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The distance to the surface rupture zone has been commonly regarded as an

important influencing factor in the evaluation of earthquake-triggered landslide

susceptibility. However, the obvious surface rupture zones usually do not occur

in some buried-fault earthquake cases, which means information about the

distance to the surface rupture is lacking. In this study, a new influencing factor

named coseismic ground deformation was added to remedy this shortcoming.

The Mid-Niigata prefecture earthquake was regarded as the study case. To

select a more suitable model for generating the landslide susceptibility map,

three commonly used models named logistic regression (LR), artificial neural

network (ANN), and support vector machine (SVM) were also conducted to

assess landslide susceptibility. The performances of these three models were

evaluated with the receiver operating characteristic curve. The calculated

results showed that the ANN model has the highest area under the curve

(AUC) value of 0.82. As the earthquake triggered more landslides in the

epicenter area, which makes it more prone to landslides in further

earthquakes, the susceptibility analysis at two different mapping scales (the

whole study area and the epicenter area) was also applied.
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Introduction

Earthquake-triggered landslides are commonly seen in the earthquake disaster chain.

The landslides not only bring loss of life and property but also seriously affect the post-

earthquake rescue. By summarizing the data of 40 historical earthquake events in the

world, Keefer (1984) discovered that the earthquake-triggered landslide was the main

reason for the loss of life and property. More than 60 people were killed and nearly

100,000 people were displaced due to the Mid-Niigata earthquake in 2004 (Bandara and
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Ohtsuka, 2017). In 2008, the Wenchuan earthquake triggered

nearly 200,000 landslides, killing about 20,000 people (Xu et al.,

2012b). At present, numerous researchers regard susceptibility

mapping as an effective way to hazard mitigation and disaster

management, and several models have been used to generate

landslide susceptibility maps.

At present, one type of commonly used method to evaluate

the susceptibility of landslides is the physical-based method. For

this type of method, the study area is usually divided into slope

units and then LEM or FEM is applied to calculate the safety

factor (FS) of each slope unit (Saade et al., 2016). However, the

physical mechanism of the landslide is often very complicated,

especially for the landslides caused by earthquakes. Due to the

difficulty of obtaining enough parameters for slope dynamic

analysis, it still is a tough job to assess landslide susceptibility

with physical-based models in large-scale areas.

The statistical learning method was another important

method for landslide susceptibility assessment. This type of

method is based on the assumption that future landslides

would easily occur under similar conditions to those of the

previous landslides. By analyzing the characteristics of the

current landslides, a set of influencing factors is usually

selected to implement statistical learning and evaluate the

landslide susceptibility map (Nguyen et al., 2019; Zhao et al.,

2019; Nsengiyumva and Valentino, 2020; Vojteková and Vojtek,

2020). At present, many statistical learning methods are being

used successfully to calculate the landslide susceptibility index

(LSI) and generate earthquake-triggered landslide susceptibility

maps (Xu et al., 2012a; Pham et al., 2016; Hong et al., 2017;

Abeysiriwardana and Gomes, 2022). For example, Yang et al.

(2015) established the susceptibility map of seismic landslides for

the Lushan earthquake in Sichuan Province with an artificial

weighting method. Shrestha and Kang (2019) used a maximum

entropy model to produce the landslide susceptibility map of the

central region of the Nepal Himalayas. However, the relatively

good performance of these methods highly relies on local geo-

environment factors and self-features of the methods. For

different study areas, the most accurate method is also

different. Thus, it is necessary to make comparisons between

various methods for selecting a more suitable method which

produces a more reliable landslide susceptibility map (Bui et al.,

2016).

Gorum et al. (2011) pointed out that the influencing factors

of seismic landslides should include seismic correlation

parameters, geology parameters, and topography parameters.

Ding and Hu (2014) conducted the cluster analysis and the

maximum possible classification method to study seismic

landslide susceptibility of Beichuan County in the Wenchuan

earthquake. Influencing factors which include land-use type,

seismic intensity, and annual rainfall were selected to produce

a reasonable susceptibility map. Since earthquake-triggered

landslides tend to occur frequently near the surface rupture

zone (Xu et al., 2012b; Xu, 2014), numerous scholars took the

distance to the surface rupture zone as an influencing factor in

the evaluation of landslide susceptibility (Xu et al., 2012b; Xu,

2014). However, it is worth noting that some buried-rupture

earthquakes often do not have obvious surface rupture zones, and

the buried-rupture earthquakes can also trigger abundant

landslides (Xu, 2014). The evaluation accuracy of landslide

susceptibility for buried-rupture earthquakes is affected by a

lack of the factor of the distance to rupture (Regmi et al.,

2016). Therefore, it is necessary to improve the accuracy of

landslide susceptibility assessment for buried-rupture

earthquakes by introducing new influencing factors.

The Mid-Niigata earthquake, which occurred in 2004, has

become an important case for studying landslides due to good

seismography and a rich collection of seismic landslides. Wang

et al. (2007) detected the relationship of landslide occurrence

with geological, geomorphological conditions, slope geometry,

and earthquake parameters for the Mid-Niigata earthquake.

