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The Tengchong Cenozoic volcanic field lies in SE margin of the Tibetan Plateau. The
basalts of the Tengchong field exhibit evident spatial-temporal variations, but
consensus on their meaning has not been reached yet. In this study, we
collected basalts from western, central and eastern areas in the Tengchong
volcanic field and measured the whole-rock and olivine major and trace
elements of basalts. Tengchong basalts exhibit remarkable chemical and isotopic
diversity, showing a strong correlation with eruption locations and ages. Specifically,
basalts in the western and eastern areas (formed at 7.2–2.8 Ma) are characterized by
high 87Sr/86Sr and low 3He/4He ratios, while those in the central area (formed at
0.6–0.02 Ma) feature low 87Sr/86Sr and high 3He/4He ratios. Based on the
temperature- and pressure-dependent elemental partition coefficients, this
phenomenon is interpreted as mainly caused by the difference in lithospheric
thickness among these areas. On the one hand, the estimated primary magmas
in the eastern and western areas show higher SiO2, Na2O, (La/Sm)N, Hf/Lu and Ba/Zr
ratios than those in the central area. On the other hand, the Ni contents in olivine
phenocrysts are higher in the western and eastern areas than in the central area. As
different amounts of extension result in different degrees of decompression of the
asthenosphere, finally influencing the compositional variation of magmas, these
results indicate that the lithosphere in the eastern and western areas is thicker than
that in the central area. In addition, basalts erupted in the eastern and western areas
are older than those in the central area, suggesting lithospheric thinning. We propose
that lithospheric extension due to slab rollback may have caused lithospheric
thinning. In addition, according to the different deformation modes of the crust
and lithospheric mantle, our study supports mantle-crust decoupling south of ~26°N
in SE margin of the Tibetan Plateau.
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1 Introduction

Continental basaltic magmatism with temporal-spatial variation is common, and this
magmatism can provide valuable insights into the characteristics of the lithospheric mantle and
regional tectonic evolution. Continental basalts usually show large variations in compositions
and isotopes, which is typically ascribed to mantle heterogeneity. Four models have been
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FIGURE 1
Tectonic settings around the Tengchong volcanic field. (A) Major tectonic units around the Tengchong volcanic field. The red triangles indicate
Quaternary volcanoes in Myanmar and Yunnan, China. The volcano data are from Lee et al. (2016). The black lines delineate the major faults in and near the
Tibetan Plateau (Mo et al., 2006). The red rectangle denotes the study area. (B) Location of the Tengchong volcanic field and distribution of convergent
boundaries and faults in SE margin of the Tibetan Plateau (modified from Zhou et al., 2012). (C) Distribution of magmatic rocks from different periods in
the Tengchong volcanic field (modified from Cheng et al., 2020). The gray ellipses mark the areas where representative samples were collected. (D) Cross-
section of line A‒B in plot (C), illustrating the variation in lithospheric thickness beneath the Tengchong area (depth of LAB is fromHu et al. (2012), Zhang et al.
(2015); Yang et al. (2017)).
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proposed to interpret these continental basalt variations. The first
model is partial melting of the asthenosphere owing to the thinning
and rifting of the continental lithosphere (White, et al., 1987;
McKenzie and Bickle, 1988; Tang et al., 2006; Acocella, 2014;
Zhang et al., 2021). The second model is decompression melting
caused by lithospheric mantle removal and asthenospheric upwelling
(Hoernle et al., 2006; Xu et al., 2008; Timm et al., 2009; Zhu et al.,
2012). The third model is buoyant upwellings driven by deep
subducted slabs (Davies and Bunge, 2006; Chen et al., 2017;
Kuritani et al., 2019; Xu et al., 2021). The fourth model is edge-
driven convection caused by lithospheric edge associated with plate
movement (King and Ritsema, 2000; Dai et al., 2021).

The eastward subduction of the Indian plate and the following
India-Asia collision at 55 Ma has resulted in volcanism (8 Ma to
present) in SE margin of the Tibetan Plateau. This process results
in partial melting of metasomatized mantle sources, and erupted calc-
alkaline basalts in the Tengchong terrane (Zhu et al., 1983; Guo et al.,
2015). The Tengchong terrane is thought to be the SE extension of the
Lhasa terrane (Mo et al., 2006; Figure 1A). The Tengchong volcanic
field is located within a pull-apart basin due to WNW‒NW extension
and NNE‒NE compression (Wang et al., 2007; Zhou et al., 2012)
(Figure 1). The volcanic rocks in the Tengchong volcanic field show
evident temporal-spatial variation. The early erupted basalts
(8–2.8 Ma) are mainly distributed in the eastern and western
margins of the basin, while basalts that erupted later (0.6–0.02 Ma)
are mainly located in the central basin (Cheng et al., 2018). Two main
factors are employed to interpret this variation. On the one hand,
chemical and geophysical studies suggest that volcanism is closely
related to the underthrusting Indian plate (Zhu et al., 1983; Guo et al.,
2015; Cheng et al., 2020), and the different degrees of partial melting of
metasomatized asthenospheric mantle may result in the temporal-
spatial variations of composition and isotope. On the other hand, local
tectonic investigation indicates that the Tengchong volcanism was
controlled by strong tectonism in SE margin of the Tibetan Plateau
(Wang and Burchfiel, 1997; Wang et al., 2007; Wang et al., 2008). The
clockwise rotation of Tengchong terrane and strike-slip motion of
Sagaing and Gaoligong Faults induced E–W extension (Figure 1B).
The extension results in continental rifting and may have led to the
obvious geochemical diversity (87Sr/86Sr ranging from 0.7053 to
0.7089) in the Tengchong volcanic field (Wang and Burchfiel,
1997; Cheng et al., 2018; Tian et al., 2018).

