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Brittle deformation is prevalent in both geological processes and engineered
structures, so probing its actions is an important task as much for Earth
materials and engineered ones. To characterize brittle deformation,
acoustic waves are especially useful in revealing deformation processes. To
promote the use of acoustic techniques, we present an integrated
characterization approach that includes both acoustic data collection and
analysis. By customizing a rock sample and acoustic sensor assembly, we
incorporate acoustic data acquisition into a core holder system that
accommodates relatively small samples (2.54 cm diameter) under triaxial
loading. Along with fast and high-resolution acoustic waveform recording,
the compact design facilitates convenient collection of high-quality acoustic
data. To meet the challenge of efficiently and accurately picking P-wave
arrivals for hundreds of thousands of acoustic waveforms, we modified and
implemented a deep neural network model from the seismology literature
called PhaseNet. After training with an augmented dataset of manually-picked
arrivals (a total of around 50,000 waveforms), the modified PhaseNet model
achieved more than 88% (96%) picking accuracy within ±1 μs (±2 μs) time
residual relative to manual picks. This demonstrates the potential of integrating
deep learning techniques into the workflow of acoustic data analysis for rapid
and accurate extraction of valuable information from a large acoustic dataset.
Finally, we conducted high-resolution micro-computed tomography (micro-
CT) to inform and complement acoustic characterization at micron- and
centimeter-scales. Microscopic observations validate the spatial
development of two macroscopic fractures, and suggest that deformation-
induced changes in velocity need to be incorporated for accurately locating
microcracking events. Thus, integrating acoustic monitoring, a deep neural
network, and micro-CT imaging offers an effective means to understand brittle
deformation from micro to centimeter scales.
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1 Introduction

Brittle deformation, including microcracking, fracturing, and
frictional sliding, is prevalent in both geological processes and
engineered structures. This mode of localized deformation favors
low pressure and low temperature conditions and typically occurs
above Earth’s surface or at shallow depths, where humans and the
Earth system share the strongest interactions. For example, landslide
and earthquake constantly shape landscapes and impose hazards to
human populations; extracting resources and storing fluids in rock
formations are vital means to sustaining humanity. In particular,
geological storage of green-house gases (e.g., CO2) and clean energy
media (e.g., H2) can serve as an effective tool in fighting climate
change. Therefore, characterizing and probing brittle deformation
have always been important tasks for geoscientists.

Among various methods, acoustic characterization remains a
powerful nondestructive technique for studying brittle deformation.
When used in passive mode, this technique involves collecting
acoustic waves emitted during the energy release of brittle
deformation such as microcracking. By studying these elastic
waves, one can investigate brittle failure in terms of microcrack
locations, source mechanisms, and energy release. Acoustic
characterization can also be utilized in active mode by deliberately
sending acoustic waves to rocks or geomaterials and sensing reflected
or transmitted waves that contain rich information on material
properties. In the field, seismic monitoring utilizing both active
(e.g., surface seismic) and passive (e.g., microseismic) waves has
enabled us to map geological structures and quantify formation
properties (Verdon et al., 2009; Maxwell et al., 2010; Raeesi et al.,
2012; Porritt et al., 2014; Byerley et al., 2018). Geophysical imaging
through velocity tomography has advanced from 2D to 3D, and to
time-lapse 3D (i.e., 4D), which has considerably enhanced our
knowledge of the subsurface and its changes through time
(Lumley, 2001; Vanorio et al., 2005; Ajo-Franklin et al., 2013; De
Landro et al., 2020). Under the well-controlled conditions in the
laboratory, our understanding of brittle deformation has been
significantly improved. From acoustic emission (AE) experiments,
the complex brittle failure processes involving microcrack initiation,
propagation, coalescence, and frictional sliding are documented
(Lockner et al., 1992; Lei et al., 2000a; Fortin et al., 2006;
Browning et al., 2017; Guo and Zhao, 2022). These laboratory
observations have advanced our understanding of geological
phenomena at a much larger scale, such as faulting and
earthquakes (Lockner, 1993; Lei et al., 2000b; Johnson et al., 2013;
Aben et al., 2019). Similarly, active acoustic characterization such as
the pulse-echo and pulse-transmission techniques has allowed us to
quantify rock properties and detect inhomogeneities (Lockner et al.,
1977; Pyrak-Nolte et al., 1990; Espinoza and Santamarina, 2011;
Knuth et al., 2013; Modiriasari et al., 2017; Geremia and David,
2021). Laboratory-scale velocity tomography, although quite
challenging, has provided a precious opportunity to observe
deformation over time (Falls et al., 1992; Brantut, 2018; Aben
et al., 2019; Zhu et al., 2021). These findings have enhanced the
interpretation of seismic data from the field (Meadows and
Winterstein, 1994; Verdon and Wüstefeld, 2013; Cai et al., 2014).