Bandara and Ohtsuka (2017) used the landslide occurrence

ratio (LOR) to determine the correlation between the

occurrence of earthquake-triggered landslides and geological

attributes for the Mid-Niigata earthquake.

In this study, based on GIS technology, three statistical

methods and two different scales are evaluated to assess the

landslide susceptibility caused by the Mid-Niigata earthquake.

First of all, we selected lithology, elevation, slope, slope aspect,

surface curvature, distance from the road, and the peak value of

earthquake acceleration as the influencing factors to evaluate the

susceptibility of seismic landslides in the whole affected zone

(large-scale area). For a large-scale area, three different statistical

learning methods (Logistic regression (LR), support vector

machine (SVM), and artificial neural network (ANN)) are

utilized and compared to make reasonable seismic landslide

susceptibility maps. As the epicenter area has a higher

landslide frequency more prone to earthquake-triggered

landslides, the seismic landslide susceptibility in this area is

further evaluated. Finally, given the fact of very short surface

ruptures, the Mid-Niigata earthquake was regarded as a buried-

rupture earthquake (Maruyama et al., 2007). Coseismic ground

deformation decomposed from high-resolution DEM is added as

an influencing factor to improve the evaluation accuracy of the

seismic landslide susceptibility for the epicenter area.

Study site and material

Study site

The Mid-Niigata earthquake occurred on 23 October 2004.

The Japan Meteorological Agency (JMA) measured the

magnitude of the mainshock as 6.8, the epicenter is located at

37°18′16.56″N, 138°50′10.32″E, and the focal depth is about

13.1 km (Chigira and Yagi, 2006; Kokusho et al., 2011).

Within 3 days after the mainshock, more than 900 landslides
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were induced by the earthquake (Chigira and Yagi, 2006;

Kokusho et al., 2014). After the earthquake sequences, a very

small surface rupture was found along a previously unmapped

northern extension fault zone. The length of the surface rupture

was about 1 km (Maruyama et al., 2007). The surface slip of the

Mid-Niigata earthquake event was also very small (<20 cm of

vertical displacement). In addition, the surface rupture zone is

also far away from the epicenter zone, where seismic landslides

have concentrated distribution (Sato et al., 2005), i.e., the study

area of seismic landslide susceptibility did not contain the surface

rupture zone. So in this study, we consider that the surface

rupture zone has little effect on the formation of seismic

landslides and regard the earthquake as a buried-rupture

earthquake.

Landslide inventory

In this study, the assessment of seismic landslide

susceptibility is performed on two scales, the large area and

the epicenter area. As shown in Figure 1, the large-scale area is

22 km wide (east to west) and 40 km long (north to south). The

FIGURE 1
Locations of landslides in the study area: (A) large-scale area; (B) epicenter area.
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total area of the large-scale area is about 880 km2. The epicenter

area is 7 km long (north to south) and 9 km wide (west to east).

The total area is about 56 km2. The epicenter area is located in the

bordering area between Nagaoka City and Ojiya City.

Many methods have been utilized to set up landslide

inventory maps, including satellite image interpretation, aerial

photography, field survey, and historical landslide records

(Vařilová et al., 2015). In this research, the landslide inventory

map was interpreted from satellite image data and then checked

by field survey data (Kokusho 2008; Kokusho et al., 2009). As

shown in Figure 1A, a total of 957 landslide locations were

recorded in the large-scale area, most of which are distributed in

the mountainous area around the epicenter area and spread to

the northeastern mountainous area. There are also some

landslides located in the eastern and southern mountain areas.

The landslide inventory map of the epicenter area is also shown

in Figure 1B.

Landslide influencing factors

The factors that affect the occurrence of earthquake-triggered

landslides usually include geology, topography, hydrology,

climate, human activities, and earthquake-related parameters.

Based on the availability of data and impacted factors used in

previous studies (Reichenbach et al., 2018), seven landslide

influencing factors (lithology, elevation, slope, slope aspect,

surface curvature, peak ground acceleration, and the distance

from the road) were taken into consideration for landslide

susceptibility analysis for the large-scale area. In the later

analysis in the epicenter area, coseismic ground deformation

was added as an influencing factor. The scales of the landslide

influencing factors are shown in Table 1.

Lithology directly determines the physical and mechanical

properties of the slope, which have a direct impact on slope

stability. The lithology maps in the large area and the epicenter

area are shown in Figure 2A and Figure 3A. The elevation also

affects the occurrence of seismic landslides (Hasegawa et al.,

2009). The elevation has been regarded as a key factor

determining the gravitational potential energy of the terrain.

Elevation also indicates the amplification effect of seismic-

induced landslides. The elevation maps of the large-scale area

and the epicenter area are shown in Figure 2B and Figure 3B,

respectively. The slope angle has a direct impact on slope stability

that determines the ratio of the anti-sliding force to sliding force.

The slope angle maps of the large-scale area and epicenter area

are shown in Figure 3C and Figure 3C, respectively. According to

previous studies (Xu et al., 2012a; Pham et al., 2016; Hong et al.,

2017), the slope aspect is divided into nine groups. The slope

aspect maps of the large study area and the epicenter area are

shown in Figure 2D and Figure 3D, respectively, and the P and FL

mean the flat area. The surface curvature distributions in the

large-scale and epicenter areas are shown in Figure 2E and

Figure 3E, respectively.

