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Time series mapping of snow volume in the mountains at global scales and at

resolutions needed for water resourcemanagement is an unsolved challenge to

date. Snow depth mapping by differencing surface elevations from airborne

lidar is a mature measurement approach filling the observation gap

operationally in a few regions, primarily in mountain headwaters in the

Western United States. The same concept for snow depth retrieval from

stereo- or multi-view photogrammetry has been demonstrated, but these

previous studies had limited ability to determine the uncertainties of

photogrammetric snow depth at the basin scale. For example, assessments

used non-coincident or discrete points for reference,masked out vegetation, or

compared a subset of the fully snow-covered study domain. Here, using a

unique data set with simultaneously collected airborne data, we compare snow

depthmapped frommulti-view Structure fromMotion photogrammetry to that

mapped by lidar atmultiple resolutions over an entiremountain basin (300 km2).

After excluding reconstruction errors (negative depths), SfM had lower snow-

covered area (~27%) and snow volume (~16%) compared to lidar. The

reconstruction errors were primarily in areas with vegetation, shallow snow

(< 1 m), and steep slopes (> 60°C). Across the overlapping snow extent, snow

depths compared well to lidar with similar mean values (< 0.03 m difference)

and snow volume (± 5%) for output resolutions of 3 m and 50m, and with a

normalized median absolute deviation of 0.19 m. Our results indicate that

photogrammetry from aerial images can be applied in the mountains but

would perform best for deeper snowpacks above tree line.
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1 Introduction

Snow depth and snow water equivalent are essential

monitored quantities used in many water resource

applications. In mountain environments, snow depth is

traditionally measured continuously at instrumented sites (e.g.,

Snow Telemetry in the United States) or periodically along

transects due to the complexity of the terrain. These long-

term records are valuable but tend to be at locations that are

accessible, lower in elevation, and hold snow for longer than the

surrounding terrain (Molotch and Bales, 2005). This limited

spatial coverage leaves a poor understanding of snow depth

distributions particularly at high elevations or remote and

inaccessible locations. To address the gap in spatial coverage

and map snow depths across large areas, remotely sensed surface

elevation models have been used to retrieve depths by

differencing the surface elevation when snow is present

(“snow on”) and absent (“snow free”) (Deems et al., 2013).

The surface elevation differencing principle to retrieve snow

depth has been demonstrated from several remote sensing

platforms, spanning a range of spatial resolutions, areal

coverage, repeat intervals, and varying accuracy. Examples of

past used platforms include the Ice, Cloud, and Land Elevation

Satellite (ICESat), a laser altimeter that could map snow depths

along swaths with sub-meter accuracy (Treichler & Kääb, 2017).

The data, however, were of limited utility for mountain regions

due to the low temporal resolution and large ground footprint

(70 m). Current satellite stereo-photogrammetry derived digital

surface models (DSMs), such as those from World view or

Pléiades, have the potential for higher spatial (< 1 m) and

temporal resolutions (Marti et al., 2016; McGrath et al., 2019;

Shaw et al., 2020a; Deschamps-Berger et al., 2020). Limitations,

though, include terrain-dependent accuracy with best values of

0.2 m–0.4 m over flat surfaces (e.g., bedrock, ice) with shallow

slopes (< 10°C; Shean et al., 2016). Additionally, satellites require

a clear view of the target area at overpass time with no

obstructions, such as clouds (Shaw et al., 2020b).

With no current space-borne platform providing a consistent

combination of high temporal and spatial resolution required for

accurate spatial snow depth mapping at watershed scales in the

mountains, airborne campaigns have been established to address

these needs. For example, the Airborne Snow Observatories, Inc.,

(ASO), a combined Light Detection and Ranging (lidar) and

imaging spectrometer platform, delivers time-series of snow

depth maps at 3 m resolution with centimeter accuracy. ASO

is currently operating in selected watersheds primarily in the

California Sierra Nevada and Colorado Rocky Mountains

(Painter et al., 2016). Expanding operations, similar to ASO,

to more areas is limited by equipment costs, airplane logistics,

and operational expenses. Similar to satellite remote sensing,

airborne platforms also have limitations due to weather, but a

strength is the option for on-demand surveys once conditions

improve.

Although smaller in spatial extent, it has been shown that

DSMs from multi-view Structure from Motion (SfM)

photogrammetry can map snow depth up to alpine

catchments size (Bühler et al., 2016; Harder et al., 2016;

Schirmer & Pomeroy, 2020; McGrath et al., 2022). The

reported results using a Remotely Piloted Aircraft System

(RPAS) mapped snow depth at sub-decimeter resolution with

centimeter accuracy. A modern photogrammetry technique, SfM

uses multiple overlapping images to re-construct the area of

interest as a three-dimensional surface model. Further

descriptions of SfM and its underlying algorithms can be

found in the existing literature (Westoby et al., 2012; Bühler

et al., 2016; Harder et al., 2016). Other applications of SfM

include time-lapse photogrammetry using permanently

installed cameras (Filhol et al., 2019). RPAS-based SfM studies

have gained popularity due to the affordability of high-resolution

consumer-grade cameras, ease of SfM application, and ability to

create accurate data sets on demand (Gaffey & Bhardwaj, 2020).