Although laboratory acoustic techniques lend us a rich perspective
of brittle deformation, there are still challenges for its utilization.
Laboratory acoustic systems are rather complex, which often

involves a large loading frame and typically accommodates relatively
large samples (diameters greater than 5.08 cm) (e.g., Alkan et al., 2007;
Thompson et al., 2009; Xie et al., 2011; Aker et al., 2014; Kim et al., 2015;
Ye andGhassemi, 2020). This limitation leads to only a small number of
acoustic systems in research laboratories worldwide.Moreover, acoustic
experiments often generate very large datasets. Commonly, one AE
experiment can record hundreds of thousands acoustic waveforms,
posing a challenge for efficiently processing data. The basic task of
manually picking first-arrivals has quickly become impractical. Yet it is
critical to achieve efficient and accurate arrival-picking as this
fundamental step has a direct impact on the efficiency and error of
the overall acoustic data analysis (e.g., velocity tomography, event
location) (Lei, 2017; Brantut, 2018). Feature- and statistics-based
automated approaches are most commonly used, such as the short-
term average/long-term average/method (STA/LTA; Allen, 1978) and
the Akaike’s Information Criterion (AIC; Akaike, 1998). However, they
are still not accurate enough for noisy data (Sharma et al., 2010; Akram
and Eaton, 2016). In recent years, deep-learning based algorithms, such
as convolution neural networks (Ross et al., 2018; Yuan et al., 2018;
Chen et al., 2019; Wang et al., 2019; Zhu and Beroza, 2019), have
showed promise for picking seismographs. However, very few deep
learning models have been developed for picking laboratory acoustic
data (Zheng et al., 2018; Guo et al., 2020), and none have exhibited
metrics matching those in the field of seismology. Finally, although
acoustic characterization nondestructively probes brittle deformation
within rocks or geomaterials, direct observations such as those from
microscopic images are necessary to validate and improve the
interpretation of acoustic data. In particular, high-resolution imaging
reveals key microscopic features and processes that control bulk
behavior and properties. Therefore, an approach that integrates a
compact acoustic system, efficient data analysis, and detailed
imaging at the micro- and macro-scales is valuable for studying
brittle deformation.

In this paper, we present an integrated acoustic characterization
approach that includes both acoustic data collection and analysis.
First, we developed a compact and adaptable acoustic system under
triaxial conditions that can be readily instrumented in rock physics
laboratories and allows for collecting high-quality acoustic data.
Then, we modified and implemented a deep neural network model
from the seismology literature (PhaseNet by Zhu and Beroza, 2019)
to efficiently and accurately pick P-wave arrivals. Finally, we utilized
high-resolution micro-CT imaging to inform and complement
acoustic characterization of fracturing processes. By integrating
acoustic monitoring, a deep neural network, and micro-CT
imaging, we propose an effective means to probe brittle
deformation from micro to centimeter scales.

2 Methods

2.1 Triaxial and acoustic system

2.1.1 Triaxial loading vessel
Triaxial loading is applied on 2.54 cm diameter and 5.08 cm

length cylindrical rock samples using a Core Laboratories HCH-1.0-
AC core holder with a confining pressure rating of 69.0 MPa and a
maximum axial stress of approximately 200 MPa (Figure 1). Axial
stress and confining pressure in the radial direction are controlled
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independently by a Quizix QX-6000 dual piston pump. While
confining pressure is maintained at a constant hydraulic oil
pressure, axial stress is applied by moving one loading piston at
a constant flow rate ranging from 0.001 to 50 mL/min. Thus,
adjusting flow rate allows application of different strain rates on
samples. Changes in sample length due to stress are measured using
three linear potentiometers mounted on the outside of the loading
piston.