Researchers have considered both the subducted slab and continental
extension. The subducted slab controlling Tengchong volcanism is
revealed by enriched chemical and isotopic signatures (Zhu et al.,
1983; Chen et al., 2002; Guo et al., 2015; Cheng et al., 2020). The
effect of continental extension on Tengchong volcanism is not well
understood (Zhou et al., 2012; Duan et al., 2019). Tengchong basalts
feature calc-alkaline characteristics, which can be formed in intraplate
areas with continental extension (e.g., Thompson and Gibson, 1994;
Hawkesworth et al., 1995; Depaolo and Daley, 2000; Beier et al., 2012).
These kinds of calc-alkaline basalts are usually characterized by
composition and isotope variations in terms of temporal-spatial
distribution. Continental extension usually occurs in rifts, and basalts
along rift axes are more sodic and less radioactive than those along rift
margins (Thompson and Gibson, 1994). This phenomenon has already
been observed in the Basin and Range province of the southwestern
United States of America, where the generation of calc-alkaline basalts is
closely related to lithospheric extension (Hart et al., 1989; Hawkesworth
et al., 1995; Özdemir and Güleç, 2014).

Lithospheric extension results in lithospheric thinning, the process
of which controls the composition and isotope variations (Thompson
and Gibson, 1994; Hawkesworth et al., 1995; Depaolo and Daley, 2000;
Beier et al., 2012). Lithospheric thinning can be detected by several
methods. Geophysical studies show that the lithosphere thickness in
Tenghcong volcanic field is approximately 80–90 km, and lithosphere
in the western and eastern areas is 10 km thicker than that in the
central area (Hu et al., 2012; Zhang et al., 2015; Yang et al., 2017). The
lithosphere can interfere with the upwelling of hot melt. Lithospheric
thinning can form a decompression environment, causing partial
melting of the asthenospheric mantle. The variation in lithospheric
thickness results in different degrees of decompression, leading to
varying extents of partial melting below the
lithosphere–asthenosphere boundary. In addition, lithospheric
thickness can also affect the temperature- and pressure-dependent
elemental partition coefficients (Daley and DePaolo, 1992; Ellam,
1992; Beier et al., 2012; Gale et al., 2014; Niu, 2021). Previous
studies have found that the lithospheric thickness and
compositional heterogeneity of subcontinental lithospheric mantle
play important roles in the composition of generated mafic
magmas and olivine (Zhang and guo, 2016; Sun et al., 2017; Guo
et al., 2020). The major element contents of basalt and olivine are
sensitive to lithospheric thickness, while radioactive isotopes are
sensitive to the isotopic composition of the lithosphere. The
erupted basalts span the entire period of extension, from the
earliest lithospheric extension with the formation of late Miocene
basalts, to the present rift basin with the formation of Quaternary
basalts (Wang and Burchfiel, 1997). Therefore, analyzing the
compositions of basalt and olivine in different periods is helpful for
understanding the process of lithospheric thinning in the Tengchong
volcanic field.

The Tengchong basalts are suitable for studying extension-related
volcanism for two reasons. First, the Tengchong basalts span the entire
period of major extension (Wang et al., 2007; Wang et al., 2008).
Second, the lithospheric mantle is geochemically distinct from the
underlying asthenospheric mantle (Chen et al., 2022). To clarify the
effect of continental extension on Tengchong volcanism, we collected
basalts from the eastern, central and western areas of the Tengchong
volcanic field and analyzed the major and trace elements and Sr–Nd
isotopes of basalt, as well as the major and trace elements of olivine.
This study may also provide new insights into the origin of the
Tengchong volcano and mantle dynamics process of SE margin of
the Tibetan Plateau in the Cenozoic.

2 Geological setting

The Tengchong volcanic field is located between the Yangtze plate
and Burma Central Lowlands (Figure 1B). Tengchong volcanic field is
a monogenic volcanic field, and more than 90 individual cones are
recognized (Zhou et al., 2012; Guo et al., 2015). The volcanism in
Tengchong field produced approximately 25 craters and associated
lava flows, pyroclastic deposits and well-preserved cinder cones
(Huangfu and Jiang, 2000). The Tengchong field is within a NE‒
NNE-trending rift basin, which mainly contains left-lateral faults
(Wang et al., 2007; Wang et al., 2008). The distribution of volcanic
rock is closely related to the faults (Guo et al., 2015), and volcanic
rocks of different types were mainly formed in four periods, i.e., (1)
late Miocene-Pliocene basalt, (2) early Pleistocene trachyandesites and
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dacites, (3) late Pleistocene basalts and trachyandesites, and (4)
Holocene basaltic trachyandesites and trachyandesites (Cong et al.,
1994; Cheng et al., 2020).