Compared to airplane surveys, RPAS have smaller areal coverage

due to battery life, cannot operate safely outside the line of sight,

and face strong regulations in populated or protected areas.

These limitations lead to significantly smaller footprints and

less consistent coverage relative to large-scale platforms.

Previous studies that retrieved snow depth using output

DSMs from SfM and images taken from an airplane (Bühler

et al., 2015; Nolan et al., 2015; Eberhard et al., 2021)

demonstrated the utility of the method over larger areas, but

gaps remain for understanding and efficiently applying SfM at

the alpine watershed scale. For example, Nolan et al. (2015) had

small study areas (10 km2 and 35 km2) over relatively flat tundra

terrain in Alaska. Bühler et al. (2015) and Eberhard et al. (2021)

had larger areas with representative alpine terrain, but the

validation data used for accuracy assessment was only

available for a small subset of the area. Additionally, both

studies did not record the reference validation data on the

same day as the images used with SfM. This precludes the

ability for a methodological evaluation under identical

snowpack conditions, as snow metamorphism is a continuous

process, and the depth is unlikely to remain constant. From an

image processing perspective, Bühler et al. (2015) excluded all

areas with visible vegetation in the snow scenes, inhibiting an

assessment of surface types that are challenging to reconstruct

with photogrammetric methods. The DSMs were also created in

chunks that created an unaccounted-for error, merging multiple

DSMs into one output product. Additionally, the images were

recorded with a multispectral line scanner, making the results

challenging to compare to other SfM studies using RGB camera

images. In contrast, Eberhard et al. (2021) had imagery from an

RGB camera and reconstructed the study in one step. However,

the image processing required manual ground control points

(GCPs) placement for the scene to be geo-referenced accurately.

Using GCPs makes it challenging to follow this approach in vast,

remote, snow-covered areas. Their approach also aligned the
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snow depth via cubic-convolution resampling, which left no

understanding of the individual scenes’ geo-location accuracy

(snow-free and snow-on).

This work assesses the ability of SfM to retrieve snow depth

distributions over an alpine watershed basin with high-resolution

RGB imagery captured by an airplane and evaluates the accuracy

relative to a simultaneously collected lidar-based retrieval. The

comparison is spatially complete, across different output product

resolutions, with identical snowpack conditions, sensor viewing

geometry, environmental influences (weather, sun angle), and

the same data processing for snow-free and snow-on scenes. The

presented workflow is open source and could be readily adopted

for any airborne collected geo-referenced image data set. Meyer

& Skiles (2019) showed that SfM can accurately reconstruct snow

surface elevations from airplane imagery over bright, freshly

fallen snow, with a relative accuracy of 0.17 m at 1 m

resolution for a 3.2 km2 area, relative to lidar. This work

extends the SfM assessment from snow surface elevations to

snow depth, while also scaling up to a larger alpine watershed

basin (300 km2) with more variety in topography and vegetation.

The broader application of SfM will expand our understanding of

the strengths and weaknesses of photogrammetric-based

techniques and provide an additional option for large-scale

aerial snow observations.

2 Study area

The East River Watershed (hereafter ERW) basin (330,050 E,

43,14,650 N; EPSG:32,613), located northeast of Crested Butte,

FIGURE 1
Areal overview of the East River Watershed basin and its location shown relative to theWestern United States. (Insert map base layer: Map data©

2021 Google).
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Colorado, lies within the broader Upper Gunnison basin

(Figure 1). It encompasses the long running Rocky Mountain

Biological Laboratory and a portion of Crested Butte Mountain

Resort. The East River is one of two primary tributaries of the

Gunnison River, which itself discharges into the Colorado River.

The ERW is estimated 300 km2 in size, has an average elevation

of 3,266 m, and a vertical relief of 1,420 m (Hubbard et al., 2018).

The vegetation varies across the elevation ranges and includes

brush and grass land, aspen and mixed conifer, and alpine

meadows. The East River was designated as a Scientific Focus

Area in 2016, supported by the US-DOE Biological and

Environmental Research Subsurface Biogeochemistry Program.

The ASO flights, and subsequent data processing, were funded by

the state of Colorado to map snow distribution patterns and

support water supply forecast improvements.

3 Data

3.1 Images

The ASO images were taken on the 24 May 2018 for the

snow-on and 12 September 2018 for the snow-free scene. Flight

patterns were almost identical on both days, covering the area

with a 50% overlap lawn-mower pattern. Flight altitude varied

slightly between the two flights, where theMay flight was 6,400 m

above sea level, and the September flight was at 6,100 m. There

was also a difference in flight line orientation between the two

dates, with the May flights in a North-South direction and the

September flights in a Northwest-Southeast direction. The

orientation for the flight lines during the snow season was

selected based on lighting conditions for the ASO imaging

spectrometer and flight efficiency, and no direct

considerations for the camera.

The camera used by ASO is mounted inside the lidar

instrument, creating identical view perspectives between the

lidar scanner and the camera to the ground surface. Each

image has dimensions of 10,328 × 7,760 pixels with a 16-bit

color depth and size of 5.2 microns for an individual pixel.