2.1.2 Acoustic jacket
A total of ten piezoelectric sensors are utilized in the acoustic

measurements. These sensors are PZT-5A P-wave ceramic crystals
(Boston Piezo-Optics Inc.) with 0.38 cm diameter and 1.5 MHz

resonance frequency (Figure 2A). Two sensors are embedded in
the endcaps and eight are mounted on a customized nitrile rubber
jacket. To protect sensors on the jacket during mechanical loading,
they are placed within custom-built bronze housings (Figure 2A).
The metal housing protects acoustic sensors and its connection
during rock deformation so they can record data continuously and
be used repeatedly. One end of the housing is machined in a
concaved shape to match the sample curvature. These housings
are glued into pre-drilled holes of the acoustic jacket using high
shear-strength epoxy and connected to a high-pressure feedthrough
(Figure 2B). Acoustic sensors are arranged in a manner to maximize
acoustic wave coverage (Figure 2C). The acoustic jacket is highly
customizable in terms of the number and type of sensors and their
relative locations. It can be used multiple times and only the nitrile
rubber needs to be replaced for long-term use.

2.1.3 Acoustic system data acquisition
Acoustic signals are first amplified by a preamplifier (Elsys

Amp-BU-20-AE) and then recorded by a PCIe data acquisition
system (Elsys TraNET EPC) (Figure 1). The system is currently
equipped with 10 channels and allows expansion up to 64 channels
in single-ended mode. All channels can be triggered independently
by acoustic events and each channel can be configured to a
maximum sampling rate of 240 MS/s (million samples per
second) with 16-bit resolution in voltage. Up to 128 million
data points can be recorded by onboard memory per channel to
facilitate rapid waveform recording. The system is capable of two
modes of data acquisition: active pulsing and passive listening. In
the active pulsing mode, the preamplifier can be used to
sequentially excite each of the acoustic sensors, while the non-
excited sensors record the actively generated acoustic waves. In the
passive listening mode, all acoustic sensors passively listen to
acoustic waves generated either by rock deformation processes
or an external pulser.

FIGURE 1
Schematic of the triaxial loading vessel and acoustic data
acquisition system.

FIGURE 2
Photographs of (A) acoustic sensor and housing, (B) acoustic sensor-rock sample assembly including black acoustic jacket, and (C) schematic of
acoustic sensor locations in the jacket. Red dots in (C) signify sensors mounted on the jacket. Blue dots are the sensors installed on endcaps that are
partially inserted into the jacket at the top and bottom.
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2.2 Experiment

To test the acoustic system and develop a workflow that allows for
an effective and robust acoustic characterization, we conducted a triaxial
test on a Berea sandstone sample. As a common test sample in rock
mechanics experiments, Berea sandstone is primarily composed of well-
sorted and well-rounded quartz grains (85%—90%) andminor feldspar
grains (3%—6%). These grains range in size between 70 and 400 μm
and are cemented by quartz, dolomite (1%-2%), and clays (6%-8%)
(Churcher et al., 1991). The sample has a porosity of 18.3% and a
permeability of 64 mD. While subjecting the sample to a constant
confining pressure of 5 MPa at room temperature, axial stress was
applied by the Quizix pump at 0.1 mL/min to achieve a strain rate of 10-
5/s strain rate. The sample was deformed to generate macroscopic
fractures and subsequently underwent fictional sliding along the
fractures. Throughout the deformation test, acoustic emission was
monitored at 5 MHz sampling rate and 40 dB pre-amplification
(with bandpass filtering at 5 kHz—2MHz). Acoustic data were
recorded by events, which are defined as the set of acoustic signals
associated with the same source. Each event was saved in a single ASCII
file containing all 10 waveforms, one for each of the piezoelectric
sensors.

