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Despite coupling fractions being extensively used in the interseismic period, the
coexistence of locking and creeping mechanisms and the correlation between the
coupling fraction and locking depth remain poorly understood because of the lack of
a physical model. To overcome these limitations, in this study, we propose a coupling
fraction model for interpreting the motion of non-fully coupled strike-slip faults
based on the classic two-dimensional strike-slip fault model and the superposition
principle. The model was constructed using numerous tiny, alternating creeping and
locking segments. The deformation produced by themodel is the same as that of the
classic two-dimensional strike-slip fault, except for the scale factor. The model and
definition of the coupling fraction can be perfectly integrated. Based on the model,
we put forward a varying decoupled fraction with depth model, which considers the
depth-dependent coupling fraction. The two models provide deep insights into the
deformation characteristics of quasi-arctangent curves produced by non-fully
coupled strike-slip faults and the local and macroscopic characteristics of fault
locking in the interseismic period.
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1 Introduction

Dislocation theory, which interprets fault-motion-based deformation on the surface, has
become an important physical model since the elastic rebound theory was put forward (Reid
1910; Chinnery, 1963; Okada 1985, 1992; Matsu’ura et al., 1986; Sun and Okubo, 1993, 1998;
Wang et al., 2003; Steketee, 1958; Pan, 2019; Dong et al., 2021). The simplest representation of
dislocation along an infinitely deep and long strike-slip fault is shown in Figure 1A. Savage and
Burford (1973) reported the equation for the velocity of the model (SB73 model)—represented
by a straight and vertical fault in an elastic half-space, in which uniform slip equal to the free slip
rate occurs on the fault below the depth, above which the fault is fully coupled—as follows:

v � s
π
tan−1 x

d
( ), (1)

where x is the distance from the fault and d is the locking depth, which means that the fault
above d is fully coupled/locked, whereas the fault below d is fully creeping. The parameter s is
the free slip rate below d (Figures 1A, B). The curve produced by the SB73 model is an
arctangent function (Figure 1B). Furthermore, the coupling fraction (or fault locking), which
quantifies the slip deficit on the patch of a seismogenic zone relevant to the free creep below the
patches, was introduced to describe the locking degrees from the shallow to the deep parts of the
fault (McCaffrey et al., 2000; McCaffrey, 2002; McCaffrey, 2005; Scholz, 2007). The coupling
fraction δ is defined as follows:
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δ � 1 − Sc
S
, (2)

where s is the free slip rate and sc represents the creeping part of the
non-fully coupled fault. Based on negative dislocation theory
(Matsu’ura et al., 1986), the locking degrees of faults can be
obtained by the inversion of surface deformation on each patch
and used to estimate the seismic risk of the fault (Jiang et al., 2015;
Zhao et al., 2020; Li et al., 2021a; Li et al., 2021b; Jian et al., 2022; Li
et al., 2022).

Although the coupling fraction has been widely used in the
interseismic period, questions remain regarding the coexistence of
locking and creeping mechanisms, and the correlation between the
coupling fraction and locking depth, because of the lack of a physical
model. Why can the slip and lock happen at the same time during fault
motion, and what is the physical meaning of the coupling fraction? In
this study, an appropriate two-dimensional coupling fraction (CF)
fault model is proposed for interpreting the motion of non-fully
coupled strike-slip faults based on the SB73 model and the
superposition principle. In addition, a varying decoupled fraction
with depth (VDFD) model is established, based on the CF model,
to expand the model’s applications. Two models interpreting the
motion of the non-fully coupled strike-slip fault can help us to
understand why and how the faults can be creeping and locking at
the same time.

2 Model with non-fully coupled strike-
slip fault

In our discussion, a fault segment that is fully coupled or locked is
called a locking segment, and a fault segment that is fully creeping or
slipping is called a creeping segment. The length of the fault segment is
called the segment length, and the function Cf(d, L) represents the
surface slip distribution by the fault segment, for which the vertical
distance from the upper edge of the fault to the surface is d and the

segment length is L (Figure 2A). Based on the superposition principle
and the SB73 model, the CF and VDFD models are proposed in this
study.

