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The Junggar Basin is a multicycle intracontinental sedimentary basin developed on the pre-Mesozoic deformed basement. For a long time, the Junggar Basin and its adjacent Altai orogeny have been a focus of debate for geologists studying the opening and closing history of the Paleozoic Asian Ocean and Cenozoic intracontinental deformation. However, there has been no detailed research on the intracontinental tectonic activities of northern Xinjiang since the Mesozoic, particularly the Yanshanian tectonic activities in the northern Junggar Basin. Fission-track (FT) dating was conducted on 15 apatite samples and eight zircon samples obtained from the northern Junggar Basin to better understand the Yanshanian tectonic evolution. The results showed that apatite FT (AFT) ages ranged from 131 to 42 Ma and zircon FT ages ranged from 205 to 132 Ma. Based on the AFT track thermal history modeling and the regional geological data, we proposed that the northern Junggar Basin underwent three tectonic thermal events during 165–161, 93–81, and 72–66 Ma. The thermal events of 165–161 Ma may indicate magmatic activity during the Yanshanian, while the 93–86 and 72–66 Ma events reflect Late Cretaceous uplift and cooling. This study has confirmed the tectonic evolution of the Yanshanian in the northern Junggar Basin from the perspective of thermochronology. It has also revealed that the Yanshanian orogeny, a regional tectonic event, may have also occurred in northwest China.
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INTRODUCTION
Junggar Basin is an important sedimentary energy basin rich in oil, gas, and coal resources in northwest China (Xiao et al., 1992; Zhao, 1992; Cai et al., 2000). This basin is sandwiched between the Altay and Tianshan Mountains and is part of the Central Asian Orogenic Belt (CAOB). Its Paleozoic tectonic evolution is mainly characterized by a continental margin collision and orogeny. In the Late Paleozoic, the Junggar Basin and its adjacent areas formed a large tectonic collage mainly comprising island arcs, microcontinental blocks, and a paleooceanic crust (Zhang et al., 2017; Xiao et al., 2020; Zhu et al., 2020). After the Mesozoic, the Junggar Basin entered a stage of intracontinental evolution, and the tectonic activity of this basin was mainly controlled by the far-field effects of the Indian–Eurasian plate collision (Allen et al., 1994; Jolivet et al., 2001; Zhang et al., 2017). The tectonic thermal evolution and intracontinental deformation of the Junggar Basin and its adjacent areas since the Mesozoic have attracted the interests of many geologists (Zhou and Cai, 1990; Qiu et al., 2002; Jia et al., 2005; Wang and Xu, 2006; Dong et al., 2019; Cao et al., 2020; Hou et al., 2020; He et al., 2021; Wu et al., 2021; He et al., 2022a; Zhang et al., 2022).
Few studies have been conducted on Mesozoic tectonic activities in the Junggar Basin and its adjacent areas compared with those on Paleozoic and Cenozoic activities, and the tectonic processes and patterns during the Mesozoic are not clear. (Li et al., 2010; Yu et al., 2016; Wu et al., 2021; He et al., 2022b; Zhang et al., 2022). East Asia was widely affected by the Mesozoic Yanshanian orogeny, which resulted in complex intracontinental deformation, violent magmatic intrusions, and volcanic eruptions (Qiu et al., 2018; Yan and Qiu, 2020). This further led to substantial changes in the surface structures, landforms, paleoenvironments, and paleoecosystems of East Asia, and it is of considerable importance to the tectonics of eastern China (Dong et al., 2000; Dong et al., 2007; Dong et al., 2015; Dong et al., 2019; Faure et al., 2012; Zhu et al., 2020; Qiu et al., 2022a). Owing to the weak influence of the Yanshanian orogeny in northwest China, particularly the Junggar Basin, the Yanshanian tectonic event has not attracted considerable attention (Qiu et al., 2022b). With studies being conducted on the Yanshanian orogeny and its thermal effects in western China, researchers have gradually realized the significance of the Yanshanian orogeny for understanding mineralization in the Junggar Basin and Yanshanian tectonic evolution (Zhang et al., 1994; Dong et al., 2000; Fang et al., 2006; Guo et al., 2006; He and Gao, 2008; Yang et al., 2015; Yang et al., 2017; Sun et al., 2018; Dong et al., 2019; Zhu et al., 2020). However, the strength and timing of the Yanshanian tectonic evolution in the northern Junggar Basin are still poorly understood. Therefore, this paper will discuss the Yanshanian tectonic evolution of the northern Junggar Basin in the late Mesozoic from the tectonic thermochronology perspective.
