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Full-cycle and real-time monitoring of the wellbore flow during hydraulic

fracturing is challenging in unconventional oil and gas development. In the

past few years, distributed acoustic sensing (DAS) provides opportunities to

measure the acoustic energy distribution along the entire horizontal well. It is a

promising tool for real-timemonitoring and understanding of the fluid injection

process. However, the signal identification of effective flow in thewellbore from

DAS data is cumbersome and prone to error. We propose a deep learning

approach to solve this problem. The neural network is a combination of

Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term

Memory Networks (BiLSTM) to extract the spatial and temporal features

from the DAS data. The trained model is applied to the field data collected

in the horizontal well. The results demonstrate its capability for intelligent

monitoring and real-time evaluation for hydraulic fracturing.
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Introduction

Hydraulic fracturing operation in horizontal wells has become the most effective

stimulation technology for unconventional, low-permeability reservoirs. Real-time

evaluation of the fracturing process provides important information to design the

unconventional-reservoir completion and improve production (Montgomery et al.,

2010). The conventional monitoring methods, such as microseismic, time-lapse

seismic, and pressure monitoring, are limited to coverage and resolution. Recently,

distributed acoustic sensing (DAS) is emerging as a real-time downhole sensing
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technology. The fiber cable is installed permanently on the

outside of a casing string and measures the vibration along

the wellbore. In the DAS system, the interrogator unit

transmits laser pulse along the cable, and the

interferometer measures the changes in the Rayleigh back-

scattering pattern associated with any deformation on the

cable caused by incident waves (Mateeva et al., 2014; Spica

et al., 2020). It is superior to other wellbore detection

methods for real-time measurement, high spatial

resolution and convenient deployment.

The high-density data recorded by the fiber cable in the

injection well can directly show the fluid migration in the

wellbore. Through the detailed surveillance of the fluid in the

stimulation process, the design of commonly used plug-and-perf

completion can be optimized. The operation parameters are

chosen to achieve low-lost, high-efficiency production, such as

fluid type, pumping method, injection volume, and adjustment of

sand concentration (Jin et al., 2017; Richter et al., 2019).

However, the manual analysis of DAS data is inefficient and

prone to error. Applying machine learning or deep learning to

this problem is an attractive solution. Jin et al. (2019) propose the

artificial neural network (ANN) algorithm to identify fracture-hit

signals from the DAS data recorded at offset monitor wells.

Binder and Tura (2020) use convolutional neural networks

(CNNs) to detect microseismic events in the downhole DAS

data. Stork et al. (2020) shows the successful application of CNNs

to microseismic event detection in DAS data. The purpose of this

study is to identify the signal related to fluid injection in the

borehole. The CNN is combined with Bidirectional Long Short-

Term Memory Networks (BiLSTM) to extract the spatial and

temporal features from the DAS data. The results demonstrate

the feasibility and effectiveness of the proposed framework for

large DAS data volume.

Methods

Convolutional Neural Networks (CNNs) is a class of

feedforward neural networks that include convolution

computation and non-linear activation operators (O’Shea and

Nash, 2015). It is one of the representative algorithms of deep

learning. CNNs are commonly used to analyze visual images.

They are also known as motion-invariant or space-invariant

FIGURE 1
The schematic structure of the proposed network.

TABLE 1 The parameters used in the proposed network architecture.

Layer type Parameter

INPUT LAYER 100 × 128 × 128

CONVOLUTION LAYER 64@5 × 5 (filter)

CONVOLUTION LAYER 32@3 × 3 (filter)

POOLING LAYER 2 × 2 (filter)

BILSTM LAYER 256

DROPOUT LAYER 0.5

BILSTM LAYER 128

DROPOUT LAYER 0.5

BILSTM LAYER 64

DROPOUT LAYER 0.5

FULLY-CONNECTED LAYER 100

FULLY-CONNECTED LAYER 1
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artificial neural networks (SIANN) and are based on a shared

weight structure of convolution kernels or filters that slide along

input features and provide translation-equivalent responses.

Counterintuitively, most CNNs are only equivariant to

translation, not invariant. They have applications in image

and video recognition, recommender systems, image

FIGURE 2
The geometry of the horizontal wells used to collect DAS data. The cable is deployed along Well 2 (blue line) and the red dots indicate the
position of the data used in the application.