2.1 Model of the strike-slip fault with a finite
locking segment length

The model for the slip distribution of the strike-slip fault with a
finite locking segment length can be expressed as follows
(Figure 2A):

Cf d, L( ) � s
π

tan−1x
d
− tan−1 x

d + L
( ). (3)

It can be constructed based on the superposition principle and the
SB73 model, or directly derived from screw dislocation (Savage and
Burford, 1973; Savage, 1990; Segall, 2010).

2.2 Construction of the CF model

Based on the model mentioned previously, the locking segment is
laid from the surface to depth d and the fault segment below d, where
the segment length L is divided into n patches and the segment length
of each patch is Δd, with Δd � n

L. The creeping segments with segment
lengths of θ · d are then laid on the random position of each patch
(Figure 2B). Therefore, the total surface deformation Cf(d, L) is the
sum of the surface deformation of each creeping segment based on the
superposition principle:

Cf d, L( ) � ∑n

i�1
s
π

tan−1 x
dxi

( ) − tan−1 x
dxi + θ n

L

( )[ ], (4)

where d≥ 0, 0< θ ≤ 1, i � 1, 2,/n, and dxi represents each of the
upper edges of the creeping segment, which is a random value in the
interval [d + (i − 1)Δd, d + iΔd − θΔd], i � 1, 2,/n. When n is very

FIGURE 1
(A) Classic 2D strike-slip fault model and (B) produced surface deformation (redrawn according to Savage and Burford, 1973). A dextral strike-slip fault
with a slip rate of 10 mm/a and a locking depth of 10 km was used as an example.
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large, Cf(d, L) approaches a result which is θ · s
π (tan−1xd − tan−1 x

d+L)
(Figure 3). Therefore, the CF model Cf (d, L, θ) is expressed as
follows:

Cf d, L, θ( ) � limn→∞ ∑n

i�1
s
π

tan−1 x
dxi

( ) − tan−1 x
dxi + θΔd

( )[ ].
(5)

This model represents the surface deformation caused by
numerous tiny creeping segments that are separated by locking
segments. As shown in Figure 2B, the creeping part of the fault
segment with segment length L is discontinuous in depth when n
is very large.

We applied the Lagrange mean value theorem, ∀i, as follows:

tan−1 x
dxi

( ) − tan−1 x
dxi + θΔd

( ) � −θL
n
·d tan−1x

ζ( )
dζ

∣∣∣∣∣∣∣∣∣∣ζ�ζ i
,

where ζ i ∈ [dxi, dxi + n
L]

∴Cf d, L, θ( ) � −θs
π

lim
n→∞∑n

i�1

L
n
·d tan−1x

ζ( )
dζ

∣∣∣∣∣∣∣∣∣∣ζ�ζ i
� −θs

π
∫d+L

d

d tan−1x
ζ( )

dζ
dζ � θs

π
tan−1x

d
− tan−1 x

d + L
( ), (6)

where θ is called the “decoupled fraction” or “fault creeping” in
Formula 6 (strict proof is provided in the Supplementary Material).

The CF model is derived from the superposition principle and the
SB73 model, which ensure the correctness of the model in theory. The

FIGURE 2
Red and white patches represent creeping and locking segments, respectively. (A) Model of the strike-slip fault with a finite locking segment length.
Surface deformation is s

π (tan−1 x
d − tan−1 x

d+L). (B) Schematic of the coupling fraction fault (CF) model construction.

