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Estimation of spatial correlations should be an integral part of objective analysis of
geophysical variables. However, a statistical assessment of spatial correlations has
been absent from studies of objective analysis of snow depth since its debut over
2 decades ago. We show a method for computing regional spatial correlations of
observed snow depth and the daily snow depth increment and fitting them to
correlation functions to estimate the correlation scale parameters. Both
horizontal and vertical distance correlations are computed from station
observations over a well sampled part of North America. The vertical and
horizontal distance correlations are fitted to exponential functions using the least
squaremethod to estimate the correlation scale parameters including the amplitude,
which represents short distance correlation. Our assessment suggests a large
horizontal e-folding correlation scale for both the observed snow depth and the
daily increment, with implications for improving predictions in poorly monitored
areas with relatively flat topography. Over mountainous terrain, vertical e-folding
correlation scale for observed snow depth is much smaller than that for the daily
snow depth increment and for the snow depth increment used in operational snow
analyses. That means that optimal interpolation-based analysis of the increments
may be more accurate than the interpolation of snow depth data.
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1 Introduction

Spatial distribution of snow depth exhibits long spatial correlations, which can be exploited
for regional mapping of snow depth using Kriging interpolation method. Kriging requires the
specification of the spatial correlation functions which the technique uses to compute the spatial
correlations between pairs of observations and between each observation and the grid point
being considered for estimation. These spatial correlation values are then used to compute the
weight of each observation and the grid point snow depth as a spatially weighted average. Spatial
correlation functions of the analysis snow depth increment, defined as the difference between
the observed snow depth and a first guess snow depth estimate, have been used in Optimal
Interpolation (OI), a variant of Kriging, for global (re)analysis of snow depth at world’s major
weather and climate prediction centers (Brasnett, 1999; Brown et al., 2003; de Rosnay et al.,
2012; JMA, 2019) and for blending of satellite with in situ snow depth observations (Liu et al.,
2015; Kongoli et al., 2019; Gan et al., 2021). In those studies, the interpolated variable is the
analysis snow depth increment, for which a short-term weather forecast or a satellite estimate
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represents the first guess, and in this case the correlation functions
describe the spatial correlation structure of the analysis snow depth
increments.

A central assumption of Kriging/OI method is that the embedded
correlation functions represent the spatial correlation structure of the
interpolated variable for the method to be optimal and for the spatial
weights to have realism, in our case, to estimate snow depth with
minimum error and with an accuracy significantly higher than the
simple average. Therefore, fitting observations to the correlation
functions to estimate the function parameters should be an integral
part of Kriging/OI-based analysis.

In operational OI-based snow depth analyses, the spatial
correlations of the analysis snow depth increments are computed
using the family of exponential correlation functions as follows:

C � AC d( )C z( ) (1)
C d( ) � 1 + αd( ) exp −αd( ) (2)

C z( ) � exp − z

h
( )2( ) (3)

where d and z are horizontal and vertical distance between
observations in km and m, respectively, C in Eq. 1 is the analysis
snow depth increment correlation, expressed as a product between the
horizontal C(d) and vertical C(z) distance correlation functions (Eqs 2,
3). The parameters A, α, h are fixed at 1.0, 0.018 km−1, 800 m,
respectively. From these values, the horizontal e-folding scale
parameter α−1 is 55.60 km (computed as 1/0.018), which yields an
effective e-folding snow depth distance, i.e., the horizontal distance at
which the analysis increment correlation drops to e−1, about 120 km.
The vertical e-folding scale parameter h yields the same effective
e-folding snow depth distance of 800 m. A is the amplitude, defined as
the correlation as the separation distance approaches zero. The
amplitude reflects noise from measurement and sampling errors,
and with little noise its value is close to one while noise lowers the
amplitude.