FIGURE 3
The process to generate the training and testing data sets.
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classification, image segmentation, medical image analysis,

natural language processing, etc. (Gu et al., 2018).

As for the processing of time series data, such as the DAS

data, recurrent neural networks (RNNs) is a very classic structure

applied to data prediction (Medsker and Jain, 2001). It is used to

find the relation of the data volume and predict the data within

the corresponding context. However, due to its simple structure,

RNNs suffer from gradient disappearance and gradient explosion

when dealing with long-term sequence problems (Salehinejad

et al., 2017). The Long Short-Term Memory (LSTM) networks

are a type of neural network with stronger capability for time

series prediction, which is developed from the RNNs (Hochreiter

and Schmidhuber, 1997; Van Houdt et al., 2020). LSTM consists

of one or more functional unit modules with forgettable and

memory functions. This model is proposed to solve the problem

that the traditional RNNs have the disappearance of

backpropagation gradient in the long-term sequence. The core

components of LSTM networks include forget, input, and output

gates. LSTM networks are well suited for classification,

processing and forecasting problems for time series data.

Conventional RNN units and deep learning networks based

on LSTM units cannot save the value of the previous time

series due to the limitation of their basic structure, so they are

better at predicting the next time step data with current data but

lack the ability to predict a previous time step. For many

sequence prediction problems, the time series data are

bidirectional time-dependent. Thus RNNs and LSTM become

inefficient in prediction ability. To overcome this limitation,

bidirectional RNNs (BRNNs) make use of previous context by

processing the data in both directions with two separate hidden

layers, which are then fed forwards to the same output layer

(Schuster and Paliwal, 1997). Combining BRNNs with LSTM

gives bidirectional LSTM (BiLSTM), which can access long-range

context in both input directions (Graves et al., 2013).

CNNs is the well-known artificial neutral network and widely

applied in image recognition, classification and segmentation.

But it can only provide the mapping of spatial features from the

input to the output. The DAS data are time series, and the

temporal relations can not be learned and predicted by CNNs.

RNNs are able to extract temporal dynamic characteristics but

have limitations on memory cost. LSTM can be considered as an

improved version of RNNs and is suitable to learn long-term

dependencies. A Bidirectional LSTM (BiLSTM) is a model that

consists of two LSTMs to receive the forward and backward

information. It can effectively increase both preceding and

subsequent information available to the network. In the

processing of DAS data for signal identification, we combine

the CNNs and BiLSTM to extract both the spatial and temporal

features. The proposed model benefits from the advantages of

CNNs and BiLSTM. The image features are captured by CNNs

and the long-term dependency of the data is learned by the

BiLSTM. Figure 1 shows the detailed scheme of the network

architecture used in this study. The size of the input image is

FIGURE 4
The typical labeled result of the raw data.

TABLE 2 The performance of the trainedmodel on the testing dataset.

EDR Far F1 score Response time (s)

0.951 0.026 0.926 1.78
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128 x 128, as shown in Figure 1. 50% overlap is added to ensure

that the continuous segmentation does not miss valid signals.

The network model consists of CNN layers, BiLSTM layers

and fully connected layers. The implementation of the

proposed network is based on the Python deep learning

API, Keras, which uses Tensorflow as the backend. These

parameters are decided after we define the input and output,

and optimized after several tests. Table 1 describes the specific

structure and parameters of the network proposed in this

paper in detail. The CNN layer focuses on extracting spatial

feature information, the BiLSTM layer focuses on extracting

time series features, and the fully connected layer is used to

fuse the features extracted by the CNN layer and BiLSTM to

achieve classification and recognition. The DAS data are

divided into two types, effective injection signal and

background noise. The input is the sequential DAS data,

and the spatiotemporal characteristic is used to identify the

fluid injection information. Firstly, the original data are

segmented along the spatial and time axis to obtain the

image with the size of 128 × 128. Then each sequence with

100 images in time are collected and used as the input. As the

DAS response of fluid injection depends on the channel

number and temporal step of the input DAS monitoring

data, and the feature information obtained from different

channels and time steps is highly correlated, the proposed

network uses three BiLSTM layers successively to increase the

ability of time series prediction and reduce the error in

identification calculation. The problem involves the two-

dimensional dynamic recognition problem both in space

and time. The nonlinear conversion to linearization process

FIGURE 5
The raw DAS data with high (A) and low signal-to-noise ratio (B).
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in the fusion classification of space-time features is prone to

errors (Tang et al., 2021), thus we add a fully connected

network to improve the conversion performance. This

modification can optimize computational efficiency and

reduce the over-fitting phenomenon.