FIGURE 3
Curves obtained from the numerical simulation of Cf(d, L). θ value is 0.4, d is 10 km, L is 10,000 km (without considering the actual situation, only for the
validation of the model), s is πmm/a, and the thick blue line is θ · sπ (tan−1 x

d − tan−1 x
d+L). Red and black dashed lines are the curves of Cf(d, L)when n = 100. The

curves are over- or underloaded because of the random positions of creeping segments in each patch; yellow dashed line (n = 10,000) and blue line overlap.
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construction of the CF model shows that numerous, tiny creeping
segments alternate with the locking segments. The results of the CF
model illustrate that the sum of the deformation by these creeping
segments is the same as the deformation by the large creeping segment
in Figure 2A, except for the scale factor θ. Figure 3 shows the results of
the comparison between Cf(d, L, θ) and Cf(d, L). When n is not
large enough, which also means that the creeping segments are not
small enough, the curves are over- or underloaded because of the
random positions of creeping segments in each patch. When n
increases, Cf(d, L) and Cf(d, L, θ) quickly coincide.

2.3 Correlation between θ and δ

The θ parameter in the CF model is derived from superposition
and the SB73 model, whereas δ is defined by the equation (McCaffrey,
2002). In this study, the correlation between θ and δ is discussed. First,
Cf(0, L, θ) and Cf(d,∞, θ) must be derived using Formula 6
(Figure 4):

Cf 0, L, θ( ) � limd→0 Cf d, L, θ( ) � θs
π
· π

2
· sgn x( ) − tan−1x

L
( )

� θs
π
· tan−1L

x
, (7)

Cf d,∞, θ( ) � limL→∞ Cf d, L, θ( ) � θs
π
· tan−1x

d
, (8)

where sgn(x) is the signum function. Based on the negative dislocation
(Matsu’ura et al., 1986), the slip distribution of the strike-slip fault with
the coupling fraction δ can be expressed as follows:

s
2
sgn x( ) − δs

π
tan−1 d

x
( ),

where s
2 sgn(x) is the free slip rate and δs

π tan
−1(dx) is the co-seismic

deformation produced by δs.

0
s
2
sgn x( ) − s

2
tan−1 d

x
( ) − 1 − δ( )s

π
tan−1 d

x
( )[ ]

� s
π
tan−1 x

d
( ) + Cf 0, d, 1 − δ( ). (9)

Formula 9 shows that the deformation produced by the coupling
fraction is equal to the sum of the SB73model andCf(0, d, 1 − δ). The
equation θ � 1 − δ � Sc

S illustrates that the CF model explains the
coupling fraction well because θ represents the ratio of the
creeping part of the fault segment. Therefore, based on the CF
model, δ can be interpreted as the ratio of the total length of
discontinuous locking parts in Cf(d, L, θ) to L (the correlation
between θ and δ in layered faults is discussed in the
Supplementary Material).

FIGURE 4
(A) Cf(0, L, θ) and (B) Cf(d,∞, θ).

FIGURE 5
Model of the strike-slip fault with a depth-dependent θ value.

Frontiers in Earth Science frontiersin.org04

Zou et al. 10.3389/feart.2023.1059300

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1059300


2.4 Model with depth-dependent decoupled
fraction

Based on the CF model, the model of the fault with a θ value
varying in depth was studied (VDFD model). The model with θ

varying in depth is shown in Figure 5. It can be divided into
patches: [L0, L1], [L1, L2],/[Ln−1, Ln],/. L0 � 0. The decoupled

fraction is θdp−i in patch [Li−1, Li], i � 1, 2/n. Based on the CF
model, the total deformation generated by patches is presented as
follows:

stotal x( ) � s
π
·∑n

i�1θdp−i · tan−1 x
Li−1

( ) − tan−1 x
Li

( )[ ].
We then applied the Lagrange mean value theorem, ∀i, as follows:

FIGURE 6
Examples of θ(l) values and the corresponding deformation. (A) θ(l) increases from the surface to underground 80 km; (C) θ(l) is 0 above 30 km and
1 below 30 km, which is the SB73 model; (E) θ(l) fluctuates from the surface to 80 km; (B,D,F) corresponding surface deformation. The shape of curve (B) is
similar to the arctangent curve.

