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The elastic foundation beam theory has been widely used in civil engineering,

including railway, tunnel, and building foundations. With the development of

fabricated structures, more elastic foundation beams need to be prestressed. In

order to explore the frame foundation beamwith the fabricated anchor-cable in

the slope reinforcement project, in this article, prestress is applied to both ends

of the beam. Then, according to the calculation method of internal force and

deformation of the beam under concentrated force and the equivalent load

theory of the prestressed structure, three new methods: the finite difference

method (FDM) of the Euler–Bernoulli beam on the Winkler foundation, FDM of

the Euler–Bernoulli beam on the Pasternak foundation, and theoretical

analytical solution of the Timoshenko beam on the Winkler foundation, are

deduced to calculate internal force and deformation under prestress force and

concentrated force, respectively. Typical calculation parameters are selected

for design and verification via the three new methods and GEO5, respectively.

The results show that the calculated values of the three new methods are

basically consistent with those calculated using GEO5 software, which verifies

the feasibility of the three new methods.
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Introduction

The cast-in-suit anchor frame beam was introduced in China in the 1990s by the

China Academy of Railway Sciences (CARS). Over the past decades, a relatively complete

set of cast-in-suit anchor frame beams has been formed, including design and

construction (Wu et al., 2011; Zhang et al., 2022). Moreover, it has been widely

employed in slope reinforcement of railway, highway, and water conservancy projects

and other infrastructure engineering (Song and Zhou, 2004; Xia and Zhou, 2006; Wu and
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Huang, 2008; Li et al., 2019) and has acquired good reinforcing

effects (Cao et al., 2016; Zhao et al., 2018; Zhao et al., 2021).

However, some problems have also been exposed in engineering

applications: 1) longer construction periods; 2) instable

construction quality and insufficient durability; 3) high labor

costs and personnel security issues. Instead, prestressed precast

anchor frame beams, with a higher degree of mechanization, a

lower risk of steep slope operation, better molding quality, and

reinforcing while excavating, become a new direction of slope

reinforcement technology.

Compared with the traditional cast-in-suit anchor frame

beam, the pre-tensioning method or post-tensioning method

is adopted to apply prestress to the prefabricated beam body

before applying anchor loads to the prestressed precast anchor

frame beam. The design and construction methods of traditional

cast-in-suit anchor frame beams are no longer applicable. As a

new slope reinforcement technology, the first task for the design

and construction of prestressed precast anchor frame beams is

how to take the prestressed loads of the beam and anchor cable

into consideration in the design calculation and then calculate

the internal force and deformation of the beam properly. There

are two main types of elastic foundation beam models regarding

the elastic foundation. One is the Winkler foundation model,

which is assumed to have displacement immediately in the load

zone, while no displacement in the unload area. The other is the

Pasternak foundation model. In this model, it is assumed that the

spring elements connect with one layer that is incompressible

and vertical and only appears as transverse shear deformation,

resulting in the shearing effect among each spring element in the

Winkler elastic foundation model. Twomain theories are applied

to the beam in the elastic foundation beam model. One is the

Euler–Bernoulli beam theory, which ignores transverse shear

deformation, and the cross-section of the beam is perpendicular

to the central axis before and after deformation. The other is the

Timoshenko beam theory, which takes the transverse shear

deformation into account. Numerous research results have

been gained on the calculation of internal force and

deformation of cast-in-suit frame foundation beams with the

prestressed anchor-cable under load. The main calculation

methods include the upside beam method (Ma et al., 2004),

the finite difference method (FDM) (Li et al., 2009) and the finite

element method (FEM) (Liu et al., 2004) of the Euler–Bernoulli

beam on the Winkler elastic foundation, and the finite element

method of the Timoshenko beam on the Winkler elastic

foundation (Xia et al., 2010). A large number of field tests

(Shi et al., 2019; Ye et al., 2019; Li et al., 2020) and

measurements have verified the validity of the elastic

foundation beam theory on internal force and deformation of

cast-in-suit frame foundation beams with the prestressed

anchor-cable.