3 Samples and analytical methods

3.1 Samples

Basalts and trachybasalts are mainly distributed in the eastern,
western and central areas of the rift basin. A total of 13 samples were
collected at the following specific locations: Mangbang, Tuantian,
Mengnong, Sudian and Qushi (Figures 1B, Figures 2A–C). All
samples were collected from quarries and road cuts, and the
samples were of fresh quality. Under microscopic observation, the
basalts and trachybasalts are characterized by weak to moderate
porphyritic texture (Figures 2D–F), with ~4–6 vol.% olivine,
~3–8 vol.% clinopyroxene, and ~6–10 vol.% plagioclase. The
diameters of most olivines range from 100 to 500 μm.

3.2Whole-rockmajor and trace elements and
Sr-Nd isotopes

Whole-rock major and trace element analyses were carried out at
the Key Laboratory of Crustal Dynamics, China Earthquake
Administration. Sr and Nd isotopic ratios were analyzed at the
Institute of Geochemistry, Chinese Academy of Sciences. The
procedure to obtain the whole-rock major and trace element and
Sr–Nd isotope data followed Guo et al. (2015). Before conducting the

three types of experiments, the samples were first powdered. The
major element contents of basalts were obtained by measuring their
loss on ignition (LOI) and oxides. The LOI of the samples was
determined after heating the basalt powders at a temperature of
1,000°C. Subsequently, the powders were transformed into fused
disks, and major element oxides were analyzed by using Axios-
Minerals sequential X-ray fluorescence (XRF) on fused disks. The
trace element contents of basalt were examined using inductively
coupled plasma–mass spectrometry (ICP–MS) after 4 days of
HF+HNO3 digestion. Analytical precisions are generally better than
1% relative for major elements and 5% relative for trace elements. Sr
and Nd isotopic ratios were analyzed by using a Neptune Plus mass
spectrometer after HF + HNO3 + HClO4 digestion. The mass
fractionation corrections for Sr and Nd isotope ratios were based
on 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. The
analyzed international standard NBS987 had an 86Sr/88Sr ratio of
0.710245 ± 0.000016 (n = 5), and standard JNdi-1 had a143Nd/
144Nd ratio of 0.512117 ± 0.000012 (n = 5), which implies good
instrument status and accurate testing results.

3.3 Olivine major and trace elements

Major element analysis of olivines was conducted at the East China
Institute of Technology. The olivine phenocrysts were manually
picked, embedded in epoxy resin and polished on one side for
subsequent major and trace element analyses. The major elements
of olivine were measured by using a JEOL JXA-8100 electron probe
microanalyzer (EPMA). The parameter settings for the experiment
were as follows: an acceleration voltage of 15 kV, a beam current of

FIGURE 2
Photographs of the Tengchong basalts in the field and photomicrographs under cross-polarized light. (A) Columnar jointed basalt in Sudian County in
the western area. (B) Columnar jointed basalt in Qushi County in the central area. (C) Columnar jointed basalt in Tuantian County in the eastern area. (D)
Euhedral olivine (Ol) phenocrysts in a groundmass containing lath-shaped plagioclase (Pl), clinopyroxene (Cpx) phenocrysts distributed between plagioclase
grains, and Fe-Ti oxides distributed in olivine and between plagioclase grains. This photomicrograph is of trachybasalt sample TC20037. (E) Euhedral
olivine (Ol) phenocrysts in a groundmass containing lath-shaped plagioclases in trachybasalt sample TC20050. (F) Olivine and clinopyroxene phenocrysts
surrounded by lath-shaped plagioclases in basalt sample TC20042.
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20 nA, and a beam diameter of 5 μm. During the measurements, the
peak counting time was set to 20 s for major elements (Si, Fe and Mg)
and 90 s for minor elements (Mn, Ni, Cr, Ca and Al). After the
measurement of every five olivine phenocrysts, an internal olivine
standard (MongOl; Batanova et al., 2019) was measured to monitor
instrumental drift. According to the analyzed standard and
recommended values, the analytical uncertainty is less than 1% for
major elements and 5% for minor elements. Olivine major elements
are presented in Supplementary Table S2 in Supplementary
Information (S1).

Trace elements of olivine were measured by an ELEMENT XR
(Thermo Fisher Scientific) inductively coupled plasma–sector
field–mass spectrometer coupled with a 193-nm (ArF) Resonetics
RESOlution M-50 laser ablation system in the State Key Laboratory of
Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences. The detailed experimental procedure and data
reduction strategy are described in Zhang et al. (2019). To analyze
olivine trace elements, we set the machine parameters to a laser beam
size of 45 μm with a repetition rate of 5 Hz and an energy density of
~4 J cm−2. In addition, the time for the blank collection was 20 s, and
the time for signal detection was 30 s. Si was selected as the internal
standard element before EPMA analysis. After the measurement of
every seven olivine phenocrysts, three United States Geological Survey
(USGS) reference glasses, namely, BCR-2G, BHVO-2G and GSD-1G,
were examined to correct for time-dependent drift. The measured
values of reference glasses agree with the recommended values or the
values of previous studies, and the analytical precision was better than
10% for most elements. Olivine trace elements are presented in
Supplementary Table S2 in the Supplementary Information (S1).