The correlation functions and the scale parameters as above
indicated were suggested by Brasnett (1999). A limitation arises in
cases where the separation distance between observations is much
larger than the horizontal e-folding scale of 120 km. When these
distant observations are used for interpolation, the increment
correlations estimated from Eq. 2 would be close to zero, which
means that the increments can be considered uncorrelated, and the
interpolated value would be estimated close to the simple average.
Kongoli et al. (2019) considered a maximum range of 600 km for
the snow depth analysis to have sufficient coverage of observations
over all of North America. The maximum range needs to be
increased even more than 600 km in other remote areas of the
globe without a significant benefit of using Kriging/OI. In areas
with significant gaps in observations the analysis relies heavily on
the first guess snow depth. Large analysis errors were found over
the mountains of Western North America compared to those over
relatively flat eastern regions, which could in part be the result of
inaccurate modeled vertical correlation scales. Liu et al., 2015 used
Eqs 1–3 and Brasnett (1999) parameter values to compute the
increment correlations for blending satellite-estimated snow depth
with in situ snow depth over Upper Colorado Basin in Western US.
They only considered stations for interpolation with an elevation
difference from the interpolated grid point less than 300 m, in
order to minimize errors that might arise from a much smaller

vertical correlation scale of snow depth than the 800 m model
e-folding scale.

When analysis increment correlation scales were chosen over
2 decades ago there was much less information available for their
estimation. The accumulation of snow depth data since then gives an
opportunity to consider launching statistical assessments of the spatial
snow depth correlations. This study presents a method for computing
regional spatial correlation statistics of observed snow depth and the
daily snow depth increments over a well sampled part of North
America. Specifically, correlations are computed from in situ snow
depth and fitted to correlation functions of horizontal and vertical
distance to estimate the horizontal and vertical scale parameters
including the amplitude. We evaluate how well the exponential
functions used in snow depth analysis represent the correlations of
observations over North America.

In this regard, it is important to make the distinction between the
observed snow depth and the analysis snow depth increment correlation
statistics. In the latter case, the statistics depend on both the specificmodel
used to produce the first guess snow depth and the sampling of snow
depth observations. This study focuses on the correlations of observed
snow depth and the daily snow depth increments, the latter defined as the
difference between observed snow depth on a given day and that from the
previous day. We chose to focus on the correlation statistics of
observations because knowledge of spatial correlations of observations
would be useful for a wider range of hydro-meteorological applications
and employment of improved correlation functions and scale parameters
based on observations has the potential for improving operational snow
analyses.

2 Data and methodology

2.1 Estimation of correlations from
observations

2.1.1 Data collection and the study region
Correlations are computed separately for snow depth and the daily

snow depth increment using snow depth observations from
December, January, and February (DJF) for the years 2012–2016.
For each day the daily snow depth increment is defined as the
difference between the daily value and the value of the previous
day. A snow depth must be defined at each location for both days
for a daily change to be defined for use in computing statistics.

Daily snow depth is obtained from NOAA’s Global Historical
Climatology Network (GHCN)-Daily, available at NOAA’s National
Center for Environmental Information (NCEI, https://www.ncdc.
noaa.gov). The database represents the most comprehensive
collection of US station data, and it includes numerous other
sources such as Environmental Canada and European Climate
Assessment and Dataset. Quality assurance of daily observations
consists of a series of automated tests and semi-automatic checks
by trained validators. Automated tests for daily snow depth change
include statistical tests for the detection of excessively large values, for
unrealistic occurrences when recorded air temperatures are warmer
than a threshold and for daily snowfall which exceed recorded solid
precipitation. Station snowfall/snow depth is tested for false positive
snow, e.g., over warmer regions or seasons for which snow is
impossible, and for anomalously large breaks in the distribution of
snow depth monthly records. For an overview of GHCN-Daily and
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further details on quality checks, the reader is referred to Durre et al.,
2008; Durre et al., 2010, Menne et al., 2012 and to the NCEI website.

For DJF months, correlations are computed over North America
where stations are densest (30°N-55°N). Figure 1 depicts the snow
sampling density of GHCN-Daily stations over the study region. As
shown, the fraction of days sampled over DJF in these years tends to be
higher in snowier regions, as expected, since there is only a report if
there is snow (zero snow depth is not reported). In the snowier regions
such as over high elevation areas of Western US the fraction can be
relatively high, 0.7 to 0.9, although the spatial density of stations is
lower than over south-central and south-eastern US. Over less snowy
regions the fraction is typically 0.1 to 0.2 although station density is
higher. Snow reaching the far southern areas is not uncommon, but
when it happens it does not persist for extended periods due to rapid
melting from a warm climate.