As a novel slope reinforcement technology, few studies have

been conducted on the internal force and deformation of the

reinforced concrete beam on an elastic foundation under the

influence of anchorage force and beam prestress (Zhu et al., 2004;

Qin et al., 2008). Some research institutions have carried out

numerical simulation analysis of foundation beams with

prefabricated prestressed anchor cables (Liu, 2011; Xiao et al.,

2013; Sheng and Lu, 2021) and applied that to engineering

practices. Yan et al. (2012) and Wang (2012) studied the

stress behavior of precast anchor piers with ANSYS. Zhang

et al. (2015) and Yang et al. (2015) successfully employed the

self-developed precast anchor pier for landslide treatment. Cheng

and Wang, (1997) and Wu and Sun, (1999) described the

application of the prefabricated cross beam in the

reinforcement of the Three Gorges and Yunnan slopes. Leng

and Liao, (2007) studied the numerical analysis and engineering

application of the prefabricated cross-shaped laminated plate. It

can be seen that most precious studies focused on the engineering

applications and complex numerical calculations of the

foundation beam with the prefabricated prestressed anchor

cable, and little attention has been devoted to the simple and

accurate calculation formula of stress and deformation of

I-beams decomposed by prefabricated cross beams, which is

difficult to be applied to the engineering design.

In this article, the most basic structural unit of the

prefabricated frame beam—I-beam is taken as an example.

Based on the calculation method of the internal force and

deformation of the beam under concentrated force and the

equivalent load theory of the prestressed structure, three

methods, namely, FDM of the Euler–Bernoulli beam on the

Winkler foundation, FDM of the Euler–Bernoulli beam on the

Pasternak foundation, and the theoretical analytical solution of

the Timoshenko beam on the Winkler foundation, are deduced

to calculate the internal force and deformation under prestress

and concentrated force, respectively. Finally, the rationality of

these three methods is verified by GEO5.

Methodology

Theoretical model of the Timoshenko
beam on the Winkler foundation

The Winkler foundation is a simple model widely used for

decades to account for the surface response of elastic bodies. It

assumes that the normal surface displacement on the surface and

restoring force per unit area are related linearly and completely

locally (Yin, 2000a; Yin, 2000b). The Timoshenko beam theory

based on the rigid cross-section assumption considers the

influence of shear deformation on the additional deflection of

the beam. Taking the effect of double-layer reinforcement,

prestressed reinforcement of prefabricated beams, and

anchorage force of the anchor cable into consideration, a

theoretical model of the Timoshenko beam on the Winkler

foundation can be obtained to calculate the internal force and

deformation of the prestressed I-beam.
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The governing differential equation of the Timoshenko beam

can be expressed as

D
d4ω

dx4
− ksD

C

d2ω

dx2
+ ksω � q − D

C

d2q

dx2
. (1)

If the displacement of beam ω is known, the rotation angle φ

can be obtained as follows:

φ � (1 − Dks
C2

) dω

dx
+ D

C

d3ω

dx3
+ D

C2

dq

dx
, (2)

D � E(H3

12
+Hyc)2

+ Eg(yg − yc)2, (3)

where C is the shear stiffness and C � κGA, κ is the Timoshenko

shear factor and κ � 10(1 + υ)/(12 + 11υ), and υ represents the

Poisson ratio; G is the shear modulus of the beam; A is the cross-

sectional area of the beam, q is the arbitrary pressure on the

beam; Eg is the tensile modulus of reinforcement; E is the

Young’s modulus of the concrete; yc is the distance between

the central axis of the beam and the neutral axis and

yc � Egyg/(Eg + EH); yg is the distance between the

reinforcement and the central axis; H is the beam height; ks is

the foundation coefficient; and D is bending stiffness.

The pressure on the beam just presents in the form of not

only a point but also an interval. Thus, the pressure on the beam q

should be considered, and it can be described in Eq. 4, which can

be expressed in terms of Fourier series as follows:

q � f(x) �
⎧⎪⎨⎪⎩ 0 0≤ x< r,

q0 r≤x≤ r + B
0 r + B< x≤ L ,

� A0 +∑∞
n�1An cos

nπ

L
x, (4)

A0 � 1
L
∫L

0
f(x)dx,

An � 2
L
∫L

0
f(x) cos nπ

L
xdx,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5)

where L represents the length of the beam, r is the start point of

the pressure q0, B is the width of the pressure, and q0 is the value

of the pressure when r≤ x≤ r + B.