Training data

The DAS system is deployed along the injection well in the

shale gas field. The monitoring geometry is shown in Figure 2.

The length of the cable is approximately 2.5 km. The spatial

resolution is 1 m and the temporal interval is 0.25 ms. Figure 3

shows the processing steps of the raw data. The data is

segmented along the time and channel axis, respectively.

The datasets are selected from the recorded data of three

wells at the same site in about 1 month. With the recorded

data, the data are labeled manually by visual inspection to

generate the training dataset. Figure 4 shows the typical

labeled result of the data slice. After the manual labeling,

the dataset are separated into training dataset and testing

dataset with a ratio of 8:2.

Network training

The goal of signal detection for fluid injection in hydraulic

fracturing is to establish a rapid real-time evaluation and

response system with high accuracy and high sensitivity. The

following parameters are used to judge the performance of the

trained model.

1) Effective detection rate (EDR)

The ratio of the effective signal detected, which is equal to the

recall rate. It is calculated as follows:

FIGURE 6
The signals related to fluid injection identified from the data shown in Figure 5.
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EDR � TP

TP + FN

where TP is the true positives, which refers to the number of

correct detections for signals triggered by the trained network.

FN is the false negatives, which refers to the number of wrong

identifications for noise.

2) False alarm rate (FAR)

The ratio of false and correct identified signals of fluid

injection, which is

FAR � TP

TP + FP

where FP is the false positives, which refers to the number of

wrongly indication for effective injection signals.

3) F1 score

A measure that combines precision and recall, which is also

the harmonic mean of precision and recall

F1 � 2EDR (1 − FAR)
EDR + (1 − FAR)

4) Response time

This parameter is used to indicate the time consuming of the

proposed workflow. It is the time difference between the time of the

first sample and the output time of the first identified effective

injection signal.

Using the training dataset, we obtained the proposed model

and used the testing dataset to validate its performance. The

results are shown in Table 2. EDR is used to evaluate the

precision of the identification model, FAR is used to indicate

the missing of effective signals. F1 score is the overall evaluation

using evenly weighted recall and precision. The results shows the

trained model can effectively identify the signal from the raw data

and the processing time can meet the requirements for real-time

monitoring. On the computation node with four Nvidia Titan

(Pascal) GPUs, it took about 5 days for the training.

Application to field data

In the application, the collected data in different stages that

are not included in the training and testing datasets are used.

Figure 5 shows the data slices with relatively high and low signal-

to-noise ratio, respectively. Using the trained model for

identification, the results are shown in Figure 6. It can be

FIGURE 7
The comparison of the accumulation of DAS energy with the slurry rate curve of the well (blue line). The Red line denotes the results of the raw
DAS data, and the ochre line denotes the results of the identified signals using the proposed model.
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observed from the identification results that the signals related to

fluid injection are identified with high accuracy.

To further demonstrate the validity of the proposed model,

the accumulated energy (the square of amplitude) of the recorded

data is compared with the production curve. Figure 7 shows the

results. In the conventional method of directly accumulating

energy in the full record, the DAS response is inconsistent with

the slurry rate curve, which is mainly due to the continuous

background noise during the monitoring process. The results

based on the identified DAS response can accurately fit with the

slurry rate curve, as the extract DAS responses are directed

related to fluid injection procedure. The model works

effectively for the data collected at the same area as the

validate data are similar to the training data. But it may need

to be updated when the data have different characteristics. With

more DAS data, the performance of the trained model can be

further improved. The new deep learning algorithms developed

for action recognition in video signals can also be introduced to

improve the efficiency of the proposed method.

Conclusion

We propose a deep-leaning approach for real-time evaluation

of raw DAS data to identify the signals related to fluid injection in

hydraulic fracturing. The trained model demonstrates its

effectiveness and accuracy in application to field data. The

effective detection rate of injection signal is 95.1%, which

enables real-time evaluation of hydraulic fracturing operation

from downhole DAS data. The structure combing CNNs and

BiLSTM performs reasonably well in spatiotemporal signal

classification. The current models can be further improved in

practical applications with more DAS data and better action

recognition strategies.
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