The peak ground acceleration (PGA) of an earthqauke is the

maximum absolute value of the acceleration of the surface soil in

the earthquake (Tian et al., 2019; Xu and Xu, 2013; Xu et al., 2013;

Li et al., 2013; Xu et al., 2012a,b). The PGA was obtained from

inversion analysis based on the K-NET and KiK-net

observations. The resolution of PGA data is 350 m. The

distribution of peak accelerations in the large-scale area and

the epicenter area is shown in Figure 2F and Figure 3F,

respectively. Human activities have also greatly impacted the

topography features. Road construction not only produced a new

steep cutting slope but also caused great disturbance to the

original slope. Therefore, the distance to the road is taken

into account in the assessment of landslide susceptibility. In

this study, the locations of high-grade roads like expressways

were interpreted from the satellite image. The distances to the

road map were divided into seven classes (0–50, 50–100,

100–200, 200–300, 300–400, 400–500, and >500 m). The

distances to road maps of the large-scale area and the

epicenter area are shown in Figure 2G and Figure 3G,

respectively.

For earthquakes with surface ruptures, previous research

studies show that there is a clear connection between

TABLE 1 Scales of the landslide-influencing factors.

Spatial database Data layers Scale/resolution

Landslides Landslide points

Geological map Lithology types 1:50,000

Road map Distance from roads 1:10,000

DEM Slope 30×30 m

Aspect

Elevation

Surface curvature

Seismic factors PGA 350×350 m

Coseismic ground deformation Magnitude of deformation 50×50 m
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landslide distribution and the distance to the rupture zone

(Xu et., al 2012b; Xu, 2014), which means the distance to the

surface rupture could be used as an influencing factor.

However, for buried-rupture earthquakes, as very short or

no surface rupture is exposed, it is difficult to establish the

relationship between the distribution of landslides and

surface rupture. Therefore, it is necessary to introduce

new influencing factors to improve the accuracy of

landslide susceptibility analysis for buried-rupture

earthquakes.

FIGURE 2
Landslide-controlling factors of the large area: (A) lithology; (B) elevation; (C) slope degree; (D) aspect; (E) profile curvature; (F) PGA; and (G)
distance to roads.
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Coseismic ground deformation characterizes the absolute

permanent ground deformation before and after the earthquake,

and it has been demonstrated that there is a good correlation between

landslide distribution and the values of coseismic ground deformation

(Chang et al., 2005; Zhao et al., 2014). Therefore, coseismic ground

deformation could make up for the disadvantage of losing surface

rupture in the assessment of seismic landslide susceptibility to a

certain extent. Coseismic ground deformation can be obtained by

decomposed high-resolution DEM before and after the earthquake

(Zhang et al., 2010; Zhao et al., 2012). Figure 4 shows the description

of landform changes in Lagrangian and Eulerianmanners. Supposing

that a small patch i of the ground surface with one particular node

mapped on it is inclined in East-West (x) and North-South (y)

directions,Δzie is expressed in terms of the Lagrangian vector {ΔxilΔyil
Δzil} of the movement of the patch as

Δe
Zi
� {tX,i ty,i 1} · {ΔXl

i Δyl
i ΔZl

i}T, (1)

where tx,i and ty,i are tangents of the patch plane in the x and y

directions, respectively. Taking three adjacent patches, i1, i2, and

FIGURE 3
Landslide-controlling factors of the epicenter area: (A) lithology; (B) elevation; (C) slope degree; (D) aspect; (E) profile curvature; (F) PGA; and
(G) distance to roads.

Frontiers in Earth Science frontiersin.org06

Zhao et al. 10.3389/feart.2022.993975

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.993975


i3 in a triangle and using the displacement of its center {Δxil Δyil
Δzil} as the representative displacement vector of the triangle, the

following simultaneous equations are to be satisfied:

⎧⎪⎨⎪⎩
Δzei1
Δzei2
Δzei2

⎫⎪⎬⎪⎭ � ⎡⎢⎢⎢⎢⎢⎣ tx,i1 tx,i1 1
tx,i1 tx,i1 1
tx,i1 tx,i1 1

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩
Δxl

i

Δxl
i

Δxl
i

⎫⎪⎬⎪⎭ � T•
⎧⎪⎨⎪⎩

Δxl
i

Δxl
i

Δxl
i

⎫⎪⎬⎪⎭. (2)

An assumption that the triangle undergoes a rigid body

translation is used in the aforementioned formulation. The

inclination of the moving plane (plane i1) is essential for

calculating tx,i and ty,i. Suppose the equation of the moving

plane is expressed as

z � ax + by + c, (3)

where a= tx,i1=tanθx,i1 and b= ty,i1=tanθy,i1
Zhao et al. (2012) provided a more rigorous solution

method, including the definition of a nominal plane, the

improvement of DEM comparability, and matrix condition

test. In this study, we used the method proposed by Zhao et al.

(2012) to calculate coseismic ground deformation. It is to be

noted that the decomposition algorithm requires high-

resolution (2 m) DEM. Thus, coseismic ground deformation

is added as an influencing factor for the epicenter area only.