Fission-track (FT) thermochronology was developed on the basis of the closure temperature theory and the concept of cooling age, which effectively records tectonic events in the low-temperature range and recovers corresponding geothermal histories (Gleadow et al., 1986; Gallagher et al., 1998; Ruiz et al., 2004; Ketcham et al., 2018; Tian et al., 2020a). FT thermochronology has been widely used in a variety of studies, including analysis of the thermal history of sedimentary basins, rock uplift rates, constrained stratigraphy ages, and the tectonic evolution of basins (Zhu et al., 2005; Patel et al., 2014; 2015; Ge et al., 2016; Ansberque et al., 2018; Jian et al., 2018; Bernet, 2019; Zattin and Wang, 2019; Peng et al., 2020; Tian et al., 2020b; He et al., 2021; He et al., 2022a; He et al., 2022b). We studied the tectonic thermal evolution, including the peak age, of the northern Junggar Basin during the Yanshanian via zircon and apatite FT (AFT) dating. We concluded that the northern Junggar Basin experienced magmatism 165–161 Ma and later multiple uplift and denudation events 93–81 Ma and 72–66 Ma, respectively, which may be the response of northwest China to the Yanshanian orogeny.
GEOLOGICAL SETTING
The Junggar Basin is located in the southwestern CAOB (Figure 1A) at the intersection of the Kazakhstan, Siberia, and Tarim plates (Figure 1B). It is superimposed on the Precambrian crystalline and Hercynian-folded, metamorphic basements (Xiao et al., 1992; Li et al., 2010). Moreover, it is slightly triangular and extends for approximately 130,000 km2. The study area, located in the northern part of the Junggar Basin, included the structural units of the Wulonggu depression, the Luliang uplift, the Shiyingtan uplift, the Dibei uplift, and the Wuxia fault-step belt. Further, it is bordered by the Zaire and Halarat Mountains to the northwest and by the Karamaili and Almantai Mountains to the northeast (Figure 1C). The evolution of the northern Junggar Basin involved five main tectonic stages: residual basin (Early Hercynian), intracontinental rift basin (Late Carboniferous to Early Permian), multicycle intracontinental compressional depression basin (Late Hercynian to Indosinian), multicycle intracontinental basin (Yanshanian to Early Himalayan), and intracontinental orogen (Mid-late Himalayan) (Zhao, 1992; Han et al., 2006; Zhang et al., 2017).
[image: Figure 1]FIGURE 1 | (A) Simplified tectonic map of the Central Asian Orogenic Belt. (B) Structural map of Junggar Basin and its adjacent areas (modified from Li et al., 2010). (C) Structural sketch and sample collection points of the study area.
The Paleozoic in the study area is dominated by dark gray pyroclastic rocks. The Paleogene rocks are mainly purplish-red and silty mudstones with a small distribution range. Widely distributed Neogene rocks are mostly sandstones, conglomerates, and mudstones (Figure 2.). The Triassic mainly comprises gray to black mudstones interbedded with sandstones. The Early Jurassic is dominated by fluvial–lacustrine sandstones, glutenites, mudstones, and coal seams with abundant fossils. The Middle Jurassic Xishanyao Formation is dominated by fluvial–lacustrine coal-bearing clastic rocks, whereas the Toutunhe Formation is dominated by intermittent lacustrine brownish-red sandstones and pebbly sandstones. The Late Jurassic Qigu Formation is largely absent. The Early Cretaceous Tugulu Formation mainly comprises shallow lacustrine mudstones interbedded with sandstones, and the Late Cretaceous is mostly absent.
