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Site condition impact on seismic ground motion has been a complex but
important subject in earthquake hazard analysis. Traditional studies on site
amplification effect are either based on site response via wave propagation
simulation or regression analysis using parameters such as Vs30, bedrock
ground motion and site response period. Ground Motion Prediction Equations
(GMPEs) are used for regions where there is limited data of seismic records. The
main issues with these approaches are that they cannot demonstrate the complex
relationship between site amplification and its various affecting parameters, thus
there exists large uncertainty in the results. Recent studies based on machine
learning have shown significant improvement in predicting the site amplification,
but the result is not well explained. This study assembled the information on
6 parameters including Vs30, magnitude, epicentral distance, earthquake source
depth, bedrock ground motion, and altitude of 353,327 records observed during
1997 and 2019 from 698 KiK-net stations. Three machine learning algorithms of
Random Forest (RF), XGBoost, and Deep Neural Networks (DNN) were
implemented to predict the site amplification factor using these 6 selected
parameters. Shapley Additive explanation (SHAP) was used to explain the
importance of the 6 parameters. The results show that all three machine
learning algorithms performed much better than the traditional GMPE
approach with XGBoost’s performance the best. The explanation provided by
the SHAP analysis further enhanced the reasonability of this study. It is anticipated
that the combination of machine learning and SHAP analysis can provide better
assessment for site amplification of ground motion with better potential of future
application in seismic hazard analysis.
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1 Introduction

The effect of site condition on seismic ground motion has been a research focus in
geotechnical earthquake engineering and seismic hazard analysis. Numerous records have
demonstrated that site conditions amplify the ground motion and further intensify the
earthquake damage (Borcherdt, 1970; Borcherdt and Gibbs, 1976; Seed et al., 1988; Dobry
et al., 2000; Bala et al., 2009). A large number of studies have been performed to better
represent the effect of site amplification, and traditional approaches can be categorized into
two groups: site response analysis based on wave propagation simulation and the empirical
Ground Motion Prediction Equations (GMPEs). Site response analysis based on site wave
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propagation simulation is mostly using one-dimensional (1-D) or
multi-dimensional models. The non-linear property of the soil is
approximated through equivalent linearization (Idriss and Seed,
1968; Seed and Idriss, 1969). Park and Hashash conducted the
analysis through improved equivalent linearization of site soil non-
linear property (Park and Hashash, 2004; Park and Hashash, 2008),
and Gerlymos and Gazetas proposed a new constitutive model in a
1-D analysis (Gerolymos and Gazetas, 2005). Harmon et al.
developed the ground motion site amplification model for the
West and East part of the US based on extensive site response
simulation (Harmon et al., 2019). Site response analysis can provide
detailed results of the site amplification, but the analysis requires
extensive information on soil property which is often not available.
The other approach for site response analysis is through empirical
Ground Motion Prediction Equations (GMPEs), which is a
statistical model based on earthquake property and simplified
parameters of site soil conditions. The early stage GMPEs were
usually developed separately for rock and soil site conditions, and
ground motion amplification factor was used to consider statistical
effect of site conditions (Boore et al., 1997; Sadigh et al., 1997).
Abrahamson and Silva considered non-linear effect of the site
amplification factor (Abrahamson and Silva, 1997), and Boore
et al. (Boore et al., 1997) used the average shear-wave velocity of
the top 30 m soils (Vs30) to represent the site effect. Seyhan and
Stewart (Seyhan and Stewart, 2014) developed a site amplification
model for the West part of the US and used the GMPEs by Boore
et al. (Boore et al., 2014) for rock sites to compliment the data
scarcity of records on rock sites. Most GMPEs used only Vs30 to
express the site condition, which cannot completely represent the
complex nature of the various site conditions, thus resulting in a
large degree of uncertainty. With the accumulation of a great
number of observed records and rapid development of
computational resources machine learning algorithms have been
actively introduced to predict the site response. Daniel Roten et al.
(Roten and Olsen, 2021a) applied machine learning to predict the
site amplification factor using records from the KiK-net, and the
result was compared against the result by the 1-D site response
analysis showing the mean squared logarithm error reduction of at
least 50%. Hamidreza et al. (Hamidreza and Soleimani Kutanaei,
2015) compared the site amplification result by Artificial Neural
Network (ANN) against the result by 2-D site response analysis and
found that the shear wave velocity and soil layer depth are more
important than other factors in site amplification. Kveh (Kaveh
et al., 2016)and (Derras et al., 2017) predicted the site amplification
through M5 decision tree method and ANN, respectively. Chuanbin
Zhu (Zhu et al., 2021)compared the performance of RF, GRA, SRI
and HVSR methods on the benchmark dataset, and the results
showed that RF performance is relatively better. Daniel Roten
(Roten and Olsen, 2021b) compared the neural network methods
(CNN, MLP) with the theoretical SH1D amplification method, and
the results showed that CNN has a smaller MSLE and MAE in the
prediction results. Machine learning approach has shown its
superiority in predicting site amplification of ground motion, but
the approach itself looked like a “black box” approach with results
somethings difficult to be explained.