The DEMs before the earthquake were derived from aerial

photos shot by the Geospatial Information Authority of Japan

in 1975 and 1976. Triangulation points prepared for road

construction in 1986 were then used to orthogonalize and

digitize these photos by Aero Asahi (2004). The standard

deviation of the digitized aero photos from the triangulation

data is 0.589 and 0.517 m in the horizontal and vertical

directions, respectively. The DEMs after the earthquake

were prepared by airborne LiDAR scanning conducted by

Nakanihon Air Service on 24 Oct 2008, the second day of the

mainshock and three major aftershocks. After scanning and

post-processing standard courses, calibration courses were

performed. The average differences for the x coordinate, y

coordinate, and elevation are 0.09, 0.2, and 0.06 m

respectively, showing good repeatability of scanning. Both

sets of DEMs have a resolution of 2 m×2 m. Since the two sets

of DEMs were prepared in different ways, it is not appropriate

to directly compare them in the calculation. The contour line

FIGURE 4
Description of landform changes in the Lagrangian and Eurlaianmanners: (A) schemeof one point and (B) scheme of three-point (adopted from
Zhao et al., 2012).

FIGURE 5
Distribution of coseismic ground deformation in the
epicenter area.
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derived from the 1975 DEMs is quite smooth while that from

the 2004 DEMs is curly and tilted owing to the high spatial

frequency components. Therefore, we used smoothed

elevations instead of the original ones for the 2004 DEMs

by substituting the x and y coordinates of each point into the

equation of its nominal plane. Given that three adjacent points

undergo a rigid body translation movement, their coseismic

deformation can be decomposed by solving simultaneous

equations. A cut-off window was selected according to

regional geology to obtain the tectonic displacements. The

properly defined nominal plane could also fully or partially

eliminate terrain changes owing to human activities during

the time gap between two sets of DEMs since the size of the

smooth window is larger than all man-made changes. In

addition, to verify the accuracy of the calculated coseismic

ground deformation, the calculated displacements were also

compared with those at points of triangulation. In total,

11 available triangulation points buried on roads were used.

The compared results showed that the difference between the

observed displacement and calculated displacement was

small, which demonstrated that the calculated coseismic

ground deformation is accurate. Details can also be found

in the studies by Konagai et al. (2009) and Zhao et al. (2012).

The distribution of coseismic ground deformation in the

epicenter area is shown in Figure 5.

The orientation of the computed coseismic ground

deformation could be divided into two directions: lateral

components and vertical components. Zhao et al. (2012)

compared the location of earthquake-triggered landslides

with the displacement field of lateral components and

vertical components, respectively. The results showed that

landslide clusters were found within large lateral

deformation regions, while landslides seem to be off where

the vertical displacement is large. Therefore, in this study,

only lateral deformation is used. Figure 5 also shows the

distribution of the absolute value of the lateral ground

deformation.

Landslide data preparation

In this study, the numbers of landslide points and non-

landslide points are sampled at a ratio of 1:1.2 for the large-

scale area. A total of 1,117 non-landslide points’ data were

randomly selected in the non-landslide area. Subsequently,

70% of the landslide points and non-landslide points were

selected randomly from the landslide inventory map as the

training dataset, with the rest as the testing dataset. To

obtain optimum results, we randomly selected the sample

points (landslides points and non-landslide points)

10 times, respectively. For different selections, the

training and testing samples are different, but the

numbers of sample points are the same. In the epicenter

area, as the used method to calculate coseismic ground

deformation needs high-resolution DEM, the whole

epicenter area was converted into 2 m pixels. The total

number of pixels is 555,324, and the number of seismic

landslide pixels is 45,852. Similarly, 70% of the landslide

pixels and non-landslide pixels were selected randomly as

the training dataset, with the remaining 30% as the testing

dataset.

Methodology

Logistic regression

Logistic regression is suitable for describing the relationship

between the categorical outcome (landslide or non-landslide)

and input variables (landslide-affecting factors). The principle of

the LR is to analyze the spatial relationship between the

landslide-affecting factors and the occurrence of a landslide.

The results of the regression usually can be interpreted as the

probability which is constrained in the interval between 0 and 1.

The LR is indicated by an equation of the form

Y � f(P) � ln( P

1 − P
) � β0 + β1X1 + β2X2 + · · · + βnXn, (4)

where Y represents outcome variables (landslide or non-

landslide), X = X1, X2 . . . Xn represents input variables, n is

the nth landslide-affecting factor, β0 is the intercept condition,

and β1, β2 . . . β n are the regression coefficients (Tu, 1996).

The SPSS 10.0 was used to conduct the LR analysis to predict the

correlation between the occurrence of landslides and landslide-

affecting factors. The regression coefficients were then obtained.

The probability of a landslide event (P) can be determined

from the following equation:

P � P(Y/X) � eβ0+β1X1+β2X2+···+βnX

1 + eβ0+β1X1+β2X2+···+βnX. (5)

The probability values change from 0 to 1, with 0 indicating a

0% probability of landslide occurrences and one indicating a

100% probability.