Underlying hardware consists of a medium format Phase One

iXU 180-R CCD sensor camera with a Rodenstock 50 mm HR

Digaron-W wide-angle view lens. The recording interval for the

camera was twelve seconds for the snow-free flight, which

resulted in 287 images, and six seconds for the snow-on flight

resulting in 582 images. The flight operators selected different

acquisition intervals to visually identify conditions beneath the

plane during the flight, without considering SfM processing, as

ASO does not use the images in its operational workflow. The

average ground sample distance (GSD) was 0.31 m/pixel for the

snow-on and 0.28 m/pixel for the snow-free images. An overview

for both collections is shown in Table 1.

3.2 Comparison, reference, and
classification data

The quality assessment for SfM used the snow depth (SD;

Painter, 2018a; Painter, 2018b), snow water equivalent (SWE;

Painter, 2018c), and digital terrain model (DTM, Painter and

Bormann, 2020) products by ASO. All of them are published and

distributed through the National Snow and Ice Data Center

Distributed Active Archive Center and are referred to as ASO

SWE, ASO SD, or ASO DTM from here on out. ASO uses the

same DSM difference principle to calculate SD, where snow-on

values are subtracted from the snow-free. The ASO products

used in this study were the SD maps at 3 m and 50 m resolution,

SWE at 50 m resolution, and the DTM at 3 m resolution. Other

data sets directly acquired from ASO were a land surface

classification raster at 3 m resolution and the lidar point cloud

from the snow-on acquisition. The latter was only used for the

co-registration step, which is described in section 4.2.

The land surface classification map is an output data set from

the ASO imaging spectrometer spectral reflectance processing

pipeline, categorizing each pixel into the basic land surface types;

snow, rock, vegetation, and water. The spatial grid and resolution

matched the 3 m ASO SD map and required no further post-

processing. We note that the imaging spectrometer mostly

misclassified the water class; it was shading within vegetation,

which we confirmed with a subset of all water classified pixels.

Therefore, we treated both categories (water and vegetated areas)

as one category. Additionally, the spectrometer data is not

processed to map fractional land cover, and pixels classified as

TABLE 1 Flight parameters for snow-on and snow-free recording.

24 May 2018 (snow-on) 12 September 2018 (snow-free)

Flight pattern Single overlap, lawn-mower Single overlap, lawn-mower

Flight line orientation North-South Northwest-Southeast

Flight altitude (above sea level) 6,400 m 6,100 m

Camera recording interval 12 s 6 s

Number of images 287 582

Mean GSD 0.31 m/pixel 0.28 m/pixel
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rock or vegetation indicate that this land surface type dominated

the spectral signature within that pixel. Consequently, pixels

classified as rock or vegetation can still contain a measured snow

depth even if another surface type is dominant. For example, the

lidar measured snow between the canopy, but that same snow is

only a small fraction compared to the vegetation within one pixel

for the spectrometer, and hence the land surface classification

would be vegetation. More technical details on the ASO platform

and the output product’s processing steps can be found in Painter

et al. (2016).

4 Methods

4.1 Image processing

The camera images from the ASO flights were processed

using Agisoft Metashape (version 1.6.2) along with associated

geo-location and orientation data from the airplane global

navigation satellite system and inertial measurement unit.

Metashape was used for feature matching, image alignment,

dense point cloud creation, and geo-referencing the point

cloud. We refer readers for more technical details on data

preparation and settings for Metashape to the workflow in

Meyer & Skiles (2019).

4.2 Co-registration

After the SfM snow-free and snow-on point clouds were

generated, a co-registration step ensured the closest alignment of

the surface models to a reference data set. This process minimizes

relative geo-location error and improves accuracy for DSM

difference products. The co-registration was performed using

the Ames Stereo Pipeline (ASP; version 2.6.3), which internally

uses the iterative closest point algorithm to determine the

difference between a reference and movable point cloud

(Shean et al., 2016; Beyer et al., 2018). The reference in this

study was the ASO snow-on point cloud and reduced to control

surfaces to compute the differences. These surfaces, such as

exposed bedrock or roads, have consistent elevation across

time and were identified from the ASO classification

map. Further refinement to the control surfaces included

removing any areas with snow in the ASO SD product and

any slopes steeper than 50°C (Shaw et al., 2020a). The bounding

box for the reference was extended beyond the ERW basin

FIGURE 2
ASO imaging spectrometer classification of the study area. Most snow surfaces were in the higher elevations in the northern locations (A).
Control surface (red) distribution over the extended ERW basin boundaries used for co-registration (B).
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boundaries to increase the available area for co-registration

(Figure 2B). Co-registering the SfM point clouds to the ASO

lidar point cloud also had the advantage of implicitly aligning the

SfM with the ASO SD product.

The co-registered SfM point clouds were converted to a

gridded raster product (GeoTIFF) with 1 m resolution using

the Point Data Abstraction Library (PDAL; Butler et al., 2021),

which provides the inverse distance weighting (IDW)

algorithm for interpolation. The IDW algorithm is suitable

with a point density of multiple points per square meter (Guo

et al., 2010), and both SfM point clouds had sufficient density

for its application (23.2 points/m2 for the snow-on and

31.5 points/m2 for the snow-free). With the conversion to a

raster product, PDAL clipped the outputs to identical

bounding boxes and transformed them to matching

projection (WGS 84/UTM zone 13N; EPSG 32613). The

SfM snow-on and snow-free raster products were

downscaled (from 1 m to 3 m and 1 m–50 m) to match the

ASO SD map resolutions using the bilinear interpolation

option from the Geospatial Data Abstraction Library

(GDAL). The final step was calculating the SfM SD by

taking the pixel-wise difference in surface elevation between

the snow-on and snow-free DSMs.