GHCN-Daily weather station density over the study domain is one of
the highest globally, with greater than 100 snow depthmeasuring stations
per 5° grid (Jaffrés, 2019). For the high mountain areas located west of
100° longitude, stations reporting daily snow depth were distributed
evenly througlout the study period across the low (500–1,000 m),
medium (1,000–2,000 m) and high (greater than 2,000 m) elevation
bands. The daily station count was the lowest for stations with
elevation less than 500 m, about 5% of the daily total, reflecting the
much smaller extent of snow cover relative to higher elevation sites. On
average, the number of stations reporting a (positive) daily snow depth
value was 1,700 per day. Daily, seasonal and annual variations in station
count reflected mostly the changes in snow cover distribution. East of the
100° longitude, themean number of stations reporting a snow depth value
was about 2,100 per day. The fluctuations in daily count were larger
compared to the west, driven by more rapid changes in snow cover
distribution.

2.1.2 Technique for computing observed
correlations

Both horizontal and vertical (altitude-dependent) correlations are
considered. The goal of this step is to compute correlations from
observations for a range of horizontal and vertical distances that can
then be fitted to correlation functions of horizontal distance and to
correlation functions of vertical distance. To this end, we divide the
geographical extent of the study depicted in Figure 1 into two sub-
regions, one for computing the horizontal correlations and the other
for computing the vertical correlations, to control for the influence of
one predictor on the other. Additionally, we perform binning of
distances in computing correlations, to average out the
heterogeneity in spatial dependence of correlation on separation
distance between irregularly spaced stations.

Horizontal correlation statistics are computed using daily data
from 30°N-55°N, 100°W-65°W, east of the greatest elevation changes
over North America, with the assumption that elevational changes
over this region have negligible influence on horizontal correlations.
Vertical correlation statistics are computed using daily data from
30°N-55°N and west of 100°W, where elevation changes are greatest.
As described below, to compute vertical correlation statistics, we
developed a method that minimizes the influence of horizontal
separation on vertical correlations.

For computing binned horizontal correlations from unevenly
distributed stations, we resample observations into a grid in which
the horizontal distance between observations is measured by the
distance between centers of their grid boxes. Inspection of the daily
data revealed that 0.1° by 0.1° spatial grid represents a fine spatial
resolution of the daily data over this sub-region, in that most grid
boxes of this size there is only one observation. In the few grid squares
with more than one observation, we use only the first one for

FIGURE 1
The study region (30°N-55°N). Depicted is the fraction of days in DJF months for the GHCN stations over 2012–2016 with snow-depth sampling.
Sampling = 1 if all days are sampled.
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consistency. Squares with no stations are not filled. Using station data
on this fine grid allows the binned correlations to be more easily
computed. Since correlation scales are much larger than the grid scale,
any uncertainty associated with this method should be minimal. A
coarse grid box with a size comparable to that of the e-folding scale
would fail to detect the intrinsic correlation structure of snow depth.
That could be the case, for example, if this technique is applied over a
region with sparse observations.

Horizontal correlations are computed with distance for bins 10 km
wide, which is approximately the size of each grid square, with
distances of 0 < d ≤ 10 km, . . ., 490 km < d ≤ 500 km. The lag
distances for which correlations (referred to hereafter as “lag
correlations”) are computed are 5, 15, . . .. 495 km, the distances
between the mid points of the 10 km wide bins. The horizontal
scales computed are isotropic, since it would be difficult to get
greater detail from computations over this relatively small region.
The computational procedure is as follows: For a square grid box with
an observation present (referred to as “the base”), lag correlations are

computed by looping through the grid squares with observations
present, to find all same-day pairs of observations with the same lag
distance from the base. Next, these pairs of observations are pooled to
compute one lag correlation value for each lag distance from the base.
This process is repeated to compute lag correlations for all the grid
boxes with observations present. Note that only lag correlations are
computed, and only when lag data, i.e., grid squares with observations,
are available. These lag correlations are later fit to lag-correlation
equations to estimate scale parameters, including the e-folding scale
and the correlation as the lag approaches zero. The fitting to equations
is discussed in the next section.