This study utilized the observed ground motion in KiK-net
between 1997 and 2019, and applied RF, XGBoost, and DNN
approaches to predict site amplification factor for different

periods. The results were compared against those by (Yoojoong
and Jonathan, 2005), who used Vs30 as the main parameter to
predict ground motion site amplification. The comparison
demonstrates that machine learning approaches are superior in
predicting site amplification with XGBoost performance the best.
Shapley additive explanation (SHAP) was then introduced to
explain the proposed prediction models, and the contribution of
each parameter on site amplification was analyzed to provide better
guidance for future similar studies.

2 Data

KiK-net is the ground motion observation network operated by
the Japanese National Research Institute for Earth Science and
Disaster Resilience (NIED), which is composed of approximately
700 stations (https://www.doi.org/10.17598/NIED.0004). Each
station has a pair of high-end sensors placed at the top and
bottom of the borehole to record three components (NS, EW,
UD) of the earthquake ground motion. In addition, detailed soil
profile data has been provided for most stations by NIED. This study
conducted the research based the data accumulated by KiK-net
during 1997–2019.

2.1 Data preparation

The ground motion records by KiK-net are stored separately for
each earthquake event, and this study assembled the records with the
following additional parameters. Information on earthquake
magnitude (Mag), altitude of the station (S_Altitude), earthquake
source depth (Depth), and the latitude and longitude of both the
earthquake source and the observation stations are included in the
groundmotion records. The epicentral distance(R) can be calculated
via the latitude and longitude of the earthquake source and
observation stations. The Vs30 at the stations can be calculated
from the borehole data according to Eq. 1 (Yoojoong and Jonathan,
2005). For stations where borehole data does not reach down to
30 m, the last layer will be extended to 30 m deep (Boore, 2004).

V30 � 30/∑n
1

di

Vsi
(1)

where di is the depth for the i-th layer, and Vsi is its corresponding
shear wave velocity. The calculation only accounts for soil layers up
to 30 m deep. Spectral acceleration Sa is calculated as in Eq. 2 (Chen
Longwei Chen Zhuoshi Yuan Xiaoming, 2013).

Sa T( ) � ���������������
Sa T( )EWpSa T( )NS

√
(2)

where Sa(T)EW , Sa(T)NS are the spectral acceleration of the EW
and NS component for period T.

The site amplification factor (Amp) for Sa can be calculated as in
Eq. 3.

Amp T( ) � Sa T( )S
Sa T( )R (3)

where Sa(T)S, Sa(T)R are the SA at surface and bottom respectively
for period T. The above computation is repeated for all the records
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observed in the KiK-net during 1997–2019, resulting in a data set of
Amp for more than 350,000 earthquake records.

2.2 Data filtering and distribution

The location distribution of earthquake source and observation
station for the dataset selected in this study is shown in Figure 1.
Previous researches (Bommer and Martinez-Pereira, 2000) have
shown that only ground motions with PGA more than 20 cm/s2 will
have impact on our society, engineering structures and living
environment. The PGAS (subscript s stands for surface)
distribution of the data collected for this study is shown in
Figure 2A, and from Figure 2A it can be seen that PGAS for