[image: Figure 2]FIGURE 2 | Generalized stratigraphic column of the Northern Junggar Basin showing sample locations, lithology and depositional facies.
Based on the comprehensive analysis of outcropping rock, seismic profiles, and stratigraphic characteristics, the Yanshanian period stratigraphic unconformities in the north of the Junggar Basin are mainly between the Toutunhe and Xishanyao Formations, the Cretaceous and the Jurassic, and the Paleogene and the Cretaceous (Figure 3). The unconformities were mostly a result of weak compression–deformation during uplift–exhumation.
[image: Figure 3]FIGURE 3 | Stratigraphic unconformity in northern Junggar Basin. (A)The outcrop profile shows the angular unconformity between the lower Cretaceous and the upper Jurassic. (B) Unconformity in the study area shown by seismic profile.
MATERIALS AND METHODS
Samples
A total of 23 samples were analyzed, i.e., 15 samples were analyzed via AFT dating, and eight samples were analyzed via zircon fission-track (ZFT) dating. The samples were collected from surface detrital rocks from Mesozoic strata and three drill cores (wells Y, D, and F) from the study area (Table 1; Figure 1C; Figure 2). Samples D and F were obtained from Luliang uplift, among which D1 was collected from the Carboniferous drilling core, D-1 and F-1 were collected from the Triassic and Jurassic drilling cores respectively, and D-2, D-3, D-4, F-2, and F-3 were collected from the Jurassic outcrop rocks. Samples L-1 and L-2 were collected from the Jurassic and Cretaceous outcrops in the Wulonggu depression, respectively. Samples Y and H were from the Shiyingtan uplift, among which Y1 was from the Carboniferous drilling core, Y-1 was from the Jurassic drilling core, Y-2 and Y-3 were from the Jurassic and Cretaceous outcrop rocks, respectively, and H-1, H-2, H-3 were from the Jurassic outcrop rocks. Sample T-1 was collected from the Carboniferous outcrop rock on the northern edge of the Junggar Basin. The samples were mainly sandstones, siltstones, and Carboniferous to early Cretaceous tuffs. Each sample weighed more than 3 kg.
TABLE 1 | Details of samples used in this study.
[image: Table 1]FT dating
Sedimentary detrital grains exhibit three annealing states: unreset, partial reset, and reset (Bernet and Garver, 2005; Braun et al., 2006). The FT ages of unreset grains have a low test probability (P [χ2] < 5%) and the unreset grains are older than the stratigraphic age; this mainly represents the uplift–exhumation cooling age of a source region. Variation in the lag time between the FT age and the sedimentary age of unreset grains reveals the uplift–exhumation history of the source region. The FT ages of reset grains have a high test probability (P [χ2] > 5%) and the reset grains are younger than the stratigraphic age; this age mainly represents the cooling age when the grains rise through the closure temperature after high-temperature annealing.
Using reset grain ages, track lengths, and thermal history modeling, we determined the tectonic thermal evolution of the Junggar sedimentary basin. The FT ages of the partial reset grains were generally older than or close to the stratigraphic age, which indicated the FT mixed ages of the partial reset grains in the source area (Braun et al., 2006). Using an appropriate statistical method to analyze these mixed ages, we can obtain the cooling age and tectonic thermal evolution information for the source region and sedimentary basin.
