going reflected waves, respectively.

The record contains multiple types of noise and effective signals

cannot be easily identified.

FIGURE 11
Real DAS record.

Frontiers in Earth Science frontiersin.org11

Wang et al. 10.3389/feart.2022.986470

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.986470


Figure 12 shows the denoised results from the four

methods, and Figure 13 displays the corresponding

difference maps. From Figure 12A, we can see that a large

amount of noise is suppressed, but horizontal noise can still be

seen, particularly within the yellow box. In Figure 12B, the

continuity of the effective signals is poor, and the difference

map obtained after band-pass filtering obtains many reflected

waves. The denoised result of DnCNNs still contains horizontal

noise and optical abnormal noise residual, which influences the

effective signal identification. Besides, the difference map has

plenty of effective signal loss, as illustrated in Figure 13C. On

the contrary, the denoised result from ADNet contains very

little noise residual, and the direct wave and reflected waves can

be seen clearly. This indicates that ADNet is more suitable for

DAS seismic data denoising and has better effective signal

recovery ability.

FIGURE 12
Field data: Denoising results. (A) Denoised result from VMD, (B) denoised result from band-pass filtering, (C) denoised result from DnCNNs, (D)
denoised result from ADNet.
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4 Conclusion and discussion

DAS seismic data include multiple types of noise and this

affects the identification of effective signals, such as the direct

wave and reflected waves. In this paper we have introduced a

CNN denoising network with attention mechanism to

suppress DAS seismic noise. The ADNet can extract

effective signals and noise features. This allows for

accurate prediction of data noise. The attention block can

furthermore guide the network to learn more noise

information and adjust the training parameters of the

network. The results illustrate that ADNet can suppress

FIGURE 13
Differencemaps from denoised results in Figure 12. (A)Differencemap from real DAS record and denoised result from VMD, (B) difference map
from real DAS record and denoised result from band-pass filtering, (C) difference map from real DAS record and denoised result from DnCNNs, (D)
difference map from real DAS record and denoised result from ADNet.
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complex noise and recover weak reflected signals clearly.

Comparisons of denoised results obtained from ADNet

and DnCNNs, reveal that attention mechanism is vital to

DAS noise suppression. It enhances the denoising

performance and the quality of DAS seismic data.

However, the network cannot eliminate ringing noise

well due to the high similarity between ringing noise

and weak reflected noise. Future improvements in the

network architecture and training sets may mitigate this

problem.
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