Substituting Eq. 4 into Eq. 1, the governing differential

equation of the reinforced Timoshenko beam can be rewritten as

D
d4ω

dx4
− ksD

C

d2ω

dx2
+ ksω � A0 +∑∞

n�1An[1
+ (nπ

L
)2D

C
] cos nπ

L
x. (6)

The solution of ω can be obtained in Eq. 7 as follows:

ω � eαx(c1 cos βx + c2 sin βx) + e−αx(c3 cos βx + c4 sin βx) + A0

ks

+∑∞
n�1an cos

nπ

L
x,

(7)

When ks < 4C2/D, and the expressions of α, β, and an are

shown in Eq. 8:

α �
��
ks
D

4

√ ���������
1 + D

C

��
ks
D

√
,

√
β �

��
ks
D

4

√ ���������
1 − D

C

��
ks
D

√√
,

an �
An[1 + (nπ

L
)2D

C
]

ks + ksD

C
(nπ
L
)2

+D(nπ
L
)4,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

where c1, c2, c3, and c4 are four constants determined by the

boundary conditions. In general, the stiffness of the beam is

greater than that of the foundation, and therefore ks < 4C2/D can

satisfy the normal practice of the construction of beams,

reinforced pavement, or granular base over the soft ground.

According to φ � (1 − Dks
C2 ) dω

dx + D
C

d3ω
dx3 + D

C2
dq
dx, the rotation

angel φ can be obtained in Eq. 9as follows:

φ � eαx(c5 cos βx + c6 sin βx) + e−αx(c7 cos βx + c8 sin βx)
+∑∞

n�1{[DC (nπ
L
)3

− (1 − Dks
C2

) nπ

L
]an

− nπD

LC2
An} sin

nπ

L
x, (9)

c5 � c1[α(1 − Dks
C2 ) + D

C
(α3 − 3αβ2)] + c2[β(1 − Dks

C2 ) + D

C
(3α2β − β3)],

c6 � c1[ − β(1 − Dks
C2 ) + D

C
(β3 − 3α2β)] + c2[α(1 − Dks

C2 ) + D

C
(α3 − 3αβ2)],

c7 � c3[ − α(1 − Dks
C2 ) + D

C
(3αβ2 − α3)] + c4[β(1 − Dks

C2 ) + D

C
(3α2β − β3)],

c8 � c3[ − β(1 − Dks
C2 ) + D

C
( − 3αβ2 + β3)] + c4[ − α(1 − Dks

C2 ) + D

C
(−α3 + 3αβ2)],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10)

where c5, c6, c7, and c8 are four constants, which can be figured

out when c1, c2, c3, and c4 are known.

According to M � −Ddφ
dx, the bending moment M can be

obtained in Eq. 11as follows:

M � −Ddφ

dx

� −D⎧⎨⎩eαx(c9 cos βx + c10 sin βx) + e−αx(c11 cos βx + c12 sin βx)
+∑∞

n�1[ − an(nπL )2

− an
ks
C
+ An

C
] cos nπ

L
x
⎫⎬⎭,

(11)
c9 � c1[(α2 − β2)(1 − Dks

C2 ) + D

C
(α4 − 6α2β2 + β4)] + c2[2αβ(1 − Dks

C2 ) + 4αβD
C

(α2 − β2)],
c10 � c1[ − 2αβ(1 − Dks

C2 ) + 4αβD
C

(−α2 + β2)] + c2[(α2 − β2)(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)],

c11 � c3[(α2 − β2)(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)] + c4[ − 2αβ(1 − Dks

C2 ) + 4αβD
C

(−α2 + β2)],
c12 � c3[2αβ(1 − Dks

C2 ) + 4αβD
C

(α2 − β2)] + c4[(α2 − β2)(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)
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where c9, c10, c11, and c12 are four constants, which can be figured

out when c1, c2, c3, and c4 are known.

According to Q � C(dωdx − φ), the shear force Q can be

obtained in Eq. 13as follows:

Q � Deαx(c13 cos βx + c14 sin βx) +De−αx(c15 cos βx
+ c16 sin βx) +D∑∞

n�1[ − an
nπks
LC

− an(nπ
L
)3

+ nπ

CL
An] sin nπ

L
x, (13)

c13 � c1(α ksC − α3 + 3αβ2) + c2(β ksC − 3α2β + β3),
c14 � c1( − β

ks
C
+ 3α2β − β3) + c2(α ksC − α3 + 3αβ2),

c15 � c3( − α
ks
C
+ α3 − 3αβ2) + c4(β ksC − 3α2β + β3),

c16 � c3( − β
ks
C
+ 3α2β − β3) + c4( − α

ks
C
+ α3 − 3αβ2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(14)

where c13, c14, c15, and c16 are four constants, which can be

figured out when c1, c2, c3, and c4 are known.