The closure temperature is the temperature of a thermochronological system at the time corresponding to its apparent age; it varies with grain size, chemical composition, and cooling rate (Dodson, 1973). Generally, the effective closure temperatures of apatite and zircon are approximately 120°C ± 10°C and 240°C ± 50°C, respectively (Dodson, 1973; Zaun and Wagner, 1985; Laslett et al., 1987; Hurford, 1991; Braun et al., 2006; Bernet, 2009; Tian et al., 2020a). If the grains rapidly rise through the closure temperature after high-temperature annealing, the FT age represents the cooling age of the tectonic thermal events. If the grains have been exposed to a long-term and complex thermal history after high-temperature annealing, the FT ages of the grains are mostly mixed ages, which must be analyzed and screened to obtain an effective cooling age. Commonly used methods for analyzing the FT age of a single grain include the radial chart view, P (χ2) test, and binomial fitting. FT age groups can be directly obtained using the radial chart view method, whereby grains in the same group undergo the same thermal event. The P (χ2) test is used to determine whether the grains belong to the same group depending on whether their ages obey the Poisson distribution. The binomial fitting method requires at least 50 grains, and their peak ages can be directly determined via data fitting (Galbraith and Laslett, 1993; Brandon, 1996; Brandon, 2002). Overall, the statistical distribution of FT ages, length characteristics, and peak age analyses can be used to obtain quantitative chronological constraints for tectonic thermal events.
Zircon and apatite grains used for FT analysis were separated from the samples via conventional heavy-liquid separation and magnetic separation techniques. FT dating was performed using the external detector method (Galbraith and Laslett, 1997) at the Institute of High Energy Physics, Beijing, China. The separated grains were mounted in epoxy resin and polyfluoroalkoxy fluororubber sheets, and the inner surfaces of the grains were exposed via polishing. The zircon grains were etched in a KOH–NaOH eutectic solution at 220°C for 30 h. The apatite grains were etched in a 6.6% HNO3 solution at 25°C for 30 s to reveal the spontaneous FT. A low-uranium-content muscovite detector was used to determine induced FT density, and CN5 and CN2 uranium dosimeter glasses were used to detect apatite and zircon neutron fluxes, respectively. After irradiation, the muscovite external detector was etched in 40% HF at 25°C for 30 min, and the number of tracks was counted using a microscope (Olympus) under 1,000x magnification. The FT ages were calibrated using the zeta calibration method (Hurford and Green, 1983; Green, 1985), with a zircon zeta value of 124.1 ± 6.4 (1σ) and an apatite zeta value of 357.8 ± 6.9 (1σ).
RESULTS
The results of the FT dating (see Tables 2, 3) showed the AFT central ages ranged from 42 ± 3 to 131 ± 9 Ma and the ZFT ages ranged from 134 ± 9 Ma to 205 ± 17 Ma; the distribution of FT ages was mainly related to tectonic units. The FT ages indicated four main age groups: 165–161, 131–122, 93–86, and 72–66 Ma. This indicates the multistage uplift–exhumation thermal evolution of the northern Junggar Basin during the Middle to Late Yanshanian.
TABLE 2 | Apatite fission track data of the northern Junggar Basin.
[image: Table 2]TABLE 3 | Zircon fission track data of the northern Junggar Basin.
[image: Table 3]Apatite FT dating
The P (χ2) test is usually used to determine whether grains belong to the same group (Galbraith and Green, 1990; Galbraith and Laslett, 1993). P (χ2) > 5% means that the grains belong to the same group and undergo a single cooling process. P (χ2) < 5% means that the grains belong to different groups and represent a mixed age, for example, when the grains come from different source regions and remain in the partial annealing zone for a long period. The AFT dating results (Table 2; Figure 4) indicated that the P (χ2) of all the samples was >5%, and the track length of the grains presented a single peak. This indicated that the sampled grains belong to a single age group, which means that all the sampled grains underwent a single cooling process. The AFT central ages ranged from 42 ± 3 to 131 ± 9 Ma, and the peak ages were mainly 131–122, 93–86, and 72–66 Ma.
[image: Figure 4]FIGURE 4 | Fission track length histograms and radiograms of apatite grains from the northern Junggar Basin. The left panels of each group are fission track length histograms, the right panels are fission track radiograms, in which, X and Y-axes represent the age accuracy and standard deviations of single grains, respectively.