The method for computing lag correlations described above is
similar to the usual way the empirical semi-variogram is modelled,
whereby smoothing of the measured semi-variances is achieved by the
binning of irregular distances between observations into distance
classes of equal width and pooling of the data with the same lag
distance to compute semi-variances. This averaging process which we
chose to apply is described in Webster and Oliver (2007), Chapter 4).
Another way of computing lag correlations (which we did not use) is
the following: correlations are computed first, between a station, in our
case, a base grid box, and each of the stations/grid boxes with
observations present. Next, these individual correlations with the
same lag distance are averaged. This method is suggested in
Thiébaux and Pedder (1987), Chapter 4). When scales are assumed
isotropic as in our study, pooling of the surrounding observations
from a base with the same lag distance provides larger correlation
samples than those for computing individual correlations, especially
over less snowy regions. In these regions, such as in the southern US,
stations have shorter records and samples with station observations

FIGURE 2
Snow depth correlations as a function of horizontal separation distance. The observed correlations, Corr, and the indicated model fits are shown.

TABLE 1 The scale parameter (α−1), amplitude (A), effective e-folding distance
(EFD), and root-mean-square error (RSME) for three fits to horizontal snow-depth
correlations. All units are in km except for the dimensionless amplitude.

Scale Amplitude EFD RMSE

Fit1 137.5 1.00a 295.6 0.13

Fit2 200.0 0.72 430.1 0.03

Fit3 431.4 0.68 431.4 0.04

aFixed a priori.
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are smaller, and we do not exclude these stations from computations
unless the sample size for computing binned correlations is less than
20, which we use as the minimum threshold for samples to be
considered for analysis.

For the vertical lag correlations, data are compared for adjacent
grid squares: there are too few stations in one grid box at different
elevations to compute vertical correlations over same grid box, so it is
necessary to use stations separated by one grid square. As with the
horizontal lag correlations, the vertical lag correlations are computed
using only one station observation per grid square. Several
experiments are performed to find out how much horizontal
separation is needed in the stations to compute vertical
correlations. Here we use data within 0.1° of a central grid in
computations. This horizontal separation has negligible effect on
vertical correlations since it is much smaller than the horizontal
scales. Therefore, consideration of adjacent grid squares of this size
is a reasonable strategy in computing vertical correlations. Vertical
distances that correlations are computed for are bins of 100 m width.
Distances considered are 0 < d ≤ 100 m, . . ., 4,900 m < d ≤ 5,000 m,
and lag distances are 50, 150, . . ., 4,950 m. As with the horizontal
correlations, all distances within a given bin are treated as the same for
computing the fits.

Lagged vertical correlations from a base grid box with observations
are computed by searching only over the adjacent grid squares for all
pairs of observations with same vertical lag distance from that base.
Next, the data are pooled to compute one vertical lag correlation value
from the base. In a similar fashion, the search continues over all grid
squares with observations.

2.2 Estimation of scale parameters

The binned correlation values computed for observed snow depth
and the daily snow depth increment are fit to Eqs 2, 3 modified to
estimate the amplitude A and the correlation scale α from the fits. Note
that Eq. 3 can also be expressed using the correlation scale α instead of
the e-folding scale h, since α is equal to h−1. Scales are assumed to be
fixed parameters for the total area under consideration.

Three scenarios are evaluated by comparing how well the selected
equation represents the observed correlation with (vertical or
horizontal) distance: the autoregressive correlation function (Eq. 2)
with an amplitude equal to 1.0, the autoregressive correlation function
(Eq. 2) with an amplitude estimated from the fit to observed
correlations, and the exponential correlation function (Eq. 3) with
an amplitude estimated from the fit to observed correlations. In each
scenario, α is estimated from the fit. The three equations are fit to four
separate observed correlations: Observed horizonal and vertical
correlations for the snow depth and for the daily snow depth
increment. Note that each of the correlation equations are fit to the
same observational set, to intercompare the equation fits for each of
the four relationships. The results are discussed in the next section. In
this section we describe the correlation functions and the
mathematical transformations necessary for carrying out numerical
computations to estimate the scale parameters.