If the prestressed reinforcement is arranged in a straight line,

the prestressed load can be equivalent to the bending moment

M0 at both ends of the beam. Then, the actual boundary of the

internal force calculation model is shown in Eq. 15:

M|x�0 � M0,
M|x�L � M0,
Q|x�0 � 0,
Q|x�L � 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (15)

Combine the governing equation and boundary condition,

and the results are as follows:

c9 + c11 � −M0

D
−∑∞

n�1[ − an(nπ
L
)2

− an
ks
C
+ An

C
], (16)

c13 + c15 � 0, (17)
eαL(c9 cos βL + c10 sin βL) + e−αL(c11 cos βL + c12 sin βL)

� −M0

D
−∑∞

n�1[ − an(nπ
L
)2

− an
ks
C
+ An

C
]cosnπ, (18)

eαL(c13 cos βL + c14 sin βL) + e−αL(c15 cos βL + c16 sin βL) � 0.

(19)
The aforementioned expressions can be described as follows:

c1[(α2 − β2)(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)] + c2[2αβ(1

− Dks
C2 ) + 4αβD

C
(α2 − β2)] + c3[(α2 − β2)(1 − Dks

C2 )
+ D

C
(α4 − 6α2β2 + β4)] + c4[ − 2αβ(1 − Dks

C2 )
+ 4αβD

C
(−α2 + β2)]

� R1 − M0

D
,

(20)
R1 � ∑∞

n�1[an(nπL )2

+ an
ks
C
− An

C
], (21)

c1(α ks
C
− α3 + 3αβ2) + c2(β ks

C
− 3α2β + β3) + c3( − α

ks
C
+ α3

− 3αβ2) + c4(β ks
C
− 3α2β + β3)

� 0,

(22)
c1{[(α2 − β2)(1 − Dks

C2 ) + D

C
(α4 − 6α2β2 + β4)]eαL cos βL + [

− 2αβ(1 − Dks
C2 ) + 4αβD

C
(−α2 + β2)]eαL sin βL} + c2{

×[2αβ(1 − Dks
C2 ) + 4αβD

C
(α2 − β2)]eαL cos βL + [(α2 − β2)

×(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)]eαL sin βL} + c3{[

− 2αβ(1 − Dks
C2 ) + 4αβD

C
(−α2 + β2)]e−αL cos βL + [

× (α2 − β2)(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)]e−αL sin βL}

+ c4{[ − 2αβ(1 − Dks
C2 ) + 4αβD

C
(−α2 + β2)]e−αL cos βL + [

× (α2 − β2)(1 − Dks
C2 ) + D

C
(α4 − 6α2β2 + β4)]e−αL sin βL}

� R3 − M0

D
,

(23)
R3 � ∑∞

n�1[an(nπL )2

+ an
ks
L
− An

C
]cosnπ, (24)
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c1[(α ks
C
− α3 + 3αβ2)eαL cos βL + ( − β

ks
C
+ 3α2β

− β3)eαL sin βL] + c2[(β ksC − 3α2β + β3)eαL cos βL + (α ks
C

− α3 + 3αβ2)eαL sin βL] + c3[( − α
ks
C
+ α3

− 3αβ2)e−αL cos βL + ( − β
ks
C
+ 3α2β − β3)e−αL sin βL] + c4[

×(β ks
C
− 3α2β + β3)e−αL cos βL + ( − α

ks
C
+ α3

− 3αβ2)e−αL sin βL]
� 0.

(25)
Equations 20–25 can be expressed as the following matrix

equation:

[K]{C} � {R}, (26)
{C} � [c1, c2, c3, c4]T,

{R} � [R1 − M0

D
, 0, R3 − M0

D
, 0].

⎫⎪⎪⎬⎪⎪⎭ (27)

Stiffness matrix [K] can be solved by Eqs 20–25. For

example, K11 can be written as

K11 � (α2 − β2)(1 − Dks
C2 ) + D

C (α4 − 6α2β2 + β4). If the values of

α, β,D, C, ks, L, andq � f(x) are known, the value of K11 can be

calculated. Then, Eq. 26 can be solved as:

{C} � [K]−1{R}. (28)

The parameters c5 ~ c16 can be figured out when the values of

c1, c2, c3, and c4 are known.