Zircon FT dating
The ZFT dating results are shown in Table 3 and Figure 5. Six samples showed P (χ 2) > 5%, indicating that the grains belong to the same group. The D-2 and D1 samples showed P (χ2) < 5%, indicating mixed ages. These two samples were analyzed using the binomial fitting method (Figure 6). Sample D-2 had peak ages of 144 and 380 Ma, and sample D1 had peak ages of 151 and 332 Ma. Because the ages of 380 and 332 Ma were older than the stratigraphic age of the samples, they reflected the thermal history of the grains in the source regions. Therefore, we determined the peak ages to be 144 and 151 Ma, representing the thermal history of the basin. Overall, the ZFT ages ranged from 134 ± 9 Ma to 205 ± 17 Ma, and the peak ages were mainly 165–161 Ma.
[image: Figure 5]FIGURE 5 | Radiograms of ZFT single grain ages from the northern Junggar Basin. X and Y-axes represent the age accuracy and standard deviations of single grains, respectively.
[image: Figure 6]FIGURE 6 | Frequency histograms of single grains of ZFT ages and age components calculated by binomial fitting method.
Thermal history modeling
Shortening AFT patterns reflect cooling paths through the apatite partial annealing zone. Important information can be obtained by modeling the thermal history of apatite grains using specific ages and track lengths, including the timings and temperatures of tectonic thermal events in basins. The partial annealing zone is defined as the temperature range in which FTs can be partially retained on a geological time scale. The track will be completely annealed when the temperature is above that zone, and it will be well preserved when the temperature is below that zone. When the temperature is within this range, the FT length will shorten or become non-existent, and a new fission track will be simultaneously produced. Generally, the partial annealing zone of apatite is 60°C–120 °C (Braun et al., 2006; Tian et al., 2020a).
In this study, the AFTSolve program (Ketcham, 2005) was used to model the time–temperature path based on the grain ages and track lengths of 11 typical samples. The initial Dpar value was 1.5 μm, and the initial track length was calculated based on the Dpar value. The initial modeling temperature is the temperature of the stratum during deposition, generally approximately 20°C; therefore, it was set as 10°C–30°C. The maximum burial time and temperature range were the modeling constraints, and the modeling temperature was less than the maximum burial temperature of the stratum. For each sample, inverse thermal history modeling was run for 100,000 paths to find the best fitting curve. The modeling results (Figure 7) showed that there were two tectonic thermal events in the northern Junggar Basin during the Yanshanian, which resulted in partial or complete annealing of apatite. The first tectonic thermal event (buried heating) occurred between 165 and 161 Ma, and the second tectonic thermal event occurred between 131 and 128 Ma.
[image: Figure 7]FIGURE 7 | Results of thermal history modeling.
DISCUSSION
Yanshanian magmatism
Large-scale magmatic activities mainly occurred in the Junggar Basin and its adjacent areas during the Paleozoic. The intracontinental tectonic thermal evolution started in the Mesozoic (Xiao et al., 1992; Qiu et al., 2002); therefore, magmatic activities were substantially weakened, resulting in reduced volcanic age records. However, based on detrital zircon geochronology, large numbers of late Mesozoic magmatism have been recorded for detrital materials collected from the Junggar Basin. For example, via zircon U–Pb dating, Yang et al. (2013) obtained peak ages of 144 and 162 Ma from the Manas section of the Junggar Basin, Fang et al. (2015) obtained a peak age of 153 Ma for the grains obtained from the Toutunhe section, and Zhu et al. (2020) obtained peak ages of 132 and 169 Ma for the grains obtained from the Wangjiagou section and 161 Ma for the grains obtained from the Kelamaili section. Additionally, Liu et al. (2018) used laser ablation inductively coupled plasma mass spectrometry to obtain a zircon U–Pb age of 189 Ma for the grains obtained from the northeastern Junggar Basin, confirming the existence of Early Jurassic magmatism in the northeastern Junggar Basin.
Yanshanian magmatism in orogenic belts adjacent to the Junggar Basin has also been studied, particularly in the Altay and Tianshan areas. Zhang et al. (1994) determined a tectonomagmatic Ar–Ar age of 131 Ma (Middle Yanshanian) for granites in the Altay area. Chen et al. (1999) obtained an Ar–Ar age of 149–135 Ma from tectonic thermochronological records for granites in the Altay area. Zircon U–Pb ages of 154.9 ± 1.9 Ma and 152.7 ± 1.8 Ma were determined for Eastern Tianshan by Liu et al. (2019). These studies have confirmed the existence of Yanshanian magmatism around the Junggar Basin.