4 Results

4.1 Whole-rock major and trace elements

Tengchong basalts show relatively low SiO2 (47.6–52.1 wt.%) and
moderate MgO (4.6–9.1 wt.%) and K2O+Na2O (4.2–6.3 wt.%)

(Supplementary Table S1 in Supplementary Information (S1)),
which plot in the fields of basalts and trachybasalts on the total
alkali-silica diagram (Figure 3A). The basalts from the western and
eastern areas are slightly more alkaline than those from the central
area (Figure 3).

As shown in whole-rock major and trace element covariation
diagrams (Figure 4), the Tengchong basalts show negative
correlations between MgO and SiO2, Al2O3, and TiO2, positive
correlations between MgO and the Mg number and Ni content, and
constant correlations between MgO and CaO contents and CaO/
Al2O3 ratios.

The pattern of primitive mantle-normalized incompatible trace
elements shows positive anomalies in large ion lithophile elements
(LILEs, e.g., K, Rb and Ba) and negative anomalies in high field
strength elements (HFSEs, Nb, Ta, Zr, Hf and P) (Supplementary
Table S1 in Supplementary Information (S1)). The negative Nb-Ta-Ti
anomalies and positive Pb anomalies shown in Figure 5A indicate that
the Tengchong volcanism is subduction-related. The Tengchong
basalts are enriched in light rare earth elements (LREEs).
Furthermore, basalts from the central region show higher heavy
rare earth elements (HREEs) and lower LREEs than those from the
eastern and western regions (Figure 5B).

4.2 Whole-rock Sr–Nd isotopes

The Sr–Nd isotope compositions of the Tengchong basalts are
shown in Supplementary Table S1 in the Supplementary Information
(S1). The 87Sr/86Sr ratios range from 0.705269 to 0.708690, and the
143Nd/144Nd ratios range from 0.512359 to 0.512683. In the 143Nd/
144Nd versus 87Sr/86Sr diagram (Figure 6), the samples are located
between the EM-I and EM-II endmembers. The 87Sr/86Sr ratios of
basalts from the central area are similar to those from the western area,
and they are lower than those from the eastern area. Integrating
previous studies, Figure 6 shows that basalts from the central area
generally have relatively lower 87Sr/86Sr ratios in the Tengchong
volcanic field.

FIGURE 3
Cross-plots of (A)Na2O+K2O (wt.%) versus SiO2 (wt.%). The classification boundaries are from Le Bas et al. (1986) and LeMaitre et al. (1986). (B) K2O (wt.%)
versus SiO2 (wt.%) diagram for the Tengchong basalts. The boundaries are from Peccerillo and Taylor (1976) and Rickwood (1989). The filled symbols denote
data from this study, and the open symbols are from the literature (Zhang et al., 2012; Zou et al., 2017; Cheng et al., 2018; Tian et al., 2018; Cheng et al., 2020).
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4.3 Major and trace elements in olivine

Olivine in the Tengchong basalts exhibits three main features.
First, olivines were generated from the crystallization of magmas. The
major and trace elements of olivine are displayed in Supplementary

Table S3 in the Supplementary Information (S1). Previous studies
have shown that olivine derived from peridotite has low CaO contents
(<0.1 wt.%) and that the crystallized from magmas has high CaO
contents (>0.1 wt.%) (Simkin and Smith, 1970; Kamenetsky et al.,
2006; Wu et al., 2022). Olivine samples from the Tengchong basalts

FIGURE 4
(A) SiO2 (wt.%), (B) Al2O3 (wt.%), (C) total Fe2O3 (wt.%), (D) TiO2 (wt.%), (E) CaO (wt.%), (F) CaO/Al2O3, (G)Mg number and (H) Ni (ppm) versus MgO (wt.%)
for the Tengchong basalts. The filled symbols denote data from this study, and the open symbols are from the literature.
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display high CaO (0.14–0.35 wt.%) and moderate Fo (75.61–86.21)
contents (Supplementary Table S3 in Supplementary Information
(S1)). Second, olivine is in equilibrium with its host magmas. Based
on the Fe-Mg exchange coefficient KD(Fe-Mg)ol-liq=0.30 ± 0.03
(Roeder and Emslie, 1970), we examine olivine-liquid equilibrium
for olivines in the Tengchong basalts (Supplementary Figure S1 in
Supplementary Information S2). Although some olivines show
variable degrees of olivine crystallization, the data are close to the
KD, indicating olivine-melt equilibrium (Supplementary Figure S1).
Third, most olivine phenocrysts in the Tengchong basalts are
homogenous. The olivines do not show significant compositional
differences from core to rim (Figures 7D–F). In addition,
backscattered electron images display consistent color (Figures
7A–C). In this study, we analyze the compositions of olivines to
investigate the nature of the mantle source. Previous studies found
some olivines showing “bright-white-rim” in backscattered electron

images, indicating composition change from core to rim (Li and
Zhang, 2011; Duan et al., 2019). Considering this feature, the cores
of olivine contain more information on primary melts, and the
compositions of cores in olivines can be used to study the nature
of mantle sources (Zhang et al., 2016). Therefore, we only analyze the
composition of cores in olivine.