Finite difference method of the
Euler–Bernoulli beam on the Winkler
foundation

Compared with the Timoshenko beam model, the

Euler–Bernoulli beam model is also based on a rigid cross-

section assumption, while the transverse shear deformation is

ignored. Taking the effect of double-layer reinforcement,

prestressed reinforcement of prefabricated beams, and

anchorage force of the anchor cable into consideration, a

finite difference method of the Euler–Bernoulli beam on the

Winkler foundation can be obtained to calculate the internal

force and deformation of the prestressed I-beam.

The beam is discretized by equal segmentation in finite

difference calculation, as shown in Figure 1.

The subgrade reaction p(x)proposed by Winkler is as

follows:

p(x) � ks. (29)

Therefore, the governing differential equation of the beam on

the elastic foundation becomes

EI
d4ω

dx4
+ ksbω � 0, (30)

where E is the Young’s modulus of the beam, I is the inertia

moment, and b is the beam width.

Equation 30 can be described in terms of the differential form

at the arbitrary point (m-point):

EI

h4
(ωm+2 − 4ωm+1 + 6ωm − 4ωm−1 + ωm−2) + ksbωm � 0, (31)

where h represents the fragment length of the beam

discretization.

The difference equation of the bending moment M at

m-point is

M � −EI
h2

(ωm+1 − 2ωm + ωm−1). (32)

The difference equation of shear force Q at m-point is

Q � − EI

2h3
(ωm+2 − 2ωm+1 + 2ωm−1 − ωm−2). (33)

FIGURE 1
Schematic graph of beam discretization.
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Bending moment at the start point (x=0) is M0, and Eq. 32

can be simplified as follows:

ω−1 � 2ω0 − ω1 − M0h2

EI
. (34)

When shear force at the start point (x =0) is 0, Eq. 33 can be

simplified as follows:

ω−2 � 2ω−1 − 2ω1 + ω2. (35)

When m � 0, Eq. 31 can be obtained as follows:

EI

h4
(ω2 − 4ω1 + 6ω0 − 4ω−1 + ω−2) + ksbω0 � 0. (36)

Substitute Eq. 34 and Eq. 35 into Eq. 36, we get

(2 + ksbh4

EI
)ω0 − 4ω1 + 2ω2 � −2M0h2

EI
. (37)

c0, a0, b0, and d0 are defined as follows:

c0 � 2 + ksbh
4

EI
,

a0 � 4/c0,
b0 � 2/c0,

d0 � −M0h
2

EI
/c0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(38)

Then, Eq. 37 can be simplified as follows:

ω0 � a0ω1 − b0ω2 + d0. (39)

Similarly, assume that the recursion formula at the arbitrary

node is

ωm � amωm+1 − bmωm+2 + dm,
ωm−1 � am−1ωm − bm−1ωm+1 + dm−1,
ωm−2 � am−2ωm−1 − bm−2ωm + dm−2.

⎫⎪⎬⎪⎭ (40)

Substituting Eq. 40 into Eq. 31, Eq. (41) can be obtained as

follows:

ωm−2 − [4 + (am−2 − 4)bm−1]ωm+1 + [6 − bm−2 + (am−2 − 4)am−1

+ ksbh4

EI
]ωm

� (−am−2 + 4)dm−1 − dm−2.

(41)
Define

c′m � 6 − bm−2 + (am−2 − 4)am−1 + ksbh
4

EI
,

a′m � 4 + (−4 + am−2)bm−1
cm

,

b′m � 1/cm,
d′
m � (4 − am−2)dm−1 − dm−2

cm
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(42)

Then, Eq. 41 can be simplified as

ωm � a′mωm+1 − b′mωm+2 + d′
m. (43)

Substituting Eq. 34 into Eq. 43, the values of c−1′, a−1′, b−1′, and d−1′

can be obtained in Eq. 44as follows:

c−1′ � 1,

a−1′ � 2,

b−1′ � 1,

d−1′ � −M0h
2

EI
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)

The extra point at the end point (x � l) is shown in Figure 2.