4.3 Comparison

The SD values from SfM were compared to the ASO SD

product by treating ASO as the reference since SD mapping

with lidar is the more established method. The SfM SDs were

compared to ASO SDs using the entire study domain’s mean,

median, and standard deviation. This comparison included

the snow-covered area (SCA), snow volume, and SWE to

show how the SD differences propagate to downstream

products.

The SfM SCA was calculated as a percentage of pixels

containing snow with a positive depth value and relative to

the total number of pixels with depths in the ASO SD

product. To enable a SWE comparison, the mean basin snow

density was estimated from the ASO SWE and ASO SD product

at the 50 m resolution. This basin-average density was then used

with the SfM SD to calculate the SfM SWE. The SWE, most

relevant for water resource forecasting, was then aggregated as a

basin sum of all snow pixels and reported as a volume (m3 w.e.;

Fierz et al., 2009). We want to note that this is not the process

ASO is using for the official NSIDC SWE product, and details of

which are described in Painter et al. (2016).

The terrain factor analysis used the 3 m resolution and first

binned the depths by elevation bands to assess similarities in the

vertical relief. The elevation data was extracted from the ASO

DTM, and the binning width was set to 10 m. Next, a relative

pixel-by-pixel difference, subtracting the ASO SD from SfM SD,

compared the mean, median, standard deviation, and normalized

median absolute deviation (NMAD; Höhle and Höhle, 2009).

Median and NMAD for control surface differences, using

coinciding areas between the SfM snow-free and snow-on

DSM, determined the relative error of the two models and a

measure of uncertainty for the calculated SfM SD values. Finally,

the snow volume was compared basin-wide and grouped by

different surface classifications (snow, rock, vegetation;

Figure 2A).

Areas with negative or no SfM SD values, were classified as

SfM reconstruction errors, co-registration errors, or both. Pixels

with no SD were considered gaps and not further analyzed,

whereas the negative SD were inspected by three terrain

characteristics: elevation, slope, and aspect. This analysis was

done for the full ERW basin and after classifying the negative SD

by surface classification type. Aspect and slope were calculated

fromASODTM to create independence from the modeled values

by SfM.

5 Results

5.1 Co-registration

Control surfaces, used for co-registration of the SfM snow-

free and snow-on scene to the lidar reference point cloud,

encompassed 14% of the ERW basin boundaries when

gridded at the 3 m resolution (Figure 2B). The snow-free

point cloud was shifted 0.02 m to the North, −0.20 m to the

East and −0.41 m in the vertical direction, while the snow-on was

0.01 m to the North, −0.02 m to the East and 0.01 m in the

vertical. After applying the translation to the respective SfM point

clouds, the control surfaces in the SfM DSMs had a mean

difference of 0.01 m with a standard deviation of 0.51 m, and

median of 0.03 m. The NMAD of 0.19 m indicated that there

were still some areas in the control surfaces that were not

constant between the scenes, despite all the refinements to

constrain those. With median and mean close to zero,

however, the co-registration can be considered successful for

the two scenes.

5.2 Structure from Motion snow products

Overall, where SfM and ASO products had pixels with

measured SD, there was a good agreement (Figure 3).

Notably, deeper snow (> 1 m) and across higher elevations (>
3,500 m) showed similar pixel values for depth. Most pixel

differences with negative SfM SD and positive ASO SD values

were in areas with vegetation or shallow snow depth (< 1 m). The

following sections explain each compared output product (SD,

Snow Volume, SWE, and SCA) in more detail and how the two

output resolutions (3 m and 50 m) impacted the magnitude in

differences.
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5.2.1 Snow depth
Mean ASO SD for the entire domain at the 3 m

resolutions was 0.89 m, with a median value of 0.64 m,

and standard deviation of 0.88 m, and 0.60 m (mean),

0.40 m (median), and 0.66 m (standard deviation) at 50 m.

The SD statistics for SfM, ASO, and the pixel-wise difference

for the coinciding area (SD > 0 m) showed almost identical

values for the mean (0.02 m lower at 3 m and 0.03 m higher at

50 m in SfM) and the median (0.04 m lower at 3 m and 0.01 m

higher at 50 m in SfM), with more variability between

standard deviation values (0.10 m higher at 3 m and

0.10 m lower at 50 m in SfM). An overview of the SD

statistics is given in Table 2 and visual comparison for a

sub-area is shown in Figure 4.

As a whole, SfM showed an underestimation of SD to ASO

when compared on a pixel-by-pixel basis with SD pixels > 0 m at

the 3 m resolution (Figure 5A). The depth distribution was

mainly in the 0 m–5 m range (Figure 5B), and higher values

were more dispersed and highly localized. Other studies that have

used ASO SD maps also observed extreme outliers and

considered these as spurious snow depth values (5 m in

McGrath et al., 2019; 6 m in Brandt et al., 2020). We did not

remove any high outliers from both data sources for this study

and included them in all comparisons.