The observed correlations with distance are denoted Co(d). For
each of the three equations tested the equation-fit correlation with
distance is Ck(d), for k = 1, 2, 3. Each is a fit to the same observations.
Equations for each of the k fits are solved to minimize the mean-

FIGURE 3
Snow depth correlations as a function of vertical separation distance. The observed correlations, Corr, and the indicated model fits are shown.
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squared error (MSE) of the fit averaged over all the binned distances.
That is done by differentiating the mean-squared difference with
respect to the fitting parameters and setting that to zero, for example

z

zαk
〈 Ck − Co( )2〉 � 0. (4)

Here the angle brackets denote averaging. If the function fit uses only
an e-folding scale, Sk, the parameter is αk � S−1k . For two of the fits
there is also an amplitude parameter, Ak. In those cases, both
parameters are estimated to minimize the MSE of the fit.

The first fit considered, referred to as Fit1, is the one used by
Brasnett (1999), to model horizontal analysis snow depth increment
correlations using an amplitude equal to 1.0,

C1 � 1 + dα1( ) exp −dα1( ). (5)
The function is a second-order autoregressive function also

suggested for analysis of a background field (Thiébaux 1985; Daley
1991). Substituting Ck in Eq. 4 with the right-hand expression of Eq. 5,
taking the first derivate of the MSE of Eq. 4 with respect to α1 and
setting it to zero yields

〈 1 + α1d( )d2 exp −2α1d( )〉 − 〈Cod
2 exp −α1d( )〉 � 0. (6)

A solution for Eq. 6 is found numerically to find the parameter α1
that satisfies the equation within a low tolerance.

The second function considered, referred to as Fit2, is a modified
version of Fit1 and the same as Eq. 1,

C2 � A2 1 + dα2( ) exp −dα2( ). (7)
The change from Fit1 is that here an amplitude, A2, is used to

better estimate the correlation for short distances. Substituting Ck in
Eq. 4 with the right-hand expression of Eq. 7, taking the first derivate
of the MSE of Eq. 4 with respect to α2 and setting it to zero yields

A2〈 1 + α2d( )d2 exp −2α2d( )〉 − 〈Cod
2 exp −α2d( )〉 � 0. (8)

Similarly, taking the first derivative of theMSE of Eq 4 with respect
to A2 and setting it to zero yields

A2〈 1 + α2d( )2 exp −2α2d( )〉 − 〈Co 1 + α2( ) exp −α2d( )〉 � 0. (9)
Combining Equations 8, 9 cancels out A2, and we can write

〈Co 1 + α2( ) exp −α2d( )〉
〈 1 + α2d( )2 exp −2α2d( )〉 −

〈Cod2 exp −α2d( )〉
〈 1 + α2d( )d2 exp −2α2d( )〉 � 0. (10)

Equation 10 is solved for α2 using the same iterative numerical
method used to solve Eq. 8, to yield the e-folding scale. Using that scale
the amplitudeA2 is found using Eq. 9. Note that for the first two fits the
scale parameter appears in the exponent and as a multiplier. For both
the effective e-folding scale is roughly 2.15S, where the fitting distance
scale S � α−1.

The third function fit considered, referred to as Fit3, uses a
Gaussian function similar to Eq. 2,

C3 � A3 exp − dα3( )2( ). (11)
This is the Gaussian correlation function also used by Reynolds

and Smith (1994). For this estimate the e-folding distance is S3 � α−13 .
For Fit3 the error minimization, i.e., substitution in Eq. 4 ofCkwith the
right hand expression of Eq. 11, taking the derivative of the modified
Eq. 5 with respect to α3 and A3 and setting the derivatives to zero,
yields the equations

〈Cod
2 exp −d2α23( )〉 − A3〈d2 exp −2d2α23( )〉 � 0, (12)

〈Co exp −d2α23( )〉 − A3〈exp −2d2α23( )〉 � 0. (13)
These equations are combined to cancel out A3, which allow the

e-folding scale to be found using the iterative numerical method to
solve for

〈Cod
2 exp −d2α23( )〉〈exp −2d2α23( )〉

− 〈d2 exp −2d2α23( )〉〈Co exp −d2α23( )〉. (14)

Using the numerical estimate of the e-folding scale α3, the
amplitude A3 is found using Equation 13.