FIGURE 7
Schematic of the superposition of the decoupled fraction, which increases with depth; fault A = fault B + fault C. The corresponding deformation satisfies
the equation. Red, black, and blue lines represent the deformation of faults (A, B, and C,) respectively.
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stotal x( ) � − s
π
·∑n

i�1θdp−i ·
dtan−1 x

l( )
dl

∣∣∣∣∣∣∣∣∣∣l�lξi
· Li − Li−1( ) lξi Li−1, Li[ ].

When θdp−i continuously varies with depth,
θdp−i(i � 1, 2/n)0θ(l), the length of each patch is very small,
that is, n → ∞:

stotal x( ) � limn→∞ − s
π
·∑n
i�1
θdp−i ·

dtan−1 x
l( )

dl

∣∣∣∣∣∣∣∣∣∣l�lξi
· Li − Li−1( ).

Therefore, the deformation of the VDFD model can be expressed
as follows:

stotal x( ) � s
π
∫+∞

0

θ l( ) · x
x2 + l2

dl, (10)

where s is the free slip rate, x is the distance from the fault, and l is
the vertical distance from a certain depth to the surface. The θ(l)
represents the function of θ with respect to l, where 0≤ θ(l)≤ 1. We
defined the function of the coupling fraction with respect to l as
δ(l) � 1 − θ(l). The equation of stotal(x) is similar to the distributed
slip (Aki and Richards, 1980; Matthews and Segall, 1993). stotal(x)
is derived from the CF model, and θ(l) has a clear physical
meaning. The critical function θ(l) controls the slip distribution
of the fault. In this study, several examples of θ(l) and the
corresponding deformation are provided (Figure 6). Figure 6A
indicates that θ(l) gradually increases from the surface to the
underground. Figure 6C indicates that θ(l) is fully locked above

30 km and fully creeping under 30 km, representing the
SB73 model with a locking depth of 30 km. Figure 6E shows the
fluctuation of θ(l) from the surface to the underground. Figures 6B,
D, F show the corresponding curves. The VDFDmodel, which has a
flexible θ(l), can produce more complex slip distributions than the
SB73 and CF models.

3 Discussion

3.1 Why is the shape of the coupling fraction
deformation curve, which decreases with
depth, similar to that of the arctangent curve?

The decrease in the coupling fraction with depth means that the
decoupled fraction increases with depth. This study discusses the
reason for the similar shapes of the curves for the arctangent
function and decoupled fraction, which increase with depth. As
shown in Figure 7, the decoupled fraction increases from the
surface to d and is fully creeping below d, which is equal to the
sum of faults B and C (Figure 7). Fault C is the SB73 fault, which
generates the arctangent curve. Based on the CF model, the fault
segment near the surface, which should produce large deformation,
generates small deformation because of the small decoupled
fraction in fault B. Hence, fault C dominates the shape of the
whole curve. Therefore, the curve of fault A is similar to the
arctangent curve.

FIGURE 8
Deformation of step θ(l) approaching continuous θ(l). (A,C) Step θ(l) (black line) approaching continuous θ(l) (red line) with different steps. (B,D)
corresponding deformation. Red and blue lines are based on continuous θ(l) and step θ(l), respectively.
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3.2 Correlation among the coupling fraction,
locking depth, and value of the locking depth
based on curve fitting

Locking depth is the parameter in the SB73 model, which
considers full coupling above the depth and full creeping below
the depth. The curve produced by the SB73 model is an
arctangent function. The coupling fraction δ, which changes
between 0 and 1, varies with depth. When δ is 1 above a
certain depth d0 and 0 below the d0, then the d0 can be
considered the locking depth in the SB73 model. Sometimes
the curves produced by the coupling fraction are similar to
arctangent curves (Figure 7). By fitting curves that
approximate the arctangent function with the SB73 model, we
can obtain a value of the locking depth. The value reflects the
average variation of the coupling fraction with depth. The
quantitative correlation must be further studied.