FIGURE 3
Overview of reconstructed snow depth by SfM (A), with ASO snow depth map shown on the right (B) at 3 m resolution. Areas with unsuccessful
SfM retrievals (purple) coincidedwith surfaces classified as vegetation or shallow snow depth values (< 1 m) by ASO. The snow depth pattern between
the two products showed good agreement over the overlapping area. The red dashed box shows the location of the comparison in Figure 4.

TABLE 2 Overview of snow depth statistics between the 3 m and 50 m output resolutions.

SfM ASO Difference (SfM-ASO)

3 m resolution snow depth

Mean depth (m) 1.03 1.05 −0.02

Median depth (m) 0.74 0.79 −0.04

Standard deviation (m) 1.06 0.96 0.75

50 m resolution snow depth

Mean depth (m) 0.62 0.60 0.03

Median depth (m) 0.41 0.40 0.01

Standard deviation (m) 0.76 0.86 0.67

Note: Mean, Median, and Standard Deviation are for coinciding areas by SfM and ASO.
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The distribution of SD values across 10 m elevation bands

showed higher accumulation in the upper elevations, but not

necessarily at the highest in both data sets (Figure 6). SfM and

ASO had increasing depths between ~3,200 m and ~3,800 m

and decreasing values above this range. However, SfM had a

higher spread in the elevations between 3,200 m and 3,500 m

(Figure 6A), with 74% of this elevation band classified as

vegetation. Overall, the agreement between the two

distributions showed that SfM is suited to map snow

depth patterns across a range of elevations in complex

terrain.

Categorized by the surface classificationmap and SD > 0 m for

both SfM and ASO at the 3 m resolution had most SfM pixels as

snow (81%), followed by rock (12%), and the vegetation (7%). For

ASO, the pixels were distributed differently across land surface

types; 69% in snow, 15% in rock, and 16% in vegetation. The

FIGURE 4
Comparison of snow depth between 3 m, and 50 m resolution. SfM did not accurately capture snow depth within vegetated areas but showed
good agreement for open areas at higher output resolution. The higher 3 m resolution also retrievedmore areas with snow depth around vegetation
and had closer values of SCA compared to 50 m.

FIGURE 5
SfM snow depth values plotted against ASO snow depth values at the 3 m resolution in the coinciding area (A). The dashed line shows a
hypothetical one-to-one relationship. SfM tended to underestimate the snow depth compared to ASO at the same pixel locations. The snow depth
histograms showed a strong agreement between the ASO (blue) and SfM (beige), in the overlapping areas with measured depth (B).
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higher ASO value in the vegetation class denotes the strength of

lidar SD mapping and is further discussed in section 6.3. This

comparison was not done at the 50 m resolution as the

classification map was unavailable. A simple interpolation and

down-scaling of the 3 m product was not considered a reliable

classification base map.

5.1.2 Snow water equivalent and snow volume
The estimated amount of SWE was calculated by applying

a constant snow density of 394 kg/m3, the basin-average value

calculated from the 50 m ASO SWE and ASO SD product.

This is a simple treatment of snow density, but in the spring

snow density varies less than snow depth. With this single

value applied to the 3 m ASO SD product, the calculation of

basin SWE matched the 50 m ASO SWE product to within 3%.

Based on this density estimate, the 3 m SfM product had a

basin total SWE of 8.13 m3 × 106 m3 resulting in a difference of

1.53 m3 × 106 m3 relative to ASO. At the 50 m resolution, SfM

SWE was 8.36 m3 × 106 m3 with a difference of 1.30 m3 ×

106 m3 relative to ASO.

The snow volume had a close match where snow was mapped

by both ASO and SfM (SD > 0 m). At the 3 m resolution, SfM had a

total volume of 20.63 m3 × 106 m3 underestimating the volume by

2%. The 50 m resolution had a total SfM volume of 21.21 m3 ×

106 m3, an overestimation of 5% compared to ASO. For the entire

ERW basin, SfM had a lower volume of 3.90 m3 × 106 m3 (16%) for

the 3 m and 3.31 m3 × 106 m3 (14%) at the 50 m resolution, with

ASO measuring a total of 24.52 m3 × 106 m3 at 3 m and 24.52 m3 ×

106 m3 at 50 m. Categorizing the SfM volume differences per surface

classification had 17.34 m3 × 106 m3 (1.75 m3 × 106 m3 lower than

ASO) in snow; 1.86 m3 × 106 m3. (1.26 m3 × 106 m3 higher than

ASO) in vegetation; 1.43 m3 × 106 m3. (0.15 m3 × 106 m3 higher than

ASO) in rock.

5.3 Structure from Motion snow product
errors

The SCA from SfM was 27% less area than the ASO SCA

at the 3 m resolution, of which 0.2% was a data gap (no pixel

value) in SfM. The missed ASO SD had a mean of 0.47 m, a

median of 0.39 m, and a standard deviation of 0.41 m. A

pixel-by-pixel comparison showed the majority of the

missing ASO area with shallow depths (< 1 m) in ASO

(Figure 7A). The largest negative SfM values (−4 m

and −28 m) were primarily found in areas classified as

vegetation (Figure 7B), while smaller negative values (up

to −1 m) were predominantly classified as snow.