Artificial neural networks

An ANN model has many advantages compared with other

models (Yi_lmaz, 2009a). An ANN could process imprecise and

fuzzy data without any assumptions. The ANN model with the

most frequently used back-propagation BP algorithm (Pradhan

and Lee, 2010b) is used in this study.

The model mainly consists of one input layer, several hidden

layers, and an output layer. There are usually two stages for using

an ANN, the training stage and classifying stage. During the

training stage, the hidden and the input layer neurons handle
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their inputs by a corresponding weight, sum the product, and

then deal with the sum using a nonlinear transfer function to

generate a result. During the classification period, the ANN

predicts a target value by adjusting the weights in accordance

with the errors between the actual output values and the target

output ones and makes the difference minimum.

In this study, the number of hidden layer nodes is calculated

by the following equation (Yi_lmaz, 2009a):

Nh � 2Ni + 1, (6)
where Ni is the number of input nodes and Nh is the number of

hidden nodes.

Then, a three-layer network with one input layer (7 neurons),

one hidden layer (15 neurons), and one output layer was used in the

large-scale area. In the epicenter area, a three-layer network

consisting of one input layer (8 neurons), one hidden layer

(17 neurons), and one output layer was utilized. It is important

to decide the initial weight range influencing the convergence of the

model. In this study, the initial weights were randomly selected from

a small range of [-0.25 to 0.25] as proposed by Yi_lmaz, 2009b. For

the hidden layer, the activation function is the hyperbolic tangent,

and the activation function is the softmax function for the output

layer.We did not use an optimization algorithm for theANNmodel.

Support vector machine

The SVM model employs nonlinear transformations of the

covariates into a higher dimensional feature space. The two main

principles of the SVM are the optimal classification hyperplane

and the use of a kernel function (Yao et al., 2008).

The details of a two-class SVM model are described as

follows. Given a set of linear separable training vectors xi
(i=1,2 . . . n) that consist of two categorical outcomes

(landslide or non-landslide denoted as y= ±1), the purpose of

the SVM is to find an n-dimensional hyperplane differentiating

the two categories by the maximum gap.

Mathematically, the gap 1
2‖w‖2could be a minimized subject

to the following constraints:

yi((w · xi) + b)≥ 1, (7)

where ||w|| is the norm of the normal of the hyperplane, b is a

scalar base, and (·) denotes the scalar product operation. Using
the Lagrangian multiplier, the cost function can be defined as

L � 1
2
‖w‖2 −∑n

i�1
λi(yi((w•x) + b))≥ 1, (8)

where λi is the Lagrangian multiplier. The solution can be obtained

by the dual minimization of Eq. (8) with respect to w and b

In this study, the two-class SVM method was used due to its

good performance in landslide susceptibility analysis (Yao et al.,

2008; Yi_lmaz, 2010).

Results

Training and validating the statistical
models for the large-scale area

In this study, the performances of the three models (LR,

ANN, and SVM) for the large-scale area were validated using a

receiver operating characteristic (ROC) curve. The area under the

curve (AUC) indicates how good the statistical model is. It means

themodel has perfect performance when the AUC value equals to

1. A higher AUC value indicates better performance of the

statistical model.

Because each sample dataset is selected randomly, the

landslide susceptibility calculated by the same model is not

the same. To determine the best model, the models are

utilized 10 times for analysis of randomly selected datasets,

respectively. For different analyses, the training and testing

samples are different. For the same analyses, the training

samples and testing samples are the same for all three models.

The area under the ROC curve (AUC) of each analysis was

compared to explore the difference between the three methods.

The results are shown in Table 2.

Table 2 shows that the ANN model performed the best

among the three models with the highest AUC value and the

accuracy of the SVM model was the worst. Based on the

maximum AUC values of 10 simulations, the ANN simulation

result was also the best (83.6%). The average value and variance

of the ANN model were 82.5 and 0.44%, respectively, which was

better than those of the LR and SVM models. It means the

robustness of the ANN model is better than that of the LR and

SVM models.

Yi_lmaz (2009a) used three models including frequency ratio

(FR), ANN, and LR to generate the landslide susceptibility maps

of Kat County (Tokat–Turkey). The result showed that the ANN

model performed better than the other models. Yi_lmaz (2010)

utilized four different models, namely, conditional probability

(CP), LR, ANN, and SVM models to assess the landslide

susceptibility of Koyulhisar (Sivas, Turkey). The results also

showed that the performance of the ANN model was the best.

Some other research studies also showed that the ANN model

performed more accurately than the other models (Gómez and

Kavzoglu, 2005; Yesilnacar and Topal 2005). We consider the

ANN model performed better than the other models because it

has a good global searching ability and can learn the near-

optimum solution without the gradient information of error

functions. As there are about a total of 2,000 samples in the

calibration and validation sets, large numbers of samples in the

calibration stage will lead to sufficient training of the model and

establish an appropriate structure of the ANN model. So the

ANN model performs well on the condition that those large

numbers of samples were available. For any algorithm, the

quantity and quality of samples have key impacts on the

accuracy of the predicted results the algorithm makes.
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Development of landslide susceptibility
maps for the large-scale area

In this study, all three models have been used to calculate

the landslide susceptibility index (LSI) and then generate the

landslide susceptibility maps. There are several mathematical

methods including quantiles, natural breaks, standard

deviation, equal intervals, and descending area percentage

to be reclassified in the LSI (Ayalew et al., 2004). Among

the aforementioned methods, the descending area percentage

technique is the most widely used. In this study, the

descending area percentage technique was used. The

landslide susceptibility maps were constructed into four

classes: low (40%), moderate (30%), high (20%), and very

high (10%). The landslide density was used to assess the

performance of landslide susceptibility maps. The landslide

density (LD) is defined as the ratio of the number of landslides

and the area of each susceptible class.