most records is below 20 cm/s2. For application in future
engineering practice, we need to filter the data from the
assembled dataset. Figure 2B shows the distribution of Amp with
datasets of different minimum PGAS of 0, 1, 2, and 20 cm/s2. As can
be seen from Figure 2B, the distribution of Amp for datasets of
minimum 1 cm/s2 and 20 cm/s2 looks similar, therefore, we chose
the dataset with minimum PGAS of 1 cm/s2 for this study to ensure
that there be enough samples in the dataset. This filtered dataset has
more than 260,000 samples. The distribution of Vs30, Mag, R and
Depth for the selected dataset is also shown in Figures 3A–D,
respectively. As can be seen from Figure 3 Vs30 mostly falls into
the range of 250–700 m/s, and M is mostly between 4 and 7, while R
is mostly less than 200 km and the source depth is mostly shallower
than 60 km.

FIGURE 1
Location distribution of earthquake source and observation station. (A) Earthquake source location, (B) Observation station location.

FIGURE 2
Record frequency distributionwith PGAs or its amplification. (A) PGAs distribution for all records, (B) Amp (PGA) distribution of datasets with different
filtrating PGAS.

Frontiers in Earth Science frontiersin.org03

Wang et al. 10.3389/feart.2023.1053085

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1053085


3 Models for predicting

3.1 Traditional approach

Most traditional approaches use parameters such as Vs30 and
PGAR to predict the site amplification factor. (Yoojoong and
Jonathan, 2005) established a site amplification prediction
equation using Vs30 and PGAR and verified its effectiveness via
comparison with actual amplification based on a large number of
ground motion records. Their results also demonstrated explicit
deviation from the NEHRP provision of amplification factors. Their
prediction formula can be shown in Eq. 4.

Ln Amp( ) � c ln
Vs30
Vref

( ) + b ln
PGAR

0.1
( ) + η + ε (4)

where c, Vref , b are regression coefficients, and η is a random factor
expressing the ground motion response, and ε is the error of
regression.

It is noted that Eq. 4 is only applicable when Vs30 is between
130 and 1,300 m/s and PGAR is between 0.02 and 0.8 g. This study
made sure that the selected dataset also met these conditions for the
comparison study.

3.2 Machine learning approaches

Because of the vast advancement of computer technology and
computing resources in recent years, machine learning approaches have
been extensively applied in many areas of studies, often resulting in
much satisfactory results (Jordan andMitchell, 2015). In this study three

FIGURE 3
Distribution of the dataset for different parameters. (A) Vs30, (B) Magnitude, (C) Epicentral distance and (D) Source depth.

TABLE 1 Parameter adjustment results and training time of three models.

Models Average MSE predicted Average training time (minutes)

RF 0.07744 31

XGBoost 0.07168 54

DNN 0.07867 62
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representative machine learning algorithms (RF, XGBoost, DNN) were
selected in constructing models to predict the site amplification factor.
For the feature parameters in the constructedmachine learning models,

only parameters which were easily accessible and without regional
restrictions were selected, which included Vs30, Mag, R, S_altitude,
Depth, Acc_rock. For validating the proposed models, 10% records

FIGURE 4
The Bayesian optimization process for hyper-parameters of the 3 MLmodels. (A)Hyper-parameter optimization process for RF, (B)Hyper-parameter
optimization process for XGBoost, (C)Hyper-parameter optimization process for DNN.
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were randomly selected from the dataset. Of the remaining 90% data,
70% were used for training, and the other 30% were used for testing the
accuracy and degree of fitting in the prediction.

3.2.1 Random forest
Random Forest (RF) algorithm is a classification prediction

approach based on multiple decision trees by Leo Breiman (Breiman,
2001), and it is an extension of decision tree algorithm. The RF algorithm
traverses all nodes (trees) to be split, identifies the optimum split variable
and its corresponding slipt threshold for maximum impurity reduction
for all sub-nodes. The above process is repeated until the threshold value
requirement is satisfied, thus resulting in generation of a forest of trees.
Impurity is often represented by Gini index, which can be calculated
using the following formula:

Gini t( ) � 1 −∑K

k
P

k
t

( )[ ]2

(5)

where Gini(t) is the Gini index at node t, P(kt) is the ratio of k
category sample size by the total sample size at node t, and K is the
number of sample categories at note t.