In our study, ZFT ages ranged from 205 to 132 Ma, with a peak age of 165–161 Ma. Except for samples D-1 and T-1, the FT ages of other samples were concentrated at approximately 160 Ma, indicating that the study area experienced important tectonic thermal events during this period. Generally, the FT age of the old strata in the same area should be newer than that of the new strata above it. However, the Carboniferous sample T-1 has the oldest FT age of 205 ± 17 Ma. This may be related to the fact that the sample was collected from the orogenic belt on the northern margin of the Junggar basin, which has experienced different tectonic evolution processes. High temperatures are required for annealing and partial annealing of zircon owing to its high closure temperature (240 °C ± 50 °C). Considering the evidence of the existence of Middle Yanshanian magmatism in the Junggar Basin and the two tectonic thermal events that resulted in the partial or complete annealing of apatite, we chose to interpret the tectonic thermal event that occurred from 165 to 161 Ma to be a result of magmatism. The AFT ages ranged from 131 to 42 Ma, with peak ages of 131–122 Ma, 93–86 Ma, and 72–66 Ma. The FT ages of the four samples, Y-1, Y-2, H-1, and H-2, were distributed between 122 and 131 Ma. These samples were collected from the Shiyingtan uplift, and the sampling points were relatively close, which may reflect a tectonic thermal event of 130 Ma. Considering that the closure temperature of zircon is higher than that of apatite, the ZFT (165–161 Ma) and AFT ages (131–122 Ma) probably represent FT age recordings of the same tectonic thermal event, possibly reflecting a nearly continuous Yanshanian tectonic thermal event.
Yanshanian tectonic events are also reflected in the sedimentary characteristics and contact relationships of the strata. The appearance of intermittent brownish-red lacustrine sandstones in the Toutunhe Formation shows that the climate tended toward an arid environment. The angular unconformity at the top of the Toutunhe Formation and the absence of the Upper Jurassic strata (Figure 3) indicate that uplift may have started after the deposition of the Toutunhe Formation in the Middle Jurassic. An unconformity at the base of the Cretaceous is widely developed across the whole region and the whole of western China. This indicates a strong tectonic event that lasted from the Middle to Late Jurassic to the Early Cretaceous. Based on the most recent international stratigraphic age of 163.5 Ma for the Upper Jurassic and our newly obtained 165–161 Ma ZFT ages, we consider the start of the Yanshanian orogeny in the northern Junggar Basin to be approximately 163 Ma.
Uplift and cooling events in the Late Yanshanian
Our new AFT ages show that there were two uplift and cooling events at 93–86 and 72–64 Ma, which correspond to the widespread absence of Upper Cretaceous strata in the study area. Additionally, these uplift and cooling events are also reflected in the sedimentary characteristics and contact relationships of adjacent areas. For example, Upper Cretaceous strata are absent in the eastern Tarim Basin, and Paleogene strata directly overlie Lower Cretaceous strata. There is an angular unconformity between Upper Cretaceous and Lower Cretaceous strata in the Turpan–Hami Basin and between Upper Cretaceous and Lower Jurassic strata in the western Tianshan Mountains (Zhu et al., 2005; 2020; He and Gao, 2008; Yang et al., 2015; 2017). Thermochronology studies have also documented Late Cretaceous uplift–exhumation events in the Junggar Basin and its adjacent areas: AFT ages of 90–25 Ma for an uplifting event in northern Junggar Basin (Li et al., 2010; Li et al., 2014); AFT ages of 120–45 Ma for cooling stages in the southern margin of the Junggar Basin (Zhang et al., 2022); AFT thermochronology and seismic profiles revealed a rapid uplift (ca. 100–60 Ma) in the Late Cretaceous Paleocene in the eastern Junggar Basin (Wu et al., 2021); AFT ages of 120–60 Ma for Cretaceous uplifting events in the Altai region (Yuan et al., 2004; Johan et al., 2006); AFT ages of 110–70 Ma for a rapid uplift–exhumation event in the Tianshan Mountains (Hendrix et al., 1994; Guo et al., 2002; Glorie et al., 2010; Luo et al., 2012; Zhang et al., 2017); and the Eastern Tianshan and southern part of the east Junggar experienced moderate to rapid basement cooling throughout the Cretaceous (He et al., 2022b). These studies indicate that an uplift–exhumation event occurred during the Late Cretaceous that affected the Junggar Basin and its adjacent areas, which may have been the result of a distal collision between the Kohistan–Dras island arc and the Lhasa terrane.