Presume both end points of the beam are free, meaning that the

shear force is zero and the bending moment is the equivalent

bending moment M0; therefore, the differential equations of

shear and bending moment at l-point are obtained as shown in

Eq. 45 and Eq. (46):

− EI

2h3
(ωl+2 − 2ωl+1 + 2ωl−1 − ωl−2) � 0, (45)

FIGURE 2
Schematic graph of the extra point.
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−EI
h2

(ωl+1 − 2ωl + ωl−1) � M0. (46)

According to the recursion formula, Eqs 47–49 can be

obtained as follows:

ωl − a′lωl+1 + b′lωl+2 � d′
l , (47)

(al−1′ − 2)ωl − (b′l − 1)ωl+1 � −M0h2

EI
− dl−1′ , (48)

(bl−2′ − al−1′ al−2′ + 2al−1′ )ωl − (2 − al−2′ bl−1′ + 2bl−1′ )ωl+1 + ωl+2

� dl−2′ + (al−2′ − 2)dl−1′ . (49)

Let R2 � al−2′ − 2, R3 � bl−2′ − al−1′ al−2′ + 2al−1′ , J2 � b′l − 1,

J3 � 2 − al−2′ bl−1′ + 2bl−1′ ,RJ2 � −M0h2

EI − dl−1′ ,

RJ3 � dl−2′ + (al−2′ − 2)dl−1′ , and H′ � J2 − R2a′l − J2R3b′l + J3R2b′l.

The displacement of the extra point and end point can be

solved as follows:

ωl � (J2d′
l − RJ2al − J2RJ3b

′
l + J3RJ2b

′
l)/H′,

ωl+1 � −(RJ2 − R2d
′
l + R2RJ3b

′
l − R3RJ2b

′
l)/H′,

ωl+2 � (J2RJ3 − J3RJ2 − J2R3d
′
l − R2RJ3a

′
l + R3RJ3a

′
l)/H′.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(50)

According to the aforementioned derivation process, the

expressions of displacement ωm, shear force Qm, and bending

momentMm at the arbitrary node can be obtained as follows:

ωm � a′mωm+1 − b′mωm+2 + d′
m, (51)

Qm � − EI

2h3
(ωm+2 − 2ωm+1 + 2ωm−1 − ωm−2), (52)

Mm � −EI
h2

(ωm+1 − 2ωm + ωm−1). (53)

Finite difference method of the
Euler–Bernoulli beam on the Pasternak
foundation

The Pasternak foundation was developed on the basis of the

Winkler foundation, and it is assumed that there is shear action

between spring elements. Taking the effect of double-layer

reinforcement, prestressed reinforcement of prefabricated

beams, and anchorage force of the anchor cable into

consideration, a finite difference method of the Euler-

Bernoulli beam on the Pasternak foundation can be obtained

to calculate the internal force and deformation of the prestressed

I-beam.

The governing differential equation of the beam on the elastic

foundation is shown in Eq. 54:

EI
d4ω

dx4
+ ksbω − Gpb

d2ω

dx2
� 0. (54)

Equation 52 can be described in terms of the differential

form, and thus the differential equation at the arbitrary point (m

point) is

EI

h4
(ωm+2 − 4ωm+1 + 6ωm − 4ωm−1 + ωm−2) + kmbωm − G

h2
(ωm+1

− 2ωm + ωm−1)
� 0.

(55)
The derivation process in the Pasternak model is similar to

that in the Winkler model, and the displacement ωm, soil

resistance pm, shear force Qm, and bending moment Mm are

calculated as follows:

ωm � a′mωm+1 − b′mωm+2 + d′
m, (56)

pm � −kmbωm + Gpb
d2ωm

dx2
, (57)

Qm � − EI

2h3
(ωm+2 − 2ωm+1 + 2ωm−1 − ωm−2) + Gpb

ωm+1 − ωm−1
2h

,

(58)
Mm � −EI

h2
(ωm+1 − 2ωm + ωm−1). (59)

Verification of calculation methods

In order to compare and verify the reasonableness of the

aforementioned three methods (theoretical model of the

Timoshenko beam on the Winkler foundation, FDM of the

Euler–Bernoulli beam on the Winkler foundation, and FDM

of the Euler–Bernoulli beam on the Pasternak foundation), these

three methods were employed to calculate the internal force and

deformation of an example of the I-beam applied to an

application. In the soft rock slope reinforcement in the

Mengping highway project, I-beams and cross-beams were

employed. The I-beam was chosen as an engineering example

here, whose width was 300 mm, height was 550 mm, and length

was 3000 mm under the concentrated force F � 500kN and

TABLE 1 Parameters of the beam.