5 Discussion

5.1 Crustal contamination and fractional
crystallization

During magma ascent in continental crust, crustal contamination
usually affects the elemental and isotopic compositions of continental
intraplate volcanic rocks (Li et al., 2016). However, the Tengchong

FIGURE 5
(A) Diagram of primitive mantle-normalized trace elements; (B) diagram of chondrite-normalized rare Earth elements. The normalization factors are
from Sun and McDonough (1989).
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basalts do not display a positive correlation between 87Sr/86Sr and SiO2

(Figure 6B), suggesting that basalts have not been significantly
modified by crustal contamination. Previous studies have also
found negligible effects of crustal contamination on the Tengchong
basalts (Fan et al., 1999; Zou et al., 2017).

Because the Mg# values range from 50.3 to 67.7, lower than the
values of primary magma (Mg# values of 68–75; Frey et al., 1978), the
Tengchong magmas experienced evolution. During magma
evolution, olivine, clinopyroxene, plagioclase or Fe-Ti oxides may
have developed from fractional crystallization in basalts. Olivine
crystallization can be verified by two pieces of evidence. First, SiO2

and Al2O3 contents increase and Ni contents decrease with
decreasing MgO (Figures 4A, B, H), indicating fractional
crystallization of olivine (Lee et al., 2021). Second, constant

Fe2O3
T with varying MgO confirms an olivine-controlled fraction

in basalts (Zhang et al., 2016) (Figure 4C). The fractional
crystallization of the other three minerals is insignificant based on
three pieces of evidence. First, crystallization of clinopyroxene is
negligible according to nearly constant CaO with decreasing MgO
(Figure 4E). Second, crystallization of plagioclase is limited because
the positive correlation between Al2O3 and MgO contents is absent,
and most basalts have Euʹ values >0.88 (Supplementary Table S1 in
Supplementary Information (S1)) (Euʹ values ˃0.88 represent little
plagioclase fractionation in the Tengchong volcanic field, as
suggested by Zou et al. (2017)). Third, Fe2O3 and TiO2 contents
do not decrease with decreasing MgO (Figures 4C, D), suggesting
little fractional crystallization of Fe-Ti oxides in the Tengchong
basalts.

FIGURE 6
(A) Diagram of 143Nd/144Nd versus 87Sr/86Sr; (B) diagram of 87Sr/86Sr versus SiO2 for the Tengchong basalts. The isotopic compositions of two
geochemical endmembers in plot (A) are based on Miller et al. (1999) and Cheng et al. (2020). In plot (A), the dotted curve denotes two-component mixing,
and the ratios indicate the percentage of contribution from metasomatized SCLM. The filled symbols denote data from this study, and the open symbols are
from the literature.
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Basalts from the central area show low MgO and Ni contents,
suggesting that they are relatively evolved. However, we consider that
the olivines in the central area can reflect the information of primary
magmas based on three pieces of evidence. First, the Fo values of
olivine in the central area range from 80 to 84, which are relatively
close to the values of primitive olivine (88–92; Foley et al., 2013).
Second, previous studies have found that 3He/4He ratios in olivines
from the central area are in the range of MORB, indicating that
magmas were generated from asthenospheric melts (Chen et al., 2022).
Third, melt inclusions from the central area show lower Th/Yb and
higher Nb/U ratios than other melt inclusions from the western and
central areas (Supplementary Figure S4), indicating that magmas were
generated from a primary mantle source.

According to previous studies, olivines generated from fractional
crystallization generally exhibit a trend of decreasing Ni content with
decreasing Fo, and mafic magmas that suffer sulfide saturation display
sequestration of Ni at the same Fo (e.g., Herzberg, 2011). As shown in
Figure 10, olivines from the central area are characterized by lower Ni
content than those from the western and the eastern areas at the same
Fo. Although this phenomenon can be caused by sulfide saturation,
sulfide saturation is negligible. Microscope observations from previous
(Zhou et al., 2012) and our studies have not found sulfide in volcanic
rocks, suggesting very low amounts of sulfide in magmas. This large
variation in Ni contents at the same Fo is likely caused by fractional
crystallization. The partition coefficient of Ni is high in silicate melt
(Rollision, 1993; Li and Audetat, 2012), and silicate melt is able to
affect the Ni content under different melting conditions (Niu et al.,
2011). Thus, we consider that the Ni content in olivine can represent
the melting conditions and was not affected by sulfide saturation. We
conclude that the basaltic elemental and isotopic compositions
indicate the nature of the mantle source.

5.2 Asthenosphere–lithosphere interaction
and source lithology

It is necessary to investigate the asthenosphere–lithosphere
interaction and source lithology for Tengchong magma source
before studying the variation in lithospheric thickness. Except for
the lithospheric thickness, the lithospheric composition and
petrological properties of mantle sources may also affect the
chemical composition of basalt and olivine.