Bagging approach is used as the key algorithm in RF, and each
tree in the forest is trained by a randomly selected sample set. The
output of the results is an average of results for all the trees, as shown
below:

F x( ) � mean ∑n

i
f i x( )( ) (6)

where F(x) is the output result, f i(x) is the result for tree i, and n is
the number of trees in the forest.

3.2.2 XGBoost
XGBoost algorithm is a classification prediction approach based

on the iteration of multiple decision trees by Tianqi Chen (Chen and
Guestrin, 2016), and boosting is the key algorithm in XGBoost. The

FIGURE 5
The prediction performance of four methods on validation dataset (The closer the scatter distribution is to the 1:1 line, the better the prediction
results).
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XGBoost approach starts from an initial model trained on an initial
dataset, and the result is used to reconstruct the next model, and this
process repeats until a satisfactory result is obtained. During this
iteration process, the newly generated tree is used to approximate
the error of the previous tree, and the result can be expressed as the
additive tree models. Aggregation can be used to represent the result,
as shown below:

y t( )
i � ∑t

k�1f
k xi( ) � y t−1( )

i + f n xi( ) (7)

where y(t)i is the model prediction result for the t iteration, f k(x)
is the prediction result for tree k, and t is the number of tree
models.

During the iteration process, XGBoost use an approach similar
to the one for decision tree, that is, traversing of classification of all
feature parameters and using an objective function OBJ to evaluate
the performance. Splitting is performed when OBJ increment
surpasses pre-determined threshold, and the OBJ can be
expressed as in the following:

OBj � ∑n

i
l yi, �yi( ) +∑t

i
Ω f i( ) (8)

where the first item on the right is the differentiable loss function
used to measure the distance between predicted value �yi and the
object value yi which is differentiable, and the second item Ω is
penalty for model’s complexity, which is used to reduce the risk of
over-fitting.

3.2.3 Deep neural networks
The multi-layer network proposed by Hinton in 2006 opened

the door for deep learning (Hinton et al., 2006). Multi-layer
perceptron (MLP) is composed of input, hidden (multiple),
output layers with full connection between neighboring layers.
Each layer can be treated as a logistic regression model, and
neuron parameter can be calculated via a traversing approach as
shown in Eq. 9:

ani � σ ∑K

k�1w
nm
ik *amk( ) (9)

FIGURE 6
The prediction residual of four methods on validation dataset.
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where ani is the i-th neuron in the nth layer, K is number of
neurons in the neighboring layer m, wnm

ik is the calculation
coefficient for two neurons (ani , a

m
k ), and σ is the activation

function to provide non-linear modeling capability for the networks.

3.3 Optimization of hyper-parameters

The hyper-parameters in an ML model are very important in
affecting the performance of the models, so identifying the proper
setup of hyper-parameters is an important task in building ML
models. In this study, based on the Optuna framework of Bayesian
optimization, we optimize the important hyper-parameters in the
three selected ML models. For RF, the hyper-parameters are
maximum depth of decision tree (Max_depth), the number of
trees (Num_boost_round), the minimum sample size for splitting
(Samples_split) and the minimum sample size in a leaf (Samples_
leaf). For XGBoost the hyper-parameters are maximum depth of the
decision trees (Max_depth), learning rate (Learning_rate), number of
decision trees (Num_boost_round), fitting parameter (Gamma) and
normalization parameters (Alpha, Lambda). Similarly, for DNN, the
hyper-parameters include learning rate (Learning_rate), number of
network layers (N_layers) and sample size in one training (Batch_
size). Mean Squared Error (MSE) of the model results was used as the
control parameter to determine the hyper-parameters and MSE can
be expressed as in the following Equation:

MSE � 1
N
∑N

i
yi − �yi( )2 (10)

where N represents the number of samples, yi is the object value of
i-th sample, �yi is the predicted value of the i-th sample.

The MSE and the average training time for the hyper-parameter
optimization of the 3 ML models are shown in Table 1, and the
training process is visualized in Figure 4.