Parameter Value Parameter Value

L (m) 3.00 υ 0.20

r (m) 1.45 yg 0.225

B (m) 0.10 yc 0.2172

H (m) 0.55 D 5.2971×105

b (m) 0.40 G (kN·m−1) 3.75×105

ks (kN·m−3) 1.50×106 h (m) 0.001

E (kN ·m−2) 3.25×107 F (kN) 500

Eg (kN ·m−2) 2.00×108 M0 (kN·m) -95
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FIGURE 3
Force diagram of the I-beam.

TABLE 2 Calculated results using different models.

Parameter Analytical solution Winkler solution Pasternak solution GEO5 Pasternak GEO5 Winkler

ω max (mm) 0.295 0.3244 0.3142 0.3 0.1

Qmax (kN) 271.2 249.8 249.6 250 250

Ml (kN·m) 84.93 89.53 82.73 89.16 78.90

φ 8.65×10–5 2.7×10–4 2.08×10–4 — —

FIGURE 4
Results of the three new methods and GEO5.
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equivalent bending moment M0 � −95kN ·m; then, the results

of these three models were verified by the numerical solutions

calculated by GEO5. The specific calculation parameters are

presented in Table 1, and the simplified calculation diagram is

shown in Figure 3. The calculation results are demonstrated in

Table 2 and Figure 4, respectively.

It is shown that the calculated internal forces and

deformations of the prestressed beam under concentrated

force using the three models are quite close.

(1) The sedimentation value calculated by FDM of the Winkler

model differs the most, compared with that obtained by

GEO5, and the percentage difference is 8.133%. This is partly

because the shear deformation was ignored in FDM of the

Euler–Bernoulli beam on the Winkler foundation, and the

influence of shear deformation on settlement should not be

ignored. Minimum variation can be achieved by comparing

the sedimentation value calculated by the theoretical

analytical solution of the Timoshenko beam on the

Winkler foundation with that by GEO5, and the

percentage difference is 1.67%.

(2) The differences between the shear force value calculated by the

theoretical analytical solution of the Timoshenko beam on the

Winkler foundation and via GEO5 are the largest, and the

percentage difference is 8.48%. The shear value calculated by

FDM of the Winkler model is the closest to that obtained by

GEO5, and the percentage difference is 0.08%. This is partly

because the shear deformation was ignored in the Winkler

foundation, and the value of polynomial terms in the theoretical

formula affects the calculated value of the shear force.

(3) The gap in the bending moment value calculated by FDM of

the Pasternak model is the largest in comparison with that

obtained using GEO5, and the percentage difference is

7.21%; the shear value calculated by FDM of the Winkler

model is the closest to that obtained by GEO5, and the

percentage difference is 0.42%.

Conclusion

In this article, in order to calculate the internal force and

deformation of the prestressed I-beam with prestressed

anchorage loads, three theoretical or FDM methods were

deduced and verified using GEO5. Main conclusions are as follows:

(1) Three methods, namely, the theoretical model of the

Timoshenko beam on the Winkler foundation, the finite

difference method of the Euler–Bernoulli beam on the

Winkler foundation, and the finite difference method of

the Euler–Bernoulli beam on the Pasternak foundation,

are proposed, which can be employed to analyze the

internal force and deformation of the prestressed I-beam

with prestressed anchorage loads.

(2) Among the deformation calculation results of GEO5, the results

of the theoretical model of the Timoshenko beam on the

Winkler foundation are the closest with a difference of 1.67%,

while the results of FDM of the Euler–Bernoulli beam on the

Winkler foundation have the largest difference of 8.13%.

(3) Among the shear force calculation results of GEO5, the

results of FDM of the Euler–Bernoulli beam on the

Winkler foundation are the closest with a difference of

0.08%, while the results of the theoretical model of the

Timoshenko beam on the Winkler foundation have the

largest difference of 8.48%.

(4) Among the bending moment calculation results of GEO5,

the results of FDM of the Euler–Bernoulli beam on the

Winkler foundation are the closest with a difference of

0.42%, while the results of the finite difference method of

the Euler–Bernoulli beam on the Pasternak foundation have

the largest difference of 7.21%.

(5) It can be seen that the results obtained by the

corresponding solutions of the three models and the

GEO5 calculation results fluctuate within 10%. Whether

shear deformation is considered or not, it has little

influence on the bending moment. It is feasible to use

the aforementioned three models to solve the internal

force and deformation of the prestressed I-beam under

prestressed anchorage loads.
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