The regression analysis to explain negative SfM pixel

values (SD < 0 m) by the different terrain characteristics

showed no strong relationships. Out of the investigated

influence factors of aspect, elevation, and slope, the most

visible trend was detected when values filtered to only snow

(no vegetation or rock) were binned by slope angle and the

median depth calculated. The median did not exceed −1 m

up until around 60°C, then started to decrease sharply

(Figure 8). Terrain with missing SD and above this slope

angle was rare in the study domain though, and most

locations stayed below this angle. The observation of a

decline in accuracy for photogrammetric reconstructions

for steeper slopes is common (Bühler et al., 2012; Müller

et al., 2014; Shean et al., 2016; Shaw et al., 2020b), and this

FIGURE 6
Snow depth distribution across elevation bands of 10 m for SfM (A) and ASO (B) at 3 m resolution. Both had similar patterns of higher depth
values in the upper elevations between ~3,500 m and ~3,800 m. The higher snow depth spread in the lower elevation between 3,200 m and
3,500 m by SfM is attributed to more areas with vegetation.
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study confirmed this with imagery from an airplane

observation at the watershed basin scale.

6 Discussion

6.1 Structure from Motion with airplane
imagery

The primary focus of ASO is the delivery of lidar-based snow

depth and SWEmaps, and the camera images are currently not used

in data product processing (Painter et al., 2016). With the lidar and

imaging spectrometer as the primary data streams, there is little

consideration for the image overlap, illumination conditions for the

camera sensor, or minimum GSD for further use with

photogrammetric reconstruction. Given this image acquisition

set-up and the presented results, we believe that although the

results here are promising, there is room for improvement if

flight campaigns were planned to produce snow depth maps

with SfM. For instance, consistent image overlap can improve

the quality of SfM output products (Bühler et al., 2016; Harder

et al., 2016;Meyer and Skiles, 2019). The potential for airplane-based

SfM DSM generation for snow-depth mapping has been

demonstrated on a smaller scale by Nolan, et al. (2015), with a

geolocation accuracy for the SfM DSMs of ± 0.3 m. Our NMAD of

0.19 m using DSM control surfaces over a larger target area denotes

FIGURE 7
Snow depth with negative values by SfM plotted against values by ASO at 3 m resolution. Extreme outliers are dominantly found in areas with
snow depth of less than 1 m (A) or vegetated areas (B). Note the different y-scales for the insert in (B).

FIGURE 8
The median snow depth difference for negative SfM values in open areas binned by slope angles stayed below -1 m (orange dashed line) until
60°C (grey dotted-dashed lines), before increasing sharply with most of the terrain below this slope angle (grey histogram). This trend was the only
strong relationship detected when analyzing the negative SfM values for possible influences due to terrain.
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the scalability of this technical set-up, and is comparable to

Eberhard, et al. (2020), which reported a 0.17 m between a

reference and reconstructed snow surface. Another indicator was

the point density of the two SfM point clouds; there was an average

of 23.2 points/m2 for the snow-on acquisition and 31.5 points/m2 for

the snow-free acquisition, which signifies well-reconstructed

surfaces by SfM. This high point density would allow for higher-

resolution gridded output products than was analyzed here (to

match the lidar resolution) and is a suggested path for further

research.

6.2 Comparison to other platforms

The SfM NMAD from airplane imagery in this study

(0.19 m) shows a higher accuracy compared to satellite-based

stereo photogrammetric studies, where the NMAD ranges from

0.36 m (Shaw et al., 2020a) over 0.45 m (Marti et al., 2016) and up

to 0.69 m (Deschamps-Berger et al., 2020). Reasons for the higher

accuracy are primarily technical, as satellite stereo pairs have, for

instance, a lower GSD in a single image, making it more difficult

to capture great terrain detail for reconstruction. Additionally,

DSM generation from satellite images has a different technical

design where stereo photogrammetry uses up to three images

(tri-stereo) (Shaw et al., 2020b; Deschamps-Berger et al., 2020;

Bhushan et al., 2021). SfM can use any number of images and

varies based on the image overlap for an area. On the smaller area

scale, using RPAS, the accuracy is higher (cm-scale) than what we

have achieved here (Bühler et al., 2016; Harder et al., 2016;

Avanzi et al., 2018). The improved accuracy can be attributed to

the lower flight altitude, resulting in higher image overlap and

GSD. Some of the remaining challenges for RPASs include

maintaining accuracy while covering larger areas, currently

limited by battery life, and higher sensitivity to weather

conditions in alpine areas (Bühler et al., 2016).

6.3 Application strength and challenges

Given the limitations of current technologies to remotely

measure snow depth, we see SfM with images from airplanes

filling an important gap between RPAS-SfM and satellite stereo-

photogrammetry. Across the two output resolutions and the

accomplished NMAD here, we believe that SfM compared well

against an active measurement instrument like lidar on larger scales.