2.3 P-wave first-arrival picking using a deep
neural network

2.3.1 Modified PhaseNet model
Since each test generates hundreds of thousands of acoustic

waveforms, it poses a major challenge for efficiently and accurately
processing acoustic data. This is especially the case for determining
acoustic event locations, which heavily depends on the accuracy of
picking first-arrivals. In recent years, various deep learning models
have been explored to tackle this challenge at field (Ross et al., 2018;
Zhu and Beroza, 2019) and laboratory (Zheng et al., 2018; Guo et al.,
2020) scales. A promising deep neural network model from the
seismology literature called PhaseNet has achieved high accuracy of
first-arrival picking for both P- and S-waves (Zhu and Beroza, 2019).

We modified the PhaseNet model for easy application to laboratory
P-wave data (Figure 3). The first adaptation was to collapse the input
from three channels to one. The second was to remove one
convolution-plus-stride layer in order to avoid having too few
points left in the one-dimensional feature maps prior to
deconvolution (i.e., transpose convolution). Lastly, we built our
modified PhaseNet (mPhaseNet) model in Python using the
simple, high-level Keras API. Given the very different data input
from that used to train PhaseNet, we trained our model with a subset
of manually-picked first-arrivals from the experiment. Like Zhu and
Beroza’s model, mPhaseNet outputs the probability of the first-
arrival for any input waveform. The first-arrival can then be
obtained as the time associated with the highest probability.

2.3.2 Acoustic data processing
First, we applied an AIC algorithm to approximate the arrival-

times of P-waves (Akaike, 1998). AE events require at least four
picks for computing locations. However, for several events for which
we could manually pick ten first-arrivals, we observed much higher
consistency among source locations obtained using multiple
combinations of five or more arrivals than those only using
combinations of four arrivals. Hence, we only retained AE events
with five or more AIC-generated picks. This led to a total of
14,587 events. Then, we manually checked and adjusted the
arrivals for 581 events, which gave a total of approximately
3500 waveforms with confident P-wave first-arrival picks. This
manually-picked and unfiltered dataset was split 70:15:15 and
respectively used to train, validate, and test the mPhaseNet
model, which consisted of 458,337 trainable parameters.

One challenge of training neural networks is that they can often
contain many parameters such that large datasets are required to
prevent overfitting (Bejani and Ghatee, 2021). To combat this
problem, we utilized data augmentation for the training data.
First, we duplicated each waveform and flipped its sign,
essentially doubling the dataset. Then, we duplicated each of
these 10 times and translated each copy in time by a randomly
generated amount within a window of −40 to +5 μs. In the end, our
training dataset size was enhanced by a factor of 20

FIGURE 3
Schematic of the architecture for the modified PhaseNet model. The deep neural network model takes in acoustic P-wave data and outputs the
probability of the first-arrival. Blue rectangles represent neural network layers. Data structure is labeled for each layer in the form of number of channels ×
number of data points. Arrows indicate mathematical operations between neural network layers. The figure is adapted from the scheme in Zhu and
Beroza. (2019).
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(i.e., ~50,000 waveforms). In contrast, the validation and test sets
(which were not augmented) contained just over 500 waveforms.

2.4 Micro-CT imaging

We performed X-ray micro-CT imaging on the failed sample to
characterize microcracks associated with the fracturing process. Using a
ZEISS Xradia 520 Versa, the whole sample was scanned at a resolution
of 57 μm and interior regions of fractures were scanned at a higher
resolution of 5 μm.With a polychromatic beam centered at 140 kV, the
lower and higher resolution scans utilized optical magnifications
of 0.4X and 4X and ZEISS “HE1” and “HE2” filters, respectively.
Using the supplied ZEISS software, 3D microstructures were
reconstructed after optimizing the center shift and beam hardening
constants. Data exploration and analysis were conducted using
Dragonfly 2021 software (Dragonfly, 2021).