Several studies have revealed that the lithospheric mantle and
its interaction with the asthenosphere affect the origin of lavas in
the Tengchong volcanic field (Zhao and Fan, 2010; Chen et al.,
2022). To investigate the contributions of lithospheric mantle and
asthenosphere to the magma, we conduct a two-component mixing
model in terms of Sr-Nd isotopes. Two endmembers,
metasomatized subcontinental lithospheric mantle (SCLM) and
enriched asthenospheric mantle, are proposed to form the
primary components of the Tengchong volcanic rocks (Chen
et al., 2022). According to the mixing model shown in Figure 6,
most of the Tengchong basalts plot around the mixing lines and
reflect less than 15% of the SCLM contribution (Figure 6). This
phenomenon indicates that asthenospheric melts play a dominant
role in forming the magmas. Parameters, such as SiO2 and TiO2,
Na2O contents and (La/Sm)N, Hf/Lu and Ba/Zr ratios, are used to
study the lithosphere thickness. Generally, these parameters in the
metasomatized SCLM and enriched asthenospheric mantle exhibit
small differences (Supplementary Table S4). Combining the
contribution proportion and compositions of two endmembers,
the parameters used in the following sections can be used to analyze
the nature of the asthenosphere and can be further applied to infer
the lithosphere thickness.

FIGURE 7
Back-scattered electron images and geochemical profiles of the Tengchong basalts. (A) Olivine from basalt in the western area with Fo~75; (B) olivine
from trachybasalt in the central area with Fo~82; and (C) olivine from basalt in the eastern area with Fo~84. Plots (D–F) show several representative elements
of the samples shown in plots (A–C), respectively.
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In general, basaltic magmas are formed from themelting of peridotite
and pyroxenite components. The pyroxenite component is considered to
be related to recycled crustal materials from subducted slab (Sobolev et al.,
2007). The element (Mn, Ni, and Ca) contents and ratios (Mn/Fe, Ni/Mg,
Ca/Fe and Ni/(Mg/Fe)/1,000) in olivine phenocrysts are used to
distinguish the melting of pyroxenite or peridotite (Sobolev et al.,
2007; Straub et al., 2008; Rasmussen et al., 2020). Two reasons
indicate that the Tengchong basaltic magmas are from the partial
melting of a peridotite source. First, Supplementary Figure S2
represents the chemical compositions of olivines in the Tengchong
basalts and basalts from other representative zones (Herzberg, 2011).
The olivines from the Tengchong basalts display low Ni contents and Fe/
Mn ratios and relatively highMn contents. Their compositions are similar
to those of olivines from the Kamchatka and Central American regions,
where magmas are from peridotite sources (Ruprecht and Plank 2013; Li
et al., 2020). Thus, the Tengchong volcanic rocks may be have been
generated from a peridotite source. Second, Mn/Fe does not rely on the
process of olivine fractionation, but is mainly controlled by mantle source
rocks (Sobolev et al., 2007). Olivines generated from peridotite are

generally characterized by 100×Mn/Fe with values higher than 1.4,
which is distinct from the values of pyroxenite ranging from 1.1 to 1.3
(Sobolev et al., 2007). Specifically, olivines from Tengchong basalts show
that the 100×Mn/Fe values are mainly larger than 1.4, suggesting the
dominant contribution from the peridotite source. In the diagram of Ni/
(Mg/Fe)/1,000 versus 100×Mn/Fe, the samples mostly plot close to and
overlap with those of olivine crystallized from peridotite-derived melts
(Supplementary Figure S3A). In Supplementary Figures S3B, C, the
100×Ni/Mg and 100×Ca/Fe ratios are lower than the peridotitic values
owing to fractional crystallization (Kim et al., 2021). Based on the features
of olivine compositions, Tengchong basaltic magmas are formed from the
partial melting of a peridotite source.

5.3 Variation in lithospheric thickness

Variations in lithospheric thickness can be investigated by the
major and trace elements of basalt and olivine (Niu et al., 2011; Gale
et al., 2014; Zhang et al., 2016; Liu et al., 2016; Matzen et al., 2017).

FIGURE 8
Covariance between lithospheric thickness and composition of estimated primary magma. Black diamonds denote estimated primary composition. The
red rectangle, blue circle and green triangle represent the average composition of samples from the west, middle and east, respectively. Light blue bands
indicate thick lithosphere, and light yellow bands imply thin lithosphere. The ages are from previous studies (Mu et al., 1987; Guo et al., 2015; Zou et al., 2017;
Cheng et al., 2020).
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Based on the estimated primary magmas and measured olivine
elemental compositions, we consider that the lithospheric thickness
is greater in the western and eastern areas than in the central area of
the Tengchong volcanic field.

Primary magmas and olivines can reflect lithospheric thickness.
The primary magmas were estimated based on the addition of olivine
proposed by Tamura et al. (2014). The composition of the estimated
primary magmas of the Tengchong volcanic rocks and the olivine
abundance added to the samples are shown in Supplementary Table S2
in the Supplementary Information (S1). Based on the elements and
isotopes of primary magmas and olivines shown in Figures 8–9, the
lithosphere in the western and eastern areas is probably thicker than
that in the central area. This conclusion is drawn according to the
following five pieces of evidence.