For one, the SfMproduct had few pixel gaps (0.2%), indicating that a

high camera image sampling rate and sufficient flight line overlap

can provide a reliable source for reconstruction. The mean and

median snow depth differences for both resolutions were ±

0.05 m for the coinciding SCA by both technologies. These

statistics were achieved for mostly open spaces, elevations

above the tree line, flatter terrain, and a snowpack of more

than 1 m. The higher error with shallow snow depth or

vegetation was expected and can stem from multiple

sources. For one, any elevation difference between the

snow-on and snow-off DTM below the NMAD is less likely

to be retrieved successfully. Another source is the SfM snow-

free scene with shallow vegetation covering the ground surface

with grasses or shallow bushes. These ground cover types are

poorly reconstructed by SfM (Avanzi et al., 2018; Fernandes

et al., 2018), where lidar can map more accurately (Harder

et al., 2020). Snow deposition in the winter additionally

compacts this vegetation and is a physical process that

cannot be accounted for with the differencing principle

(Nolan et al., 2015). Steep terrain is another aspect where

accuracy for the results degrades, particularly on angles above

60°C. Here, we argue that the accumulation in those areas is

low and exemplified by the snow pixel histogram in Figure 8.

6 4.Influence of snow depth map
resolution

Similar results for snow depth at 3 m and 50m output resolution

demonstrated that SfM has the capabilities for accurate retrieval

compared to a lidar-based platform on a large scale. The pixel-

wise ASO to SfM snow depth difference varied little across the

resolutions for the mean (3 m: −0.02 m; 50m: 0.03 m) and the

median (3 m: −0.04 m; 50m: 0.01 m). The standard deviation had

a bigger difference (3 m: 0.75m; 50m: 0.67 m), with classified

vegetation pixels contributing the most to this higher value. The

lower standard deviation at 50 m resolution can be attributed to the

reduced error in the snow depth values at coarser resolutions, which

has been demonstrated previously in other photogrammetric-based

studies (Deschamps-Berger et al., 2020). Additionally, the difference

was small for the volume calculation; SfM had a 3% better match to

ASO at the 50m resolution relative to the 3m resolution (84% at 3 m

versus 87% at 50m).

We argue that the chosen snow depth resolution also comes

down to the use case. Inputs for hydrologic models, for instance,

currently do not require or have not been assessed against output

resolutions of less than 25 m (Behrangi et al., 2018; Hedrick et al.,

2020; Pflug and Lundquist, 2020). The presented results for SWE

and the small depth and volume difference between the 3 m and

50 m showed that there is no imminent need for a higher-resolution

product. Thus, we see a strong use case for SfM-based retrievals for

lower resolution applications, for example, validating or bias

correcting snow depth in distributed models, as our results

showed good agreement across the metrics of SWE, depth, and

volume.

6.5 Availability of required data

We acknowledge that ASO has a unique setup, with images,

lidar, and land surface classifier data recorded simultaneously.
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The combination provided an opportunity to compare SfM to an

established snow depth mapping technology. However, we note

that simultaneous data recording is not needed to perform this

methodology outside the ASO operation domains. For land

surface classification, the snow-on and snow-free products

can be directly classified using the photogrammetric DSMs

and the image RGB information (Shaw et al., 2020a) or near-

infrared spectrum (Deschamps-Berger et al., 2020), where

available. Producing the classification with this approach

was beyond the scope of this work and warrants an

accuracy assessment by itself before continuing to use in

downstream products. Using the existing classification, we

reduced a potential source of error for this assessment. Once

classified, the DSM co-registration can use any externally

sourced point or gridded referenced data set. Solutions that

have used control surfaces from third-party sources already

exist (Shean et al., 2016). For areas with little change to control

surfaces (exposed rock surfaces or roadways), the reference

DSM can further be from different recording years and does

not have to be from the same year of the images (Midgley and

Tonkin, 2017). In the end, the presented processing steps can

be applied to any airborne collected and geo-referenced

images. A simultaneously recorded lidar-based point cloud

reference with image spectrometer classification is not

required.

6.6 Absence of ground control points

Ground control points (GCP) are commonly used for

RPAS-based studies to geo-reference the results, strongly

influencing accurate geolocation (James et al., 2017). Our

process explicitly did not use GCPs, which reduces manual

data recording and data processing intervention and

increases automation potential. We believe that image

geolocation and perspective information (omega, kappa,

and phi) combined with co-registration is a reliable

substitute for GCPs, while not compromising output

quality. Co-registration is common for photogrammetric

snow depth products from satellite images (Shean et al.,

2016; McGrath et al., 2019; Shaw et al., 2020b;

Deschamps-Berger et al., 2020) and is equally applicable

to airplane imagery. The SfM software performed very

well with the image metadata; the snow-on model was

close to the lidar (North: 0.01 m, East: −0.02 m, Up:

0.00 m), while the snow-free model had a higher shift,

predominantly to the East (−0.20 m) and Up (0.41 m) and

slightly in the North (0.02 m) direction. We hypothesize that

exposed vegetation and ground cover in the snow-free scene

degraded the geolocation accuracy. With both alignment

adjustments low in magnitude, it is feasible to align the

two models to each other and compute snow depth and

volume in relative geolocation space. Generally, alpine

areas with seasonal snow cover have a higher potential for

identifiable control surfaces in both scenes for multi-view

image processing (e.g., exposed rock along ridgelines), which

can be utilized for co-registration. Alternative surface

alignment approaches for environmental conditions with

few or no overlapping control surfaces, such as ice sheets,

have been developed (Howat et al., 2019; Shean et al., 2019).