The calculated landslide densities by using the three different

models are shown in Table 3. It can be observed that all maps

present good spatial predictions of landslides as landslide density is

ascending from very low to very high class (Yi_lmaz, 2009b). The

results using the ANNmodel show that the very high class contains

42.01% of the total landslides; however, it only covers 9.95% of the

total study area, and the LD of the very high class was 4.59. In

comparison, the low classes only contain 3.34% landslides; however,

it covers 40.15% area and the LD of the low class was 0.09. This

indicates that the ANN model performed well in susceptibility

classification as it fits well with the landslide inventories.

The landslide susceptibility maps of different methods are

shown as Figure 6. The analysis results of LR, SVM, and ANN

models are very close. The epicenter area is a very high

susceptible area, the northeast and the southwest mountain

areas are high and very high susceptible areas, respectively,

and the northern plains area is distributed with the low

susceptible class. The susceptibility map of the ANN model

shows that the high susceptible areas and low susceptible areas

are more concentrated into blocks, and zonation produced by

the SVM and LR are more dispersed. Overall, all three models

could generate reasonable landslide susceptibility maps.

TABLE 2 AUC values of different models in the large-scale area.

Number 1 2 3 4 5 6 7 8 9 10 Statistical
value

Model % % % % % % % % % % Average
value

Variance
value

LR 82.0 81.6 82.3 80.2 81.4 80.2 81.4 80.7 81.6 82.0 81.3 0.49

ANN 83.3 82.4 83.6 81.3 82.1 82.0 82.1 82.3 82.8 83.1 82.5 0.44

SVM 80.8 80.9 81.8 80.1 80.7 79.4 80.4 80.5 80.5 81.8 80.7 0.47

TABLE 3 Distribution of different classes obtained by different methods.

Model Class Area (km2) Time of
landslide occurrence

Percentage of
each susceptible
class area
(%)

Percentage of
landslides in
each susceptible
class (%)

Landslide density
(times/km2)

LR Very high 87.61 387 9.95 40.44 4.42

High 175.55 350 19.95 36.57 1.99

Moderate 263.60 171 29.95 17.87 0.65

Low 353.35 49 40.15 5.12 0.14

SVM Very high 87.71 473 9.97 49.43 5.39

High 175.95 286 19.99 29.89 1.63

Moderate 264.16 126 30.01 13.17 0.48

Low 352.28 72 40.03 7.52 0.20

ANN Very high 87.60 402 9.95 42.01 4.59

High 175.54 352 19.95 36.78 2.01

Moderate 263.60 171 29.95 17.87 0.65

Low 353.37 32 40.15 3.34 0.09
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Model performance validation for the
epicenter area

From the landslide susceptibility map of the large-scale

area, it is known that the susceptibility level in the epicenter

area is generally high. Since it is still too costly to remediate

all slopes in the approximately 60 km2 area, it is necessary to

further evaluate the landslide susceptibility in the epicenter

area. It can be seen in Section 4.1 that the ANN model is the

most suitable model for landslide susceptibility assessment

in this area. Therefore, we only use the ANN model to

analyze and evaluate the landslide susceptibility in the

epicenter area.

First, to evaluate the significance of landslide susceptibility

analysis by considering different scales, the values of the AUC for

the epicenter area are calculated in two different conditions. First,

FIGURE 6
Landslide susceptibility maps using different models for the large area. (A) LR model. (B) SVM model. (C) ANN model.
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we calculate the values of the AUC based on the corresponding

calculated LSI of the epicenter area from the large-scale (whole

affected area) datasets. Then, the values of the AUC are

calculated based on the calculated LSI from the epicenter area

datasets. The values of the AUC of the two different conditions

are shown in Figure 7. The results show that the AUC is 56.2%

based on the calculated LSI from the large-scale datasets, in

contrast, the AUC is 72.3% based on the calculated LSI from the

epicenter area solely. The results show that it is necessary to

assess landslide susceptibility under different scales.

Subsequently, the landslide density and landslide

susceptibility map of the epicenter area were obtained as

shown in Table 4 and Figure 8. The results show that the very

high class contains 40.44% of the total landslides; however, it only

covers 8.6% of the epicenter area and the LD of the very high class

was 26.54. In comparison, the low classes contain only 5.12%

landslides; however, it covers 40.15% area and the LD of the low

class was only 0.73. The landslide density increases gradually

between the low class and very high class. This indicates that the

landslide susceptibility map fits well with the landslide

inventories.