First, SiO2 is sensitive to the pressure of melting, and Na2O
and TiO2 are sensitive to the extent of melting (Langmuir et al.,
1992; Gale et al., 2014). Therefore, a thick lithosphere leads to a
decrease in SiO2 and TiO2 contents and an increase in Na2O
content (Langmuir et al., 1992; Gale et al., 2014). Primary magmas
from central to western and eastern areas show a rough decrease in
SiO2 and TiO2, and an increase in Na2O (Figures 8A–C).
Compared with the SiO2 content, the correlation is more
evident for the TiO2 and Na2O contents. These phenomena
may suggest a change in lithospheric thickness under the
Tengchong volcanic field.

Second, because the Tengchong basaltic magmas formed from
the partial melting of a peridotite source, the trace element
contents are mainly controlled by the degree of partial melting.
As lithospheric thickness is inversely proportional to the degree of
partial melting, and (La/Sm)N, Hf/Lu and Ba/Zr ratios increase
with decreasing degree of partial melting (Sun et al., 2017; Guo
et al., 2020), these trace element ratios are adopted to investigate
the change in lithospheric thickness. The basalts from the western
and eastern areas show higher ratios of (La/Sm)N, Hf/Lu and Ba/Zr
than those from the central area (Figures 8D–F), suggesting
thicker lithosphere in the western and eastern areas.
Third, the Sr-He isotopes can partially provide information on

lithospheric thickness. Previous studies suggest that the
metasomatized SCLM is characterized by high 87Sr/86Sr and low
3He/4He ratios, and that enriched asthenospheric mantle features
relatively low 87Sr/86Sr and high 3He/4He ratios in the Tengchong
volcanic field (Chen et al., 2022). In Figures 9A,B, basalts from the
western and eastern areas show lower 3He/4He and higher 87Sr/86Sr
ratios than those from the central area. Basalts from the western and
eastern areas display more lithospheric signatures, and those from the
central area have more asthenospheric signatures, which can be
interpreted as thicker lithosphere in the western and eastern areas.

Fourth, elements in olivine can also be applied to study the
variation in lithosphere thickness. According to Niu’s model (Niu
et al., 2011), the composition of minor elements in olivine relies on the

FIGURE 9
Covariance between lithospheric thickness and 87Sr/86Sr and 3He/4He ratios for the Tengchong basalts. Black diamonds denote measured data. The red
rectangle, blue circle and green triangle represent average composition of samples from the west, middle and east, respectively. Light blue bands indicate
thick lithosphere, and light yellow bands imply thin lithosphere. The ages are from previous studies (Mu et al., 1987; Guo et al., 2015; Zou et al., 2017; Cheng
et al., 2020). The 3He/4He data are from Chen et al. (2022) and Zhang et al. (2021).

FIGURE 10
Cross-plot of Ni (ppm) in olivine as a function of olivine Fo. The bold
black arrows delineate the trends of element content for samples from
the west, middle and east.
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variation in lithosphere thickness, which affects the melting process.
The lithosphere thickness affects the final depth of melt equilibration,
determining the Dolivine/melt, such as the parameter KdNi

ol/melt (Niu et al.,
2011; Zhang et al., 2016). Several practical studies have applied the Ni
content in olivine to investigate the lithospheric thickness (e.g.,
Walter, 1998; Humphreys and Niu, 2009; Zhang et al., 2016). For
the same Fo value, olivine generated under thick lithosphere often
exhibits a high Ni concentration. Figure 10 shows that olivines from
the western and eastern areas have higher Ni contents than those from
the central area, indicating that the thickness of the lithosphere in the
western and eastern areas is greater than that in the central area.

Fifth, the study of receiver functions provides direct evidence for the
depth of the lithosphere-asthenosphere boundary (LAB) beneath the
Tengchong volcanic field. The imaging results show that the depth of the
LAB in the central area is 80 km and that in the western and eastern areas
is 90 km (Hu et al., 2012; Zhang et al., 2015; Yang et al., 2017).

5.4 Basaltic spatial-temporal variance and
geodynamic implications

The basalts in the Tengchong volcanic field were generated from
7.2 Ma to 0.02 Ma (Guo et al., 2015; Zou et al., 2017; Tian et al., 2018).
Figure 9 shows clear geochemical variations over the eruption
episodes. The basalts that erupted from 2.8 to 7.2 Ma display more
lithospheric signatures, and those that formed from 0.02 to 0.6 Ma
have more asthenospheric signatures (Chen et al., 2022). The

systematic geochemical variations over time provide evidence that
the lithosphere become thinning from the late Miocene to the
Holocene. The lithospheric thinning can be caused by lithospheric
delamination or lithospheric extension. The lithospheric delamination
is less likely, based on the geophysical results. High-resolution seismic
tomographic results only show low-velocity anomalies in upper
mantle beneath the Tengchong volcanic field, and do not provide
any evidence for lithospheric delamination (Lei et al., 2009; Huang
et al., 2019; Yao et al., 2021).

In the Tengchong volcanic field, lithospheric extension plays an
important role in passive asthenospheric upwelling underground
(Chen et al., 2002; Zhou et al., 2012; Guo et al., 2015). During the
early stage, the magmas were produced by small degrees of partial
melting at high pressures. During the late stage, the lithosphere
became thinner, and magmas were produced by large degrees of
partial melting at low pressures. The basalts became less alkaline
and radiogenic along with lithospheric thinning in the Tengchong
volcanic field. This process is similar to extension-related continental
volcanism in other areas, where tectonism influences mantle melting
and asthenosphere–lithosphere interactions, such as the Basin and
Range province and Rio Grande Rift in the United States of America
and the Ethiopian volcanic province in Africa (Hart et al., 1989;
Thompson and Gibson, 1994; Depaolo and Daley, 2000).