3 Results and discussion

3.1 Snow depth correlations

Horizontal correlations as a function of distance for
observations drop below e−1 at roughly 335 km (Figure 2). Note
that for the first bin centered on 5 km the observed correlation is
well below 1. Without noise the correlations approach 1 as the
distance approaches 0, and the decrease below one usually arises
from random errors in measurements and under sampling. A
discussion on these errors and their influence on the results is
provided below, in Section “Discussion on the Assumptions and
their Impact on the Results”.

Model fits of horizontal correlations are also shown, and the
fitted parameters are listed in Table 1. Because it does not have an
amplitude parameter, Fit1 has the largest root-mean-square error
(RMSE) compared to the measured correlations. Fit1 also has a
shorter effective e-folding scale than the others: about 296 km
compared to 430 km and 431 km for Fit2 and Fit3, respectively.
The Fit2 function is similar to the Fit1 function, but because it
includes an amplitude estimate it gives a much better fit. The
Gaussian equation, Fit3, also gives a good representation of the
measured correlations with an effective e-folding scale and RMSE
similar to Fit2. The results discussed here suggest that snow depth
data over a large horizontal distance may be used to influence snow
depth interpolation to a point.

The Fit1 estimate is distorted by its requirement to approach 1, as the lag
distance approaches 0. Both Fit2 and Fit3 give estimates of the amplitude at
roughly 0.7. As discussed byThiébaux andPedder (1987), the amplitude can
be used to estimate the noise/signal variance ratio by

ϵ2 � 1 − A

A
. (15)

For Fit2 and Fit3, the noise/signal variance ratio is about 0.43
(i.e., the signal/noise variance >2).

TABLE 2 The scale parameter (α−1), amplitude A), effective e-folding distance
(EFD), and root-mean-square error (RSME) for three fits to vertical snow depth
correlations. All units are in m except for the dimensionless amplitude.

Scale Amplitude EFD RMSE

Fit1 198.8 1.00a 427.5 0.14

Fit2 197.6 1.01 424.9 0.14

Fit3 461.1 0.94 461.1 0.12

aFixed a priori.
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For vertical correlations of snow depth, we found that after bin
seven correlations sometimes become negative and values can be
erratic. Also, correlations could not be computed for all of the
higher bin numbers. This could be from data noise or decorrelation
over too large a vertical distance, which, in either case, would
suggest that data with that large separation distance are likely not
reliable for interpolation. Therefore, we use only the first nine bins
in the fits discussed here, giving a vertical range of 900 m.

The vertical correlations are fit to the same three equations and the
observed and fit correlations are evaluated (Figure 3). Statistics for the
fits are listed in Table 2. Both Fit1 and Fit2 give similar results because
the correlation for the first lag-distance bin is close to 1. Fit3 gives a
slightly better fit to the vertical correlations. Fit3 is also the fit used by
Brasnett (1999) for vertical correlations, with an effective e-folding
distance for the analysis snow depth increment of 800 m. However,
here the effective vertical e-folding distance for snow depth is

substantially smaller, 461 m for Fit3, suggesting more vertical
variation in observed snow depth than an analysis increment. For
the daily snow depth increment, discussed later, the vertical scale is
also larger than that for snow depth. Note that there is also a high
estimate signal/noise variance ratio from the snow depth vertical fits.

3.2 Daily snow depth increment correlations

For horizontal daily snow depth increment statistics, Fit1 is clearly
inferior to the others (Figure 4), because of the amplitude constraint. The
amplitude is lower than the amplitude for snow depth because daily changes
include noise from the previous day and the day of interest (Table 3). Since
the noise at both times is independent the daily change noise variance is
about twice the noise variance of snowdepth. FromEquation 15 andTable 1
the snow depth noise variance is estimated to be about 0.4, while using
Table 3 values the daily snow depth increment noise variance is estimated to
be close to 0.9. Often the length scale for daily increments is larger than for
the full data, but for snow depth the horizontal scales are slightly smaller for
the daily increments. This suggests that day-to-day changes can be large and
inconsistent between locations with large horizontal separation distances.
However, the fitted horizontal e-folding scales for daily snow depth
increments are still large, 366 and 378 km for Fit2 and Fit3, respectively
(Table 3), suggesting that both snow depth and the daily increments over a
large horizontal distance may be used for interpolation.