3.4 Results for the four models

The traditional model by Yoojoong Choi et al. is used as the
baseline model, and the results by the three proposed machine
learning models are compared against it from the baseline model at
periods of 0.01, 0.2, 1, and 3 s. The results are shown in Figure 5
where the horizontal axis is the actual Amp while the vertical axis is
the predicted Amp. For further observing the prediction error of the
model, we calculate the residual and the result is shown in Figure 6,
where the residual can be calculated based on Eq. 13 which represents
the model prediction error. As can be seen clearly from Figures 5, 6, the
results from the three machine learning models show much less
scattering and smaller residual, indicating better accuracy than it by
the traditional approach. To further analyze the prediction accuracy of
the three proposedmodels,R2 andmean absolute error (MAE) are used
to assess the three models for the training, testing and validation
datasets. The results are shown in Figure 7, whereR2 represents the ratio
of explainable portion in the overall squared summation divided by the
predicted squared summation. The closer R2 is to 1, the better the
prediction results. R2 and MAE can be expressed in the following
equations.

FIGURE 7
R2 and MAE distribution of the three machine learning models for training, testing and validation datasets.
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R2 � 1 − ∑N
i�0 yi − �yi( )2

∑N
i�0 yi − yi( )2 (11)

MAE � 1
N
∑N

i
yi − �yi( ) (12)

Residual � yi − �yi (13)
where N represents the number of samples, yi is the object value of
the i-th sample, �yi is the predicted value of the i-th sample, and yi is
the mean value of the object value.

From the R2 distribution in Figure 7 it can be concluded that DNN
has smaller values than the values by both XGBoost and RF for training,

testing and validation datasets. RF has higherR2 value than it byXGBoost
for the training dataset, but lower values for both the testing and
validation datasets, indicating an overfitting trend by the RF model,
which may lead to less generalization capability in future predictions.
From theMAE distribution in Figure 7, it can be seen that DNN has the
highest values in all three datasets, and RF has lowerMAE than XGBoost
for the training dataset, but it has higherMAE thanXGBoost for both the
testing and validation datasets. Based on the above observation, it can be
concluded that the DNN model performed the worst, and RF model
showed some over-fitting tendency, while the XGBoost model
performed the best in predicting the site amplification factor.

FIGURE 8
Generalization testing of actual events with different Vs30 (black line is the actual amplification while the red dashed line is the predicted
amplification). The A−F figures represent seismic motion prediction validations for different earthquake events and site conditions, with earthquake
events and site conditions presented as legends in each figure.
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To further study the generalization capability of the
proposed XGBoost model, 6 events with different Vs30 values
outside the training dataset were chosen to verify the

amplification prediction results, as shown in Figure 8. As can
be seen from Figure 8, for different Vs30, the predicted
amplification factor is pretty close to the actual ratio,

FIGURE 9
Scattering plots for feature parameters and their corresponding SHAP values.
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indicating good stability and generalization capability of the
proposed model.

4 Explanation of the predicted results

Although machine learning has been increasingly applied in
many areas with great success, it is still considered a “black box”
approach with little reasonable explanation of the results. In this
study the SHAP approach is introduced to explain the prediction
models proposed. SHAP was originally constructed by Lundberg
(Akiba et al., 2019) in 2017 as an explanationmodel, and its core is to
calculate the contribution (SHAP values) of each feature parameter
based on collaborative game theory to reflect the contribution of
each parameter in the prediction. The calculation of SHAP value can
be expressed in the following.

SHAPf eature x( ) � ∑
set: f eature∈set

set| |* F
set| |( )[ ]−1

yset x( ) − yset\f eature x( )[ ] (14)

where yset(x) represents the model prediction when feature
parameters are set and F is the feature number.

For assembled tree models, SHAP method considers each
feature parameter as a contributor, and the summation of
contribution value from every parameter will lead to the final
prediction assessment, as in the following (Lundberg and Lee,
2017):

y � SHAP0 +∑F

i�1SHAPi (15)

where y is the predicted result by the model, and SHAP0 is the
average prediction for all samples in the training dataset. SHAPi

represents the SHAP value of the i-th feature parameter.
It should be noted that the effect of each feature parameter on

the prediction has been studied in the past (Liu and Lei, 2005), but
those studies did not consider the coupling effect of other feature
parameters in the analysis. Based on collaborative game theory,
SHAP approach can well represent the contribution by each feature
parameter via SHAP value in the prediction results accounting for
the coupleinge effect of feature parameters, and the contribution can
be both positive and negative, thus well suited for explaining the
prediction results (Zhang, 2020).