As shown in Figure 8, the very high-class area is mainly

distributed along the long axis of the ellipse in the east of the

study area, and a large amount of deep-seated landslides occurred

in this area. The high-susceptibility area is also distributed in the

northwestern area. The occurrence possibility of landslides in the

central area and southwest plain area is relatively low. Compared

with the epicenter area parts in the landslide susceptibility map of

the large-scale area, the landslide susceptibility maps obtained by

the epicenter area research have a better discrimination degree,

which can meet the key prevention and control requirements in

the small area.

Discussion

It is important to select suitable influenced factors in

landslide susceptibility mapping. The analysis of the predictive

importance for the input variables in the large-scale analysis is

also conducted. The predictive importance of the input variables

in the large-scale analysis is calculated by the variance method.

The predictive importance of the influence factors in the large-

scale analysis is shown in Table 5.

FIGURE 7
Analysis of the ROC curve under different scales.

TABLE 4 Distribution of different classes in the epicenter area.

Class Area (km2) Landslide occurrence Percentage of
each susceptible
class area
(%)

Percentage of
landslides in
each susceptible
class (%)

Landslide density
(times/km2)

ANN Very high 4.7853 127 8.6 40.44 26.54

High 10.8605 115 19.51 36.57 10.57

Moderate 18.089 56 32.5 17.87 3.10

Low 21.9236 16 39.39 5.12 0.73

FIGURE 8
Landslide susceptibility map of the epicenter area.
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As shown in Table 5, elevation has the greatest impact on the

occurrence of earthquake landslides and the impact of other

factors is in order of peak earthquake acceleration, slope,

lithology, curvature, aspect, and distance from the road. As all

values are positive, it means all the selected influencing factors

make a positive contribution to the assessment of landslide

susceptibility in large-scale analysis.

Influencing factors including lithology, elevation, slope,

slope aspect, surface curvature, peak ground acceleration, the

distance from the road, and coseismic ground deformation

were considered in the small-scale analysis. Since the

contribution of these factors to landslide models might be

different, it is necessary to quantify the effects of influential

factors on the assessment of landslide susceptibility. The

analysis of variance method has been utilized to evaluate

the predictive capability of these factors in the small-scale

analysis. The factors with higher variance values indicate a

higher contribution to landslide models and vice versa. The

predictive capability of eight landslide-affecting factors is

shown in Table 6.

As Table 6 shows, lithology has the greatest impact on the

occurrence of earthquake landslides and the impact of other

factors is in order of slope, peak earthquake acceleration,

curvature, coseismic ground deformation, elevation, aspect,

and distance from the road. As all values are positive, it

means all the selected influenced factors make a positive

contribution to the assessment of landslide susceptibility.

Reichenbach et al. (2018) critically reviewed the statistically-

based landslide susceptibility assessment literature by

systematically searching for and then compiling an

extensive database of 565 peer-review articles from

1983 to 2016. The results showed that elevation, aspect,

and distance from the road are commonly chosen as

influencing factors in the assessment of landslide

susceptibility. The importance of coseismic surface

deformation is higher than the elevation, aspect, and

distance from the road. It means that coseismic ground

deformation should be regarded as an important factor in

the assessment of landslide susceptibility.

Then, to evaluate the effects of the new factor coseismic

ground deformation on the assessment of landslide

susceptibility, two different situations are considered. One

situation regards coseismic deformation as an influencing

factor, whereas the other does not. Figure 9 shows the

values of the AUC by considering coseismic surface

deformation or not. From Figure 9, it can be seen that the

AUC is 72.3% without considering coseismic surface

deformation, in contrast, the AUC is 76.5% by considering

coseismic surface deformation. It means that coseismic surface

deformation has a positive effect on the assessment of

landslide susceptibility.

In addition, there are other several advantages to

regarding coseismic ground deformation as an important

TABLE 5 Predictive importance of different influencing factors in the
large-scale analysis.

Number Influencing factor Predictive importance

1 Elevation 100

2 PGA 95.84

3 Slope 91.74

4 Lithology 82.76

5 Curvature 70.95

6 Slope aspect 64.86

7 Distance to roads 48.12

TABLE 6 Predictive importance of different influencing factors in the
epicenter area.

Number Influencing factor Predictive importance

1 Lithology 0.213

2 Slope 0.207

3 PGA 0.169

4 Curvature 0.125

5 Coseismic ground deformation 0.093

6 Elevation 0.086

7 Slope aspect 0.057

8 Distance to roads 0.048

FIGURE 9
Analysis of the ROC curve considering coseismic surface
deformation or not.
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factor in landslide mapping. Coseismic ground deformation

will help to reveal hidden subsurface damage. It should be

noted that not all deformation will directly lead the landslides.

However, the area with large coseismic surface deformation

often indicates that the movement of the rock mass may be

further developed and the integrity of the rock mass is

reduced, which renders slopes prone to landslip in future

earthquakes again. Zhao et al. (2012) explored the localized

coseismic deformation in Kizawa (a small village), Japan, after

the earthquake. The results showed that the calculated

coseismic deformation in Kizawa is relatively large but the

landslides are sparse. However, after a detailed investigation,

it was found that underground structures such as tunnels and

wells were severely damaged. The road alignment of the

Kizawa tunnel, which was buried 30 m beneath the ground

surface, was shifted sideways 1–1.5 m in the east-to-southeast

direction. Furthermore, two irrigation wells were dislocated at

30 and 20 m, beneath the ground, respectively. Therefore, it is

highly possible that the ground underwent some subsurface

damage at locations with large coseismic deformation.