For vertical separations (Figure 5) the fits are also better using
Fit2 and Fit3 because of the amplitude parameter. The vertical scale for

FIGURE 4
Daily snow depth increment correlations as a function of horizontal separation distance. The observed correlations, Corr, and the indicatedmodel fits are
shown.

TABLE 3 The scale parameter (α−1), amplitude A), effective e-folding distance
(EFD), and root-mean-square error (RSME) for three fits to horizontal daily snow
depth increment correlations. All units are km except for the dimensionless
amplitude.

Scale Amplitude EFD RMSE

Fit1 84.6 1.00a 181.9 0.18

Fit2 170.2 0.54 365.9 0.02

Fit3 378.0 0.51 378.0 0.03

aFixed atablef priori.
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the daily snow depth increment is much larger than for snow depth,
1,167 m (Table 4) versus 461 m (Table 2) for Fit3, indicating relatively
little day-to-day snow depth variations over large vertical separations.
However, the noise variance for the vertical daily variations is much
larger than for vertical snow depth. Some of that greater noise may
reflect day-to-day differences in blowing snow, snow sliding down
mountain sides, or melting at different mountain locations. The larger
vertical scales in daily variations suggest that most of the time there is
day-to-day stability between different altitudes, while the much larger
noise suggests that there can be events that cause large changes. Note
also that the Brasnett (1999) snow depth increment vertical scale
(800 m) is larger than that of the observed snow depth (461 m)
estimated from our study. These results suggest that over mountain
terrain analysis of the increments may be better than the interpolation
of snow depth data.

3.3 Assumptions and their impact on the
results

The aim of the study was to estimate regional horizontal and vertical
correlation scales from snow depth observations over North America for
use in Kriging/OI. Scales were assumed to be fixed parameters over the
selected region and are considered for the winter period only. The study
showed that these assumptions are reasonable using snow depth data
fromGHCN-Daily. The distinct pattern of lag correlations of observations
over the selected region is indicative of the large scale structure of snow
depth spatial variability. The exponential correlation functions of
horizontal distance and elevation used in operational snow depth
analysis were found to be a good fit to the observed lag correlations.

It was necessary to perform two separate analyses: an analysis over the
eastern regions with relatively flat topography to estimate horizontal scales
and over the western regions characterized by high mountain terrain to
estimate vertical scales. Fitting observed correlations using horizontal
distance and elevation as predictors simultaneously is a valid
method—a correlation function such as this can be used for
interpolation - but the data are not dense enough for simultaneous
estimation of horizontal and vertical scales. Using these data errors can
occur in situations where horizontal correlations are estimated over
mountain environments without considering elevation. Our study
found a large effect of elevation on observed snow depth correlations
over the high mountain regions of North America: On average, the
observed snow-depth correlation e-folding vertical distance is 461m.

FIGURE 5
Daily snow depth increment correlations as a function of vertical separation distance. The observed correlations, Corr, and the indicated model fits are
shown.

TABLE 4 The scale parameter (α−1), amplitude A), effective e-folding distance
(EFD), and root-mean-square error (RSME) for three fits to vertical daily snow
depth increment correlations. All units are m except for the dimensionless
amplitude.

Scale Amplitude EFD RMSE

Fit1 330.4 1.00a 710.4 0.18

Fit2 543.3 0.62 1,168.1 0.06

Fit3 1,166.7 0.59 1,166.7 0.06

aFixed a priori.
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Therefore, horizontal correlation scales estimated over areas with steep
elevation gradients could be severely underestimated.

The amplitude is a useful parameter for Kriging/OI. An amplitude
smaller than one indicates noise in the data. The noise variance is
computed from the amplitude via Eq. 15 and when incorporated, it
can lower the weight of local observations in the analysis because of
their noise. This can result in a smoother interpolation. If noise is not
considered, then the analysis may indicate artificial variations caused
by noise rather than by signal.