From an operational perspective, methods that rely on the

presence or collection of ground control data limit the ability to

scale the application to larger areas or more frequent

acquisitions. This limitation is from a logistical point of view,

where more resources (people, equipment) would be needed to

complete one survey. Additionally, mountain watersheds are

often remote and challenging to access, and travel through

mountains in winter requires specialized skills and training,

limiting the capability to collect ground data. Current

operational environments, like ASO, show that GCPs are not

essential for delivering consistent results from regular repeated

surveys.

6.7 Expanding snow science

The ability to “fill-in” missing information between

point-based snow depth measurements using snow depth

maps from airborne campaigns has improved our

understanding of large-scale snow processes.

Improvements include enhanced model capabilities to

predict snow precipitation (Behrangi et al., 2018), observe

snowfall distributions (Brandt et al., 2020), improve snow

energy balance models (Brauchli et al., 2017; Hedrick et al.,

2020), and quantify snow depth variability (Zheng et al.,

2019). Spatially complete and temporally consistent records

have also improved estimates of SWE (Margulis et al., 2019)

and streamflow (Shaw et al., 2020a) through assimilation.

Although SfM does not yet deliver similar accuracies across

all terrain characteristics and land cover classes, it can be

used to supplement or build upon lidar data sets. For

instance, a first survey could use the higher accuracy

lidar for the entire watershed basin, with successive

observations using the more cost-efficient SfM for open

areas with low vegetation on a subset of the domain that

provides sufficient spatial snow observations to infer

patterns for the larger initial domain (Pflug and

Lundquist, 2020). The results of this work support that

SfM could be an option for operations like ASO for

repeated observations after the initial lidar flight. From a

technical setup perspective, it may be feasible to use images

or video from space-borne platforms (Bhushan et al., 2021),

adding the option of temporally consistent broad-scale

coverage and reducing operational requirements. More

cross-platform (airborne vs. space-borne) and technology

(photogrammetry vs. lidar) comparisons like Eberhard et al.
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(2020) are needed to understand and evaluate our

capabilities.

6.8 Recommendations and further
research

We would like to see photogrammetry, including SfM, applied

to larger areas and more frequent image acquisition to improve our

understanding of this technology at the alpine watershed scale. This

work was the first investigation for one flight during the snowmelt

season, which still leaves the need for applying the presented

methods to different times, such as accumulation or peak snow

depth. Our results showed an almost spatially complete snow depth

product with sub-meter accuracy above the tree line and for deeper

snowpack at two output resolutions. The 0.31 cm/pixel GSD for the

snow-on scene imagery is coarser than the 16 cm/pixel inMeyer and

Skiles (2019). This difference between the GSD is attributed to the

lower flight altitude (1,555 m above ground level; AGL) compared to

the normal ASO level in this flight (~3,000 m AGL), as the camera

image recording interval was identical (12 s). Despite the different

GSD, the achieved 0.19 m NMAD at 3 m resolution here was only

slightly higher compared to the 0.17 m at 1 m resolution in Meyer

and Skiles (2019). Our recommendation based on these findings is

that a lower AGL is not required. In contrast, we suggest

keeping the higher AGL like the flight used in this study, as

it results in broader areal coverage for the same flight time and

reduces processing time due to the reduced overlap between

images. A faster processing time could also be possible by

reducing the number of images used during DSM generation

and is an avenue for continued research. The next potential

options for this data set also include comparing at higher

resolutions and applying the method to more ASO flights as

available.

7 Conclusion

This study’s motivation was to investigate whether Structure

from Motion should be considered an additional remote sensing

data source for snow depth monitoring on the alpine watershed

scale. It also emphasized automating the data processing, as much as

possible, to be scalable with area size and ready for operational use.

Compared to simultaneous lidar-based measurements, the results

had almost identical statistics for mean and median for depth, and a

similar estimation in volume for open areas. This assessment holds

true at 3 m and 50 m resolution. As with previous studies, vegetated,

steep, or shallow snowpack areas had high reconstruction errors

with no measured snow depth. Consequently, these terrain and

snow depth characteristics also caused the missed volume, SCA, and

SWE by SfM compared to ASO.

The importance of monitoring the mountain snow water

reservoir is well recognized, with seasonal snow depth and

snow water equivalent both being identified as “targeted

observables” in the most recent Earth Science Decadal

Survey (National Academies of Sciences, Engineering, and

Medicine, 2018). This United States National Academy of

Sciences survey guides upcoming scientific missions and goals

for earth observations from space. Targeted observables are

priority observations that may not yet have mature

measurement techniques but could within the next 10 +

years. This recognition brings attention to emerging

technologies and incubation funding to mature their

approaches and application. Surface Topography and

Vegetation (STV) is one such incubation effort, which

focuses on high-resolution global topography mapping and

topography change. Photogrammetry, along with lidar and

radar, was specifically targeted as a measurement technology

with potential for maturation (Donnellan et al., 2021).

Although the focus is on stereo-photogrammetry, for which

satellite capability is well established, the potential for

spaceborne multi-view photogrammetry is also promising

and equally suitable. Comparisons and data as in this work

contribute to the STV effort with methods undergoing active

development. Ultimately, the goal is for global satellite-based

time-series mapping of snow volume in the mountains and at

resolutions needed for water resource management.
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