3 Results

3.1 Stress strain and cumulative AE events

Differential stress (axial stress minus confining pressure) on Berea
sandstone increasedmonotonically with time before reaching peak stress
(Figure 4A). During this period, there were very few AE events. Once
differential stress started deviating from the linear trend, that is, when
Berea sandstone started yielding, the cumulative number of AE events

increased rapidly (see Figure 4B for an example of an AE waveform).
After reaching peak stress, the Berea sandstone experienced two
instantaneous stress drops, reflecting two macroscopic fracturing
processes (Figure 4C). This was accompanied by two drastic increases
in AE counts. After the second instantaneous stress drop, the differential
stress increased slowly over time. At this stage, the cumulative number of
AE events continued to rapidly increase.

3.2 P-wave first-arrival picking

The mPhaseNet model is capable of accurately picking first-
arrivals for both clean and noisy AE waveforms (Figure 5). Nearly all
picks from the deep neural network model fall within +/– 2 μs of the
manual picks (Figure 6). To quantitatively assess performance, we
define three evaluation metrics as the following:

P � Tp

Tp + Fp
, (1)

R � Tp

Tp + Fn
, (2)

F1 � 2
P × R

P + R
, (3)

where P, R, and F1 are precision, recall, and F1 score, respectively;
Tp is the number of true positives, Fp is the number of false
positives, and Fn is the number of false negatives. We define the
arrival-time residual (Δt) as the arrival-time difference between
mPhaseNet and manual picks (i.e., mPhaseNet pick minus manual

FIGURE 4
(A) Plots of differential stress and cumulative number of acoustic events versus time, (B) an example of an AE waveform, and (C) photographs of the
Berea sandstone sample before and after the triaxial experiment.
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pick). True positives are defined as picks with arrival-time
residuals within a preset threshold k (i.e., -k < Δt < k). False
positives are the picks with arrival-time residuals less than -k
(i.e., Δt < -k). Finally, those picks with arrival-time residuals
greater than k (i.e., Δt > k) are counted as false negatives. Note
that, in our use case, we have defined Fp and Fn (and consequently,

P, R, and F1) differently from Zhu and Beroza (2019). Based on the
above definitions, true positives are satisfactory picks for a given
acceptable residual, false positives represent unsatisfactory early
picks, and false negatives are unsatisfactory late picks. While
precision evaluates the percentage of satisfactory picks among
all satisfactory and early picks, recall assesses the proportion of
satisfactory picks among satisfactory and late picks. F1 score offers
a balanced evaluation between precision and recall. For an arrival-
time threshold of 2 μs, all three metrics are close to 100% (Table 1).
For a lower threshold of 1 μs, which represents a stricter acceptable
residual, all three metrics are still around 90%. In both cases,
F1 score is above 90%. Precision is higher than recall indicating
that mPhaseNet tends to pick late more often than early.

3.3 Event locations

The mPhaseNet model was used to pick first-arrivals for the rest of
the acoustic dataset (i.e., waveforms that were not manually picked).
Then, all picks were used to determine acoustic event locations. We
applied a constant P-wave velocity of 3151 m/s which was measured on
a benchtop acoustic system before the triaxial experiment. Previous
works have shown that a simplified velocity model allows for capturing
key brittle processes (e.g., Scholz, 1968; Sondergeld and Estey, 1981;
Ingraham et al., 2013). In solving for event locations, we applied the

FIGURE 5
Examples of (A) clean and (B) noisy AE waveforms with first-arrival picks by mPhaseNet, AIC, and manual picking.

FIGURE 6
Histogram of P-wave arrival-time residual (mPhaseNet pick
minus manual pick).
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Nelder-Mead simplex algorithm (Nelder and Mead, 1965) to minimize
the difference between observed and predicted arrival times of acoustic
waves. Figure 7 shows event locations overlaid on micro-CT images.
The bulk sample is shown in Figure 7A at 57 μm resolution, whereas
Figure 7B shows in detail part of a fracture at a higher resolution of
5 μm. Both images are sliced from the center of the sample. Acoustic
event locations are also center slices with a thickness of 4 mm. These
events follow the two fractures, although there appears to be a
systematic offset in the location of the longer fracture. Based on the
time sequence of these events, it is evident that the short fracture formed
first and was followed by the formation of the long fracture.

