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Noise attenuation is a key step in seismic data processing to enhance desired signal
features, minimize artifacts, and avoid misinterpretation. However, traditional
attenuation methods are often time-consuming and require expert parameter
selection. Deep learning can successfully suppress various types of noise via a
trained neural network, potentially saving time and effort while avoiding mistakes.
In this study, we tested a U-net method to assess its usefulness in attenuating
repetitive coherent events (e.g., pumpjack noise) and to investigate the influence of
gain methods on denoising quality. We used the U-net method because it preserves
fine-scale information during training. Its performance is controlled by network
parameters and improved by minimizing misfits between true data and network
estimates. A gainmethod is necessary to avoid the network’s parameter optimization
being biased toward large values in data. We first generated synthetic seismic data
with added noise for training. Next, we recovered amplitudes using an automatic gain
control (AGC) or a 2D AGC (using adjacent traces’ amplitudes). Then, a back-
propagation algorithm minimized the Euclidean norm cost function to optimize
the network parameters for better performance. The updating step size and direction
were determined using an adaptive momentum optimization method. Finally, we
removed the gain effect and evaluated the denoising quality using a normalized root-
mean-square error (RMSE). Based on RMSE, the data pre-processed by the 2D AGC
performed better with RMSE decreasing from 0.225 to 0.09. We also assessed the
limitations of the network when source wavelets or noise differed from the training
set. The denoising quality of the trained network was sensitive to the change in the
wavelet and noise type. The noisy data in the limitation test set were not substantially
improved. The trained network was also tested on the seismic field data collected at
Hussar, Alberta, by the CREWES Project. The data had not only excellent reflection
events but also substantial pumpjack noise on some shot gathers. We were able to
significantly reduce the noise (favorably in comparison to traditional techniques) to
considerably allow greater reflection continuity. U-net noise reduction techniques
show considerable promise in seismic data processing.
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1 Introduction

Seismic signals of interest are usually burdened to some degree by undesirable events and
other noise signals (Kumar and Ahmed, 2021). Noise is often divided into incoherent and
coherent components. Incoherent noise is generated by a host of processes but manifests itself
as largely unpredictable, inconsistent, or random (Zhong et al., 2021). On the other hand,
coherent noise has a more evident and correlatable relationship in time and space but, by
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selection, is not of interest itself. Onshore reflection surveys often have
source-generated noise (Onajite, 2013; Chopra and Marfurt, 2014)
such as ground roll, multiples, and other undesirable vibrations (e.g.,
pumpjacks and road traffic).

Noise can contaminate seismic data and ultimately cause artifacts
in seismic migration and inversion that may eventually lead to poor-
quality seismic images and incorrect interpretation (Calvert, 2004; Cai
and Zelt, 2019). Therefore, noise attenuation is often applied in the
early stages of seismic processing. As an indispensable step in
processing, many denoising approaches have been developed and
successfully used by the community, for example, the prediction
filtering method (Canales, 1984; Soubaras, 1994), the median
filtering method (Stewart, 1985; Liu et al., 2009), and the sparse
transform-based techniques (Trad et al., 2003; Liu et al., 2016).
These methods can perform effectively on noisy data but often
require some experience in parameter selection.

Because of advances in computer technology and algorithms, deep
learning has become an alternative to many processing approaches in
different fields. Successful denoising examples in medical images and
computer vision have been shown recently (Tian et al., 2020), inspiring
geoscientists to perform deep learning on seismic data. Most studies
suppressed random seismic noise in the time domain. They have
demonstrated the networks’ capability on synthetic and field data
(Mandelli et al., 2019; Wang and Chen, 2019; Zhang et al., 2019; Saad
and Chen, 2020; Liu et al., 2021). Random noise was considered to be
Gaussian-distributed and trained in different types of denoising
convolutional networks. In their results, the AI-based methods
performed the same or even better than the traditional methods,
such as f-x deconvolution, curvelet transform, and non-local mean
methods. Compared with random noise, coherent noise is much more
problematic in reality. Random noise can be suppressed by stacking
data at the same source location, but coherent noise cannot be.
Additionally, different characteristics of coherent noise lead to the
fact that we cannot process them as a whole in deep learning (Yu et al.,
2019). That is to say, applying deep learning to the types of coherent
noise never seen before may not achieve the expected enhancements.
Geoscientists have currently studied removing coherent noise such as
multiples (Yu et al., 2019), ground roll (Yu et al., 2019; Wang et al.,
2020), and seismic interference noise (Sun et al., 2022) via deep
learning. However, few published examples have focused on
coherent noise generated by undesirable vibrations.

Human activities may induce more significant amplitudes than
random and source-generated noises if they are near the seismic
receivers. Moreover, they may form noise stripes or events that can
cover a substantial area or volume of the shot gather with strong
amplitudes if the activities are somewhat continuous, repetitive events
(e.g., pumpjacks, factories, traffic, or pipelines). Traditional denoising
methods often transform a dataset into a particular domain to enhance
the difference between signals and suppress undesired signals (Henley,
2009; Zhou, 2014). However, they often underperform when the
difference is unclear or when the signals and noise overlap. The
noise strip is one of the signals that are difficult to suppress by
traditional methods because its frequency content can overlap with
those of signals and amplitude may smear. Therefore, we investigate
deep learning as an alternative suppression method.