The horizontal amplitude estimate over the eastern regions is about
0.7, indicating a signal/noise variance of about 2 (Eq. 15). The amplitude
estimate for vertical distance correlations over the western regions was
found to be close to 1, indicating amuch higher signal/noise variance.With
perfect data and full sampling, the two amplitudes should be the same,
since in theory they are a function of the noise/signal variance ratio for the
same data. In practice, the amount of sampling and the compromises
necessary to make practical computations causes differences. Using the
smaller estimate is recommended both because it is based on more data
over a larger area, and because it represents a higher level of noise and is
therefore less likely to allow noise to contaminate the analysis. The study
found a smaller amplitude, about 0.5–0.6 for the daily snow depth
increments, yielding a signal/noise variance ratio of about 1. This
means that more daily increment observations are needed to reduce
the noise and to produce more spatially detailed interpolations of
increments. However, use of the daily increments especially over
mountain environments can potentially produce a better analysis than
that of full snow depth even in the presence of a higher level of noise
because of the large correlation scales of the increments and incorporation
of temporal information into the analysis.

For horizontal correlations of both full snow depth and daily
increments, the horizontal length scales are an order of magnitude
larger than the spatial grid scale of 10 km. Thus, sub-grid scale
variability should have negligible influence on the measured large
scale structure. However, the binned vertical correlations and the
vertical scale estimates are less certain due to lower sampling available
for their estimates. The data are not sufficient for resolving vertical
scales less than the bin width of 100 m, and the vertical statistics
should be thought of as a rougher estimate than the horizontal
statistics. Because of the limited sampling, we used the data
available to compute only one set of statistics and scale parameters
for the region. Exploration of spatially and seasonally adjusted
correlation scales was also considered initially but was abandoned
because of the uneven sampling density. Future studies using better
data and methods may be able to improve correlation statistics,
especially for regions with large changes in elevation.

4 Conclusion

Measurements of horizontal and vertical DJF snow depth and daily
snow depth increment correlation scales over a densely-sampled part of
NorthAmerica are estimated from the fit to exponential equations used to
represent correlations of analysis snow depth increments.

The results of our evaluation indicate large horizontal correlation scales
formeasured snowdepth and the daily snowdepth increments estimated at
about 430 km and 370 km, respectively, when the fit to equations includes
an amplitude estimate, which is generally less than 1. These large horizontal
scales indicate that in regions with limited topography snow depth and its
daily variations may be better analyzed using data with greater horizontal

separation. The horizontal Gaussian estimate of correlation (Fit3) gives
estimates comparable to that of autoregressive function (Fit2).

Correlations due to vertical separation distances are harder to
measure due to lower sampling over mountainous regions. However,
we showed here that vertical correlation equations can be fit to data from
stations with minimal horizontal separation. All the three fits to vertical
correlations are similar, although the Gaussian estimate (Fit3) is slightly
better. The measured and fitted vertical correlation scales for snow depth
and much smaller than for daily snow depth increments suggesting that
analysis based on interpolation of snow depth in regions with large
topographic changes requires more data tomaintain the same accuracy. It
may be possible to use a satellite-based proxy, tuned and bias adjusted
against in situ data, to aid analysis in mountainous regions when using
snow depth. Without additional data, the analysis will have larger
uncertainty in those regions. The Brasnett (1999) vertical correlation
scale for snow depth analysis increments of 800 m is also larger than the
vertical scale of observed snow depth of 461 m. This suggests that over
regions with large changes in elevation analysis of the increments may
give better results with sparse data. Analysis of the daily increments from
the analysis for the previous day can be useful since it has large scales,
especially the vertical scale, and because it includes temporal information.
Some testing may be needed to show which type of analysis is best for a
given application.

Estimating the amplitude reduces the fitting errors, avoids
overestimation of the correlation at short separation distances, and
allows estimation of the noise/signal variance ratio for use in optimal
interpolation.

Our results indicate potential utility for operational snow analysis. For
example, the persistence of large horizontal scales of observations and the
daily increments in the scenarios considered imply that horizontal
increment analysis scales larger than 120 km can be tested for improved
predictions especially over remote areas, or assessments such as this can be
performed to estimate scales for a specific analysis application.
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