4 Discussion

The developed acoustic system proves to be a useful tool for
studying brittle deformation. As shown in our experiment, most of
the acoustic events are associated with macroscopic fracturing and
subsequent sliding along the macro-fractures (Figure 4). By analyzing
hundreds of thousands of acoustic waveforms, we can investigate
locations, source mechanisms, and energy release of brittle failures

as well as measure the acoustic velocity field. Despite the valuable
information an acoustic system can provide, acoustic measurements are
not routinely performed due partly to the complexity of setting up such
a system. Our acoustic system demonstrates an example of utilizing a
core holder that is commonly equipped in the laboratories studying
rocks and geomaterials. The customized sample-sensor assembly
accommodates relatively small samples (2.54 cm diameter), which
allows for convenient integration into a core holder. This avoids the
need of a large, complicated, and expensive loading system.
Additionally, the sample-sensor assembly offers great adaptability by
customizing sensor types (P- and S-wave sensors) and position based
upon experimental needs. Therefore, a compact and adaptable acoustic
system as shown here can be readily instrumented in rock physics
laboratories and allows for collecting high-quality acoustic data.

Another obstacle for utilizing acousticmeasurements is the challenge
of analyzing a large dataset, which typically contains hundreds of
thousands of acoustic waveforms. A good example is the picking of
wave arrivals for determining acoustic velocity and event locations.
Manual picking by experienced analysts gives the highest accuracy,
but it is unfeasible to do this on a routine basis with the large
amount of data produced in tests like ours. Although many

TABLE 1 Evaluation metrics for mPhaseNet P-wave first-arrival picks.

Residual threshold (k) (μs) Precision (P) (%) Recall (R) (%) F1 score (F1) (%)

1 95.5 88.6 91.9

2 99.2 96.0 97.6

FIGURE 7
Micro-CT slices of (A) the bulk sample at a resolution of 57 μm, (B) interior tomography of part of a fracture at a resolution of 5 μm. The location of
the interior tomograph is shown in (A)with a blue rectangle. Both slices are from the center of the sample. Color dots represent acoustic event locations,
which are sliced from the center of the sample with a thickness of 4 mm. Event locations are color-coded by the elapsed time during the experiment.
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automatic picking algorithms have been developed, it is still difficult to
accurately pick noisy waveforms (Sharma et al., 2010; Akram and Eaton,
2016). In this context, deep-learning based approaches have the greatest
potential by integrating some manual picking and intelligent feature-
extraction algorithms. The mPhaseNet model demonstrates promising
first-arrival picking accuracy with around 3500 manual picks (Figures 5,
6). Although deep learningmodels typically require much larger training
datasets (e.g.,millions ofmanually-picked seismographs for the PhaseNet
model), our results show that by properly augmenting a few thousand
manual picks, it is possible to achieve a higher picking accuracy than the
conventional picking algorithm AIC, which has been the recommended
technique for picking laboratory acoustic data (Grosse et al., 2021). In
fact, our manually-picked dataset was based on the checking and
adjustment of AIC-generated picks. Applying the AIC picker
significantly accelerated the preparation of the manually-picked