Similar to how humans learn through trial and error, deep
learning iteratively searches for signal features in examples and
attempts to predict answers (Goki, 2016). Features are data pieces
that can be quantified for analysis. Perhaps less like the human brain,

deep learning integrates algorithms in layers to form a neural network
for learning and further prediction. The advantage of deep learning is
that no prior geophysical parameter is necessary. We leveraged a
U-net, one type of neural network, to conduct denoising (Ronneberger
et al., 2015). The U-net can preserve different scales of features to
increase network precision. Many successful denoising examples using
the U-net have been published (Mandelli et al., 2019; Klochikhina
et al., 2020; Liu et al., 2021; Saad and Chen, 2021).

This study demonstrates how a U-net attenuates strong noise
strips caused by undesirable vibrations. The input data were pre-
processed using two gain approaches to adapt to the network training.
Recovering amplitude can avoid the training process being biased
toward the large values in seismic data. One gain approach is an
automatic gain control (AGC), which recovers amplitude along the
time axis and is widely used in seismic interpretation. The other is a 2D
AGC proposed in this study. It recovers amplitude considering
adjacent receivers’ amplitude, so we think it has the potential to
perform better on local noise, such as noise strips. The denoising
quality is quantified in the synthetic example, and the trained network
is later performed on field data. In the synthetic example, we show that
gain approaches influence denoising performance because uniform
amplitude is crucial to the predictability of the network; in the field
data example, we verified the network’s feasibility by comparing the
denoised results with and without deep learning processing in a
workflow.

2 Methodology

We input seismic data to a U-net network for denoising network
training. First, we performed gain and normalization before training to
adapt the dataset to the neural network. During training, we updated
network parameters iteratively. Last, we evaluated the denoising
quality using a normalized root-mean-square error (RMSE).

2.1 Data pre-processing

We tested two gain methods to assess their influence on the
network’s performance. Amplitude in seismic images influenced by
geometric spreading, scattering, and attenuation normally has
differences in orders of magnitude. The wide range of seismic
amplitude causes network updating to focus on large amplitudes
and learn inefficiently. Therefore, we need to scale the data to a
narrower range. After we applied a 200-Hz high-cut filter to the data,
two gain approaches were used (Eqs 1, 2). One was the general AGC
commonly used in seismic interpretation which was applied trace-by-
trace, and the other was a 2D AGC proposed in this study. Their
scaling functions are expressed as follows:

Gain method 1:

g t( ) �
����������������
1
N

∑N

i�1x t + i · dt( )2
√( )−1

. (1)

Gain method 2:

g(t) � (
����������������������������������
1

NM
∑N

i�1 ∑M/2

ii�−M/2
x t + i · dt, x + ii · dx( )2

√
)−1, (2)

where x is the trace amplitude, t is the time, N and M are the
number of samples in the time and distance axes, respectively, and
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dt and dx are the sample interval and the receiver spacing. N and
M were set at 126 and 30, respectively. The general AGC recovers
amplitude trace-by-trace using a moving time window. Multiplying
recorded seismic data with the reciprocal of the root-mean-square
values within the window can enhance weak signals and reduce
strong signals. The 2D AGC method extends the usage of the
moving window. It recovers amplitude using root-mean-square
values from adjacent receivers’ moving time windows. By doing so,
the 2D AGC method can provide smoother images when local
seismic noises exist, such as dead traces and noise strips caused by
undesirable vibrations.

Second, given the noisy seismic signals y, the gained signals were
normalized to between 0 and 1 via

y* t( ) � y t( )g t( ) −min( )/ max −min( ), (3)
where y* means the normalized signals and max and min are the
maximum and minimum amplitudes of the noisy gained data,
respectively. The normalization was performed individually on each

shot gather. Note that the gain methods applied beforehand can avoid
large spikes, zeroing out most of the values in formula (3).

2.2 U-net architecture

A U-net architecture is sketched in Figure 1—the shape explains
its name. In the figure, the left and right sides are the encoder and
decoder, respectively. The encoder comprises four stacks of two
convolution layers and a max-pooling layer. It compresses the
inputs into low-dimensional spaces to extract features. On the
other hand, the decoder consists of four stacks: two convolution
layers, a transposed convolution layer, and two convolution layers
before final output generation. The decoder has the same feature
dimension and channel number as the encoder in the same stage,
except for the layers with skip connections. Contrary to the encoder,
the decoder transforms the features into estimates of the true data. The
skip connections bridge the encoder and the decoder. They attach the
features from the encoder to the decoder, doubling the channel
number and enhancing the true data estimate on a finer scale. The
channel and feature dimension settings followed Ronneberger et al.
(2015), as shown in Figure 1. The goal of the learning process can be
simplified using the following formula:

x* � UNet(y*;Θ)), (4)
where UNet denotes the U-net and Θ includes all the parameters of
the kernels and the mean and standard deviation of the training data.
We trained the network to learn how to denoise data and generate
clean data by iteratively adjusting the parameters. To understand how
the U-net learns and is designed in detail, please refer to Ronneberger
et al. (2015).