3.3 Correlation between the deformation
caused by step θ(l) and continuous θ(l)

When inverting the coupling fraction on the fault, the fault plane is
generally divided into many small patches, and the coupling fraction
on each patch is a constant equivalent to replacing the continuous
coupling fractions in practice with step ones. In this study, the
correlation between the deformation caused by step θ(l) and
continuous θ(l) in two dimensions is discussed based on the
VDFD model. Based on Section 2.4, Formula 10 means the
mapping from θ(l) to stotal(x). The mapping is proven to have
mathematical continuity and uniqueness (proof is provided in the
Supplementary Material). Uniqueness means that there are no two
different values of θ(l) that produce the same stotal(x), which shows
that there are no multiple solutions in theory. Continuity means that if
θ1(l) and θ2(l) are similar, then stotal−1(x) and stotal−2(x) are also
similar.

FIGURE 9
(A) Numerical simulation of the effect of asperity impediment using the three-dimensional (3D) numerical manifold method (NMM), which is useful for
the simulation of discontinuous deformation as fault motion (Shi 2001; Wu et al., 2020). First, we set up a 3D research area and confining pressure.
Subsequently, we pushed (two blue arrows) in opposite directions (AEFD inward and BGHCoutward). The red-lined box represents an asperity; the side length
is r. The displacement of the push is 10 mm. A row of measuring points PQ line was set up in ABCD. (B) Vertical deformation of the measuring points; the
deformation for a side length of the asperity of 2000m is represented by the green dashed line; the deformation for a side length of the asperity of 10,000 m is
represented by the red dashed line. (C) Smeans the free slip rate. Small and numerous asperities without large asperities, <smeans the value of creeping rate is
smaller than the free slip rate S; (D) small and numerous asperities in the lower part and a huge asperity on the top part of the fault; (E) small and numerous
asperities on the top part of the fault.
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As shown in Figures 8A, C, the step θ(l) is used to replace the
continuous θ(l). Figures 8B, D illustrate the difference between the
deformations based on step θ(l) and continuous θ(l). The number of
steps in Figure 8C is higher than that in Figure 8A, which is closer to
the continuous θ(l). Therefore, the curve based on step θ(l) in
Figure 8C is closer to that based on continuous θ(l), compared
with that in Figure 8A. Thus, more steps yield results closer to the
actual θ(l) but also indicate more unknown numbers with respect to
the inversion. Therefore, the dense layout of global positioning system
(GPS) stations can increase the data density of deformation, helping to
improve the accuracy of the inversion of the coupling fraction, which
may be hard to achieve at present because of the lack of sufficient GPS
stations for some strike-slip faults. Three-dimensional models can be
more complex because of lateral heterogeneity, which must be further
studied.

3.4 Physical meaning of the coupling fraction

The CF model is obtained from the SB73 model and the
superposition principle. Therefore, its mathematical correctness is
guaranteed. One aim of this study was to explain the physical meaning
of the coupling fraction. Based on the aforementioned discussion, we
know that locking segments in the CF model could be tiny, numerous,
and alternating with creeping segments. Based on microscopic and
macroscopic views of the fault, fully coupled fault segments and non-
fully coupled ones exist, respectively. The fault plane contains small
and large asperities. Based on the magnitude–frequency correlation, it
is known that the smaller the size, the greater is the number of
asperities. Therefore, small asperities are widely distributed on the
fault plane. The results of the numerical simulation show that the
effect of an asperity impeding the creep of the fault diminishes by
~90%when the distance is larger than 3–5 times the size of the asperity
(Figures 9A, B). The fault plane contains numerous small asperities,
which are all at certain distances from each other and impede each
other’s motion. Although impediments lead to full coupling in local
areas containing small asperities (e.g., black dashed box in Figure 9D),

numerous impediments reduce the slip rate of the whole fault plane
and the coupling fraction forms macroscopically. The test board
results also show that when patches are very small, the alternate
creeping and locking patches can also produce arctangent curves
macroscopically (Figures 10A, B). Thus, the macroscopic fault slip
rate should be less than that of the local area. Therefore, the fault slip
rate obtained from repeating events (which may be closer to the free
slip rate) is often greater than that based on the GPS velocity field (Li
et al., 2011; Zhang et al., 2022). The physical meaning of the coupling
fraction is the ratio of the total area of the small asperities to the fault
area when the small asperities are distributed everywhere.