Influence of the yanshanian orogeny on the Junggar Basin
The Yanshanian orogeny, a major geological tectonic event, occurred after the formation of the Triassic continent in East Asia. Beginning around 170 Ma in the Middle Jurassic, there were three main successive tectonic periods: a deformation period (175–136 Ma), an extension period (135–90 Ma), and a weak compression–deformation period (89–80 Ma) (Dong et al., 2019). The Yanshanian orogeny substantially influenced the tectonic evolution of eastern China; however, in northwest China, the effects of the Yanshanian orogeny seem to be relatively weak (Figure 8). A regional tectonic uplift event led to the shrinking of a sedimentary basin (Chen et al., 2004; Jia et al., 2005).
[image: Figure 8]FIGURE 8 | Structural strength characteristics of middle Yanshanian in Northwest China (modified from Chen et al., 2004).
Generally, the effects of the Yanshanian orogeny on the Junggar Basin were relatively minor and mainly manifested via the overall uplift of the basin, the narrowing and discontinuity of Jurassic sedimentation, and the deposition of glutenite in front of the orogenic belt (Jia et al., 2005; Zhang et al., 2006; He and Gao, 2008). Consequently, the Yanshanian orogeny in the Junggar Basin has mostly been ignored. However, widely developed unconformity at the base of Cretaceous strata is found in the Junggar Basin and across western China (Zhou and Cai, 1990; Jia et al., 2005; He and Gao, 2008; Yang et al., 2015; Yang et al., 2017) and stretches as far west as Kazakhstan (Jolivet et al., 2013). Additionally, the Yanshanian orogeny transformed Jurassic and younger strata via large-scale uplift and denudation, formation of a thrust system, multiple large-scale uplifts, and reactivation of large-scale faults in western China (Hendrix et al., 1992; He and Gao, 2008; Dong et al., 2019). This indicates that the Yanshanian orogeny was an important regional tectonic event.
Driving force of the yanshanian tectonic events in northwest China
With the disintegration of the united paleocontinent, three giant continental margin convergence orogenic systems (i.e., the Mongolia–Okhotsk orogenic system in the north, the Paleo-Pacific orogenic system in the east, and the Bangonghu–Nujiang orogenic system in the west) were formed around the East Asian continent in the Jurassic. Deformation and propagation of these marginal tectonic belts to the interior of the continent led to a large-scale intracontinental orogeny that formed the Yanshanian multiplate convergence tectonic system (Figure 9). The Mongolia–Okhotsk orogenic system, proximal to the northeast Junggar Basin, is a northeast-trending orogenic belt. The closing of the Mongolia–Okhotsk ocean occurred about 182–174 Ma, and the metamorphic peak of the collision zone occurred about 175–165 Ma (Zorin, 1999; Mo et al., 2005). This tectonic event may have been the driving force for the development of the Middle and Late Jurassic unconformity in the northern Junggar Basin and its adjacent areas. During the Late Jurassic–Early Cretaceous, the Lhasa block collided with the southern edge of Asia and the Bangong–Nujiang Tethys Ocean was completely closed (Allen et al., 1994; Jolivet et al., 2001), which may have exacerbated tectonic deformation in the northern Junggar Basin and its adjacent areas. Additionally, the northeast–southwest directed continental collision between the Kolyma–Omolon block in northeast Russia and the Siberian craton during the Late Jurassic to Early Cretaceous (Oxman, 2003) resulted in compressive stress transfer from the northeast edge of Siberia to Junggar and its adjacent areas through the rigid Siberian craton. In the Late Cretaceous, the Gangdise block collided with the Lhasa block (Hendrix et al., 1992). The combination of these block collisions led to an intracontinental orogeny in Central Asia and a cooling uplift event in the late Mesozoic. The opening and development of the Yanshanian tectonic events were closely related to the plate convergence and collision of the Paleo-Pacific, Tethys, and Mongolia–Okhotsk tectonic domains. The tectonic evolution of the Junggar Basin and its adjacent areas has been affected by these multiplate compression and collision events.