Although lithospheric extension occurred in the Tengchong
volcanic field, normal faults did not develop in this area (Wang
et al., 2007; Wang et al., 2008). The lack of a normal fault may
imply decoupling between the crust and lithospheric mantle. The

FIGURE 11
(A) Diagrams comparing GPS velocity vectors (red arrows; Wang, 2009) and average XKS fast orientations (blue bars; Gao et al., 2020). The black dashed
line (~26°N) shows the inferred transition of mantle anisotropy in this area, and black lines denote major faults. (B,C) Schematics of crust–mantle decoupling
beneath the Tengchong volcanic field. The eastward underthrusting of the Indian plate following India-Asia collision at 55–50 Ma has resulted in the
volcanism in Tengchong at 8 Ma. The crust experienced NNE‒NE-oriented compression, while the lithospheric mantle underwent WNW‒NW-oriented
extension due to slab rollback of the Indian plate (Lee et al., 2016).
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extension of the lithosphere usually results in normal faults; for
example, in the Basin and Range province and Ethiopian volcanic
province, normal faults spread along the rift (Hart et al., 1989; Depaolo
and Daley, 2000). However, the Tengchong volcanic field is dominated
by strike-slip faults (Wang et al., 2007;Wang et al., 2008). This tectonic
phenomenon probably indicates that a compressional regime is
dominant in the crust. Therefore, the deformation mechanisms of
the crust and lithospheric mantle are different.

Deformation is complex in SE margin of the Tibetan Plateau. It is
generally accepted that the lithosphere experienced vertically coherent
deformation north of ~26°N, that is curst and lithospheric mantle
undergo similar deformation process (Hu et al., 2012; Huang et al.,
2015; Gao et al., 2020). However, lithospheric deformation south of
~26°N is intensely debated (Wang et al., 2008; Huang et al., 2015; Shen
et al., 2022). From the observation that the fast polarization directions
(FPDs) of the XKS are consistent with the orientations of maximum
extension in the crust and earthquake focal mechanism solutions,
Huang et al. (2015) considered that the crust and lithospheric mantle
suffered coherent deformation. That is crust and lithospheric mantle
both experienced E–W extension. In addition, based on nearly the
same azimuthal anisotropic distributions in the lower crust and
uppermost mantle, Shen et al. (2022) inferred consistent
deformation of the lithosphere. This means that the crust and
lithospheric mantle experienced similar deformation. Many
researchers consider the decoupling between the crust and
lithospheric mantle south of ~26°N based on the evidence that the
directions of the GPS velocity field are generally perpendicular to the
FPDs (Flesch et al., 2005; Lev et al., 2006; Sol et al., 2007; Hu et al.,
2012; Gao et al., 2020) (Figure 11A). GPS velocity reveals that the crust
south of ~26°N undergoes NNE–NE-oriented deformation, while the
FPDs (the parameter FPD mainly reflects the deformation of
lithosphere) are generally WNW‒NW, and imply that lithospheric
mantle south of ~26°N must undergo WNW‒NW-oriented extension
(Gao et al., 2020). Only this pattern of lithospheric deformation can
lead to the observed FPDs. The difference between the directions of
GPS velocity and FPDs indicates the different deformation patterns in
shallow and deep lithosphere.

By integrating previous studies and this study, we constructed the
dynamic model shown in Figure 11B to interpret the lithospheric
deformation in the Tengchong field. The extrusion of crustal materials
from the Tibetan Plateau (Gan et al., 2007) resulted in a compressional
regime in SEmargin of the Tibetan Plateau. In the Tengchong volcanic
field, the crust is under NNE‒NE-oriented compression (Wang et al.,
2007). The lithospheric mantle undergoes WNW‒NW-oriented
extension (Wang et al., 2007), which results in the different
thicknesses of the lithosphere in the Tengchong volcanic field
revealed by our study. We consider that the extension is caused by
corner flow in the mantle wedge because of the rollback of the
subducting Indian slab in the Burma subduction zone (Hu et al.,
2012; Lee et al., 2016). The rollback of the subducting Indian slab is
also suggested by Shapiro et al. (2008) based on the mantle structure
from seismic tomography.

6 Conclusion

In this study, we found that estimated primary magmas in the
eastern and western areas of the Tengchong volcanic field show higher
SiO2, Na2O, (La/Sm)N, Hf/Lu and Ba/Zr ratios, as well as higher Ni

contents in olivine phenocrysts than those in the central area. These
phenomena indicate that the lithosphere in the western and eastern
areas is thicker than that in the central area. Combined with the
geochronology and characteristics of mantle sources, we find that the
lithosphere thins over time in Tengchong. Lithospheric thinning is
caused by extension, which may be related to the rollback of the
subducting Indian slab. In addition, we consider that the deformations
of the crust and lithospheric mantle are different, and our study
supports decoupling between the crust and mantle south of ~26°N in
SE margin of the Tibetan Plateau.
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