Based on Section 2.2, we know that 1 − θ represents the ratio of the
total area of numerous small asperities on the fault plane to their
surrounding areas. The creeping rate of the fault with s becomes
smaller than s because of many small asperities. If the fault plane
contains numerous small but no large asperities, the fault creeps at a
rate smaller than s (Figure 9C). If the lower part of the fault contains
many small asperities and the top part contains a giant asperity, the
deformation is equivalent to that of the SB73 model with a slip rate
smaller than s (Figure 9D). If the top of the fault contains a large
number of small asperities and no asperity is observed in the lower
part, the deformation is the sum of the SB73 model and Cf(0, L, θ),
the step interval is θs, and the slip rate is s (Figure 9E). The large
asperity and many small asperities determine the characteristics of
surface deformation, but no matter how the small asperities are
distributed, the far-field slip rate is often smaller than the free slip
rate, s. The size of asperities is not infinitesimal, so the physical model
is not the same as the mathematical model. The random positions of
the asperities affect the shape of the deformation curve, which is
similar but not identical to the arctangent curve (Figure 3). Therefore,
it is possible that the surface deformation curve produced by a non-
fully coupled strike-slip fault deviates from the arctangent curve. We
can only approximate the shape of the arctangent curve because the
distributions of a huge number of small asperities with certain sizes on
the fault plane are unknown. In addition, limitations of this study exist
due to the current models: 1) the models mentioned in this study are
based on semi-infinite elastic bodies, so the transverse inhomogeneity

FIGURE 10
Results of test board fault. When the number of patches is 100 × 100 � 10000, the deformation curve is very close to the arctangent function. (A) Test
board fault; green dash line means measurement points, s � 10mm/a and d � 20km; (B) curve made by the test board fault and the SB73 model with
s � 5mm/a and d � 20km.
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and the influence of viscoelastic bodies are not considered in the
models, and 2) the positions of creeping segments are random but laid
on a relatively small range (Figure 2B), and the segment length of
creeping segments is equal. In practice, the segment length of the
creeping segments should be unequal and the positions should be
more random. These problems are closer to reality andmust be further
studied in the future. Based on the aforementioned discussion, we have
known that the far-field slip rate of the fault (or the secular slip rate)
could often be smaller than the free slip rate. We could only obtain the
secular/far-field slip rate by GPS velocity. The terms “secular/far-field
slip rate of fault” and “free slip rate” should be distinguished.

4 Conclusion

Based on the SB73 model and the superposition principle, a CF
model of the motion of non-fully coupled strike-slip faults was
constructed using numerous tiny, alternating creeping and locking
segments. The slip rate of the deformation produced by the CF model
is θs, where s is the free slip rate. The definition of the coupling fraction
δ is interpreted by the CFmodel. A VDFDmodel is proposed based on
the CF model. The models with non-fully coupled strike-slip faults
provide insights into the complexity of the motion of strike-slip faults:
1) the surface deformation is generated by the fault slip rate s with
numerous small asperities, but the shape is equal to that of the
deformation based on a lower slip rate θs without asperities; 2) the
meaning of the coupling fraction is the ratio of the total area of the
small asperities to the fault area when the small asperities are widely
distributed; and 3) according to the VDFDmodel, the curve generated
by the non-SB73 model is sometimes similar to an arctangent curve.
The CF and VDFD models provide deep cognition for understanding
the deformation characteristics of non-fully coupled faults.
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