[image: Figure 9]FIGURE 9 | Schematic diagram of Mesozoic multi-plate convergence in East Asia continent.
CONCLUSION

1) The central AFT and ZFT ages in the northern Junggar Basin are 131–42 Ma and 205–132 Ma, respectively.
2) These new thermochronological data indicate that the tectonic evolution of the northern Junggar Basin mainly occurred in 165–161, 93–81, and 72–66 Ma. We have interpreted the 165–161 Ma tectonic thermal event as the result of magmatism and the 93–81 and 72–66 Ma events as uplift and cooling events, respectively. We prove that the magmatism indicates the opening of the Yanshanian orogeny in the Junggar Basin, and the 93–86 and 72–64 Ma uplift and cooling events are the results of the collision between the Kohistan–Dras island arc and the Lhasa terrane.
3) Our new FT data thermochronologically confirm the Yanshanian tectonic evolution in the northern Junggar Basin, which confirms that the Yanshanian orogeny, a regional tectonic event, may have extended to northwest China.
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D3 28 Jis 4175 (685) | 8422 (1,453) 9582 (10300) 917 9245 92+5 116+
1.7 (106)

D4 29 Jash 4584 (542) | 9702 (1176) | 9.693 (10300) 100 8846 886 15+
16 (92)

Y-1 28 C 877 (118) 1.226 (165) 8911 (10,322) 100 122+15 122+ 15 104 +
20 (105)

Y2 28 P 2262 (149) | 2657 (175) | 7906 (10322) 999 128+15 128415 122+
23 (103)

Y3 28 Kug 3702 (564) | 7.029 (1,071) | 8.576 (10,300) 98.2 865 86+5 13+
17 (104)

F1 12 Jash 7.500 (443) 30467 | 8.800(10300) 551 2+3 23 4
(1,687) 1.6 (54)

F2 2 ha 3.656 (806) | 8.685(1932) | 8688 (10300) 7.5 66+5 704 121+
19 (108)

F-3 31 Jiz 5308 (1,142) 12.262 8.130 (10,300) 590 673 67+3 118+
(2518) 20 (102)

H1 27 i 4350 (860) | 6298 (1,315) | 9.805 (10300) 100 1297 129¢7 123+
17 (92)

H-2 28 Jis 1094 (492) | 1472 (647) | 9247 (10300) 100 131£9 1319 135+
2.1 (115)

H-3 13 B 2.907 (340) 7.557 (525) | 8.688 (10,300) 125 67+8 64+6 125+
2.2 (40)

L1 28 Jis 4040 (1,232) | 6887 (1890) | 9.805 (10,300) 252 1086 10+ 5 127+
18 (107)

L2 27 Kig 3536 (642) 6.648 (1,248) = 9.917 (10,300) 712 101 £ 6 1016 128 +
16 (112)

Note: s the number of grains analyzed; psis spontaneous fission track density: N, s the number of spontancous fission tracks counteds piis induced fission track density; Ni is the number of induced
fission tracks counted; pd i fission track density measured in dosimeter glass CNS; N s the number of induced fission tracks counted in dosimeter glass CNS; P () is chi-square probability; o s the
st of idn conkned teack Rosthe 1 o sarad conlniad Bidlng tiact ooithe M 1 e casshoe of tratls.
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