dataset. For high signal-to-noise ratio (SNR) waveforms, the AIC
picker typically produced accurate picks (although there were
exceptions). From the test dataset, Figure 5A shows an example of an
AIC pick that we accepted as the manual pick, and how mPhaseNet
reproduced the accurate pick.However, we noticed that theAICpicks for
low SNR waveforms are much less reliable. Therefore, adjustments were
often needed to find accurate first-arrivals; Figure 5B shows an example
of an AIC pick that is later than the actual first-arrival. Due to its
intelligent feature-extraction algorithm, mPhaseNet is capable of
achieving accurate picks for noisy data. In fact, no noise filtering was
necessary for model training and inference, as in the case of the original
PhaseNet (Zhu and Beroza, 2019). To investigate the impact of these two
picking algorithms on AE data analysis, we determined event locations
using fist-arrival picks from both mPhaseNet and AIC. For the entire
dataset, mPhaseNet picks located 3%more events than AIC picks within
physical boundaries of sample. In Figure 8, events were sliced from the
center of the sample and overlaid on top of the center micro-CT image.
The thickness of the event slice was set to the location uncertainty of
4 mm. When plotting all locatable events by each algorithm (Figures
8A,B), mPhaseNet-based event locations more clearly delineate the two
macroscopic fractures, whereas AIC-based locations are more scattered.
In addition, AIC picks producedmany event locations close to the end of
the experiment (see yellow dots in Figure 8B). These events are associated
with frictional sliding of the two fractures. However, most of these events
are not aligned with fractures. For comparison, mPhaseNet-based event
locations are primarily associated with the formation of the two fractures
whenmost acoustic events were generated (see Figure 4A and purple and
orange dots in Figure 8A). When plotting the same events from both
algorithms (Figures 8C,D), mPhaseNet-based locations still more clearly
delineate the two fractures, especially the long fracture. These
observations suggest that mPhaseNet achieves more accurate first-
arrival picking than AIC, such that events are more accurately
located. Therefore, deep-learning based approaches have the potential
to increase the accuracy of first-arrival picking for laboratory acoustic
data. This is especially due to its accurate picking of low SNR acoustic
waves. Currently, mPhaseNet can be further improved, for example, by
increasing the training dataset manually or through further data
augmentation (e.g., expanding and contracting waveforms). For
similar experiments, such as those on the same lithology under
similar pressure conditions, the mPhaseNet model may only need to
be trained once. This will further accelerate the speed of acoustic data
analysis. Nevertheless, our results show the high potential of utilizing
deep-learning basedmodels for more efficient and accurate acoustic data
analysis.

As an indirect technique for understanding brittle deformation,
acoustic measurements can be greatly complemented by direct
observations from high-resolution imaging. While acoustic
characterization allows us to reconstruct brittle processes (e.g.,
microcracking, fracturing), microscopic observations offer physical
evidence to validate and refine the understandings we gain from
acoustic characterization. After our experiment, we observed two
macroscopic fractures as a result of brittle failure. Through acoustic
analysis, we reconstructed the spatial and temporal sequence of these two
fracturing processes. Comparing to themicro-CT image, we verified that
acoustic events are approximately aligned with these two fractures. There
are still many events scattered around the fractures which could be due
to: 1) microcracking away from the main fracture and/or 2) uncertainty
of event locations that are associated with changing velocity field during

FIGURE 8
Comparison of acoustic event locations derived from
mPhaseNet and AIC first-arrival picks. All events are shown for (A)
mPhaseNet-based locations and (B) AIC-based locations. Same
events are shown for (C) mPhaseNet-based locations and (D)
AIC-based locations after removing those that are located by only one
of the two picking algorithms. Color dots represent acoustic event
locations, which are sliced from the center of the sample with a
thickness of 4 mm. Event locations are color-coded by the elapsed
time during the experiment. Micro-CT slices are from the center of the
fractured sample.
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deformation. The latter is consistent with the observation that the
systematic offset between fracture and events is more extreme for the
second fracture, for which the velocity field is particularly different from
its starting value. For simplicity, we used a constant velocity for
calculating event locations. In reality, acoustic velocity changes with
deformation (e.g., Nur and Simmons, 1969; Sayers and Kachanov, 1995;
Stanchits et al., 2006; Browning et al., 2017). To account for this effect,
one can perform active pulsing throughout loading to record velocity. By
updating velocity for different stages of deformation, event locations can
be determinedmore accurately (Stanchits et al., 2011;Wang et al., 2020).
We are working on utilizing the active pulsing function to improve
location accuracy.

To make the best use of the power of acoustic characterization, an
integrated approach is necessary for efficient and accurate analysis. In
this paper, we show an approach that integrates a compact and adaptable
acoustic system, a deep neural network, andmicro-CT imaging. It allows
us to conveniently collect high-quality acoustic data, efficiently perform
data analysis, and enhance interpretation withmicroscopic observations.
Such an approach can be a useful tool for characterizing brittle
deformation across scales (i.e., from micrometers to centimeters). In
particular, the integrated approach can be incorporated into the urgently
needed application of geo-storage technology. This includes quantifying
microcracks and fractures for caprock seal integrity and measuring
velocity fields for mapping fluid distributions. Thus, the integrated
acoustic characterization could play a role in improving knowledge
and technology for successful geo-storage applications.
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