4.1 Contribution of each feature parameter

As explained in previous sections, XGBoost performed the best
in the prediction, therefore it was selected to predict site
amplification factor at 6 periods (0.01, 0.2, 0.6, 1, 2, and 3 s) and
the corresponding SHAP values were calculated. For observation of
the relationship between feature parameter and SHAP value,
scattering plots were provided in Figure 9 for all 6 parameters at
the 6 periods. From Figure 9 we can make the following
observations.

1. SHAP value increases with Vs30 when Vs30 is small, but
decreases when Vs30 is large, representing a negative
correlation between SHAP value and Vs30. This negative
trend increases with increasing period value. The positiveTA
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correlation when Vs30 is small indicates that the predicted value
for soft soil sites is bigger than actual value, and this over
prediction is worse for longer periods. This observation is
comparable to the conclusions in previous studies (Emel et al.,
2014; Wojtuch et al., 2021), validating the results by this study
and providing an evidence to show that SHAP analysis can well
explain the model results.

2. There is generally a negative correlation between Mag and its
SHAP value, representing over prediction by the model for
smaller earthquakes.

3. There is no clear correlation trend between station altitude and its
SHAP value when the period is short (0.01 and 0.2 s). When the
period increases, the SHAP value is big when the altitude is small,
and the SHAP value increases with decreasing station altitude,
representing over prediction at low altitude for long periods.

4. There is obvious negative correlation between bedrock
acceleration (Acc_rock) and SHAP value, which means that
the model overpredicts the site amplification when Acc_rock
is small but underestimates the amplification when Acc_rock is
big. This observation is also supported by results by Beresnev
(Walling et al., 2008), which may be because of non-linear effect
of the site.

5. From the perspective of SHAP calculation, the SHAP values for
Depth and R do not show a particularly obvious trend.

4.2 Feature parameter importance

The SHAP value analysis has provided a good picture of the
impact by each feature parameter, and to further quantify the impact
of each parameter on the prediction results, importance analysis was
performed for all the feature parameters in this study. In a typical
XGBoost model, importance can be ranked using different measures
(Gain, Cover, Weight) but the conclusion can be different if using
different measures, so it is hard to decide which measure is the best
for application. Since SHAP value represents the contribution of
each feature parameter on the prediction result, we can use the

average of the SHAP value to objectively represent the importance of
each feature parameter and rank the absolute mean SHAP value to
decide on the importance of each parameter. The results are shown
in Table 2. The same results are graphically represented in Figure 9
for better comprehension. As can be seen from both Table 2 and
Figure 10 Vs30, Mag, S_Altitude and Acc_rock have relatively large
influence on the prediction results while R and Depth show less
influence with Vs30 having the largest impact and Depth having the
least impact. These results may serve as good reference for future site
amplification studies.

5 Conclusion

Based on the observed ground motion between 1997 and 2019 and
station information from the KiK-net, a large database was assembled
that included both the site amplification factor and 6 feature parameters.
Three prediction models for site amplification factor based on machine
learning were proposed and prediction results were compared against
the result by a traditional approach at 6 different periods. Extensive
analysis was conducted to find the best prediction model. SHAP
analysis was used on the XGBoost model to provide better
explanation of the prediction results and assess the impact and
importance of the 6 feature parameters at 6 different periods. The
following observations can be made based on this study.

1. In terms of predicting site amplification effect, machine learning
algorithms are significantly better than traditional regression
methods. Among the three machine learning approaches
studied, XGBoost performs the best, followed by RF and DNN.

2. Comparison with the actual ground motion records for site
amplification verifies the performance of the XGBoost
prediction model, demonstrating huge potential of machine
learning in site amplification factor prediction.

3. In the SHAP analysis, Vs30, Acc_rock and Mag are significantly
negatively correlated with the predicted value, and S_Altitude is
negatively correlated for large periods.

FIGURE 10
Feature importance ranking.
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4. Of the 6 feature parameters, Vs30 has the largest impact on the
prediction results, followed by Mag, S_Altitude, Acc_rock, R and
Depth of the hypocenter.

These conclusions can be used to better quantify the effect of site
condition and provide reference for future studies on site conditions.
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