Although the deformation did not form landslides at these

locations in the 2004 Mid-Niigata earthquake, as there was

accumulated deformation within the rock and soil, a landslide

will easily occur in the next earthquake event. Therefore,

especially in the case of buried-fault earthquakes, coseismic

surface deformation can be considered an important

influencing factor in the assessment of earthquake landslide

susceptibility.

However, it should be noted that some limitations still

existed in this study. The spatial resolution of the PGA map in

the epicenter area is relatively low. The PGA map of the

epicenter area is the result of back-analysis from sparse

seismic station data. It is to be noted that the used PGA

map is also the highest resolution map that the authors could

get and most back-analyses can offer. It also inferred that the

low resolution of the PGA map is also the main reason that

causes the relatively lower value of the AUC (0.72) in the

epicenter area, as the value of the AUC in the large-scale area

is 0.82 for the ANN model. However, in other words, the low

value of the AUC also demonstrated the urgent demand for

introducing new factors to improve the assessment of

landslide susceptibility.

Conclusion

In this study, the LR, ANN, and SVM models are applied

to generate landslide susceptibility maps based on the

2004 Mid-Niigata earthquake-triggered landslide

inventories. A total of seven impact factors, namely,

lithology, elevation, slope, aspect, surface curvature, peak

acceleration, and the distance from the road are selected as

the influenced factors. The ROC curve evaluation results

clearly demonstrate that the map obtained from the ANN

model performed the best among the three models. The

variance of the AUC for randomly selected datasets by the

ANN is also the smallest, which means that the ANN model

has excellent robustness.

Therefore, the ANN model can be used for the assessment

and development of landslide susceptibility maps. Then, the

significance of landslide susceptibility analysis considering

different scales is also evaluated. The results show that the

AUC is 56.2% based on the datasets from the large-scale, in

contrast, the AUC is 72.3% based on the datasets from the

epicenter area solely. The results show it is necessary to assess

landslide susceptibility under different scales. At the same

time, we included coseismic ground deformation as the

influencing factor for landslide susceptibility in the

epicenter area. The AUC increased from 0.723 to

0.765 after considering the newly added factor. The

predictive capability of eight landslide-affecting factors also

showed that the importance of coseismic surface deformation

is higher than the elevation, aspect, and distance from the

road. Therefore, for the buried-rupture earthquake, coseismic

surface deformation can be considered an important factor to

evaluate the susceptibility of landslides.
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APPENDIX TABLE A1 Lithological
distribution in the large-scale area.

The lithology data used in this paper are redrawn from the 1:

50,000 geological map of Nagaoka and Ojiya by the Geological

Survey of Japan’s Ministry of International Trade and Industry.

There are 10 different lithology groups in the large-scale area

(Appendix Table A1) and 11 different lithology groups in the

epicenter area (Appendix Table A2).

APPENDIX TABLE A2 Lithological
distribution in the epicenter area.

The elevation data used in this paper are generated from the

30 m resolution DEM data obtained from the ASTER Global

Digital Elevation Model (ASTER GDEM). The slope angle in the

study area ranges from 0° to 57.82° for the large area. A 0° slope

angle means a flat area. The west part of the large-scale area is an

almost flat area, whereas the mountains mainly spread from the

NE direction to the SW direction. The influence of the slope

aspect on the stability of the slope is multifaceted. Different slope

directions have different influences of solar radiation and rainfall

on the slopes that control the moisture of the terrain that affects

landslide occurrences. Surface curvature determines the pooling

and dispersion of surface water and affects the strength and

stability of rocks and soils. In addition, there is a strong

correlation between soil thickness and surface curvature due

to soil sedimentation caused by the water flow. Since the inertia

forces generated by earthquakes are important causes of

earthquake-triggered landslides, the PGA is generally chosen

as the impact factor of landslide susceptibility. It has been

acknowledged that the slope stability is affected not only by

the PGA of the mainshock but also by that of aftershocks.

However, introducing more influencing factors of the same

types will also lead to overfitting problems. Therefore, at

present, almost all studies only considered the PGA map of

mainshock as influencing factors regardless of the effect of

aftershocks on the assessment of landslide susceptibility, and

the concluded landslide susceptibility mappings were also

reliable.

Category Lithology

S Conglomerate with mudstone

G Conglomerate with sandstone

SM Sandstone with silt

M Sandstone with mudstone

Vs. Volcanic rock

Ms Mudstone

Shs Shale

A Residual soil

Ss Sandstone

Gs Conglomerate

Category Lithology

QHd Accumulation of Holocene

QPt Accumulation of Pleistocene

QPl Ancient landslide deposits of Pleistocene

QPu Conglomerate of Pleistocene

NPw Conglomerate of Pliocene

NPs Sandy mudstone of Pliocene

NPu Mudstone of Pliocene

NPk Mudstone with sandstone of Pliocene

Nv Volcanic rock of Pliocene

NMs Shale of Miocene
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