FIGURE 1
Architecture of the convolutional auto-encoder trained for denoising (modified from Ronneberger et al. (2015)). The network consists of an encoder and
a decoder. The encoder on the left side compresses inputs into low-dimensional spaces to extract features, and the decoder on the right side uses the features
to predict data.

TABLE 1 Model parameters.

Model width 5,000 m

Model depth 2,000 m

Layer number 80–160

P-wave velocity 600–4,000 m/s

VP/VS 1.7–2.0

Q value 20, 30, and 40

Smoothing depth* 150–300 m

*The model values are smoothed using a 2D Gaussian filter with a standard deviation ranging

from 1 to 2.
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2.3 Parameter optimization

Network parameters are optimized by minimizing misfits between
predicted and expected values along the fastest-decreasing direction. We
use the Euclidean norm, also known as the L2 norm, to measure the
misfit. It is commonly used in geoscience and successfully attenuates noise
in many recently published studies (Mandelli et al., 2019; Saad and Chen,
2021). Given the clean signal x* and noisy data y* as defined in Eq. 4, the
cost function C(Θ) can be expressed as

C Θ( ) � 1
n
∑n

i�1 x*
i − y*

i( )2, (5)

where n is the total sample number of x* and y* in one batch. Then, we
backward-propagated the misfit and optimized the parameters in the
layers. The updating direction is determined using the adaptive
momentum optimization method (Adam) proposed by Kingma
and Ba (2014). The Adam method is computationally efficient and
requires low memory. In this study, the decay rates β1 and β2 were
assigned 0.9 and 0.999, respectively, and ϵ, the constant value
stabilizing the update ratio, is equal to 10–8.

After completing training, we used the normalized RMSE to
quantify the denoising quality. Note that the gain methods were
applied during the training. We removed the gain effect before
calculating RMSE to fairly evaluate the efficiency of the deep

learning-based denoising method using different gain methods. The
normalized RMSE is defined as

normalized RMSE �
��������
D − d( )2
D2

√
, (6)

where D and d stand for the clean and denoised data, respectively. A
lower value means a better denoising result with the denoised result
being closer to clean data.

3 Results and discussion

This section shows the denoising results of synthetic data followed
by field data. We first introduced the dataset in each example and then
demonstrated the corresponding denoising results. In the synthetic
data, input data for training were seismic records calculated using the
viscoelastic finite difference algorithm on models built with
randomized elastic properties (Bohlen and Saenger, 2006). We
showed the denoising results and the limitation test of the trained
network. In the field example, we applied the trained network to field
seismic data (acquired by the CREWES Project at the University of
Calgary) from Hussar, Alberta.

3.1 Synthetic data generation

We built models with randomized elastic properties and calculated
the corresponding viscoelastic waveforms using the open-source
SOFI2D developed by Bohlen and Saenger (2006). The model
parameters are summarized in Table 1, and Figure 2 shows one of
the models. The models were 2 km deep and 5 km wide with 1-m grid

FIGURE 2
Models with randomized elastic properties for viscoelastic waveform modeling. Four properties are needed, including P-wave and S-wave velocities,
density, and a seismic quality value that expresses energy attenuation in a media.

TABLE 2 Influence of the gain settings on denoising performance.

Gain method Average RMSE

AGC 0.092

2D AGC 0.091

Note: The average RMSE of the validation set is 0.225.
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size in both directions. We first randomly picked 80–160 depths to be
the layer bottoms. Each layer was assigned P-wave velocities (VP),
which increased from the shallow to the deep layers, with VP ranged
from 600 m/s to 4,000 m/s. Then, we introduced low-velocity layers
and faults into the models, making them more complex. Therefore,
70% of layers had low-velocity layers with velocities 1%–20% lower
than their initial velocities; and 30% of the models had a faults dipping
0–5°. To prevent strong reflections near the surface, we smoothed the
shallow layers of VP models. The range of smoothing was decided
randomly above a depth between 150 and 300 m. The S-wave
velocities (VS) and densities were later estimated from the VP

models. A VP/VS value between 1.7 and 2 was randomly selected
for each layer. We used Gardner’s equation to estimate the densities
(Gardner et al., 1974). Last, the Q values used to attenuate the seismic
amplitude were arbitrarily set at 20, 30, or 40 in each model. The same
Q model has no value difference, but different models have individual
Q values.

Then, the seismic waveforms were calculated, and various noise types
were added for training. The receivers were deployed along the free
surface with a 10-m spacing. For each model, we forward-calculated a 2-s
waveform record. The source location was randomly selected from the
receiver locations and had a 50% chance of being a vertical or explosion
source. The source wavelets were the Ricker wavelets, with central
frequencies arbitrarily chosen from 10 to 20 Hz. When the waveform
modeling was completed, we added the following four types of noises to it:
1) high-level Gaussian noise on 0%–20% traces, 2) repetitive hyperbolic

noise at fixed locations, 3) random noise generated using Gaussian noise
on all traces, and 4) real noise from the field data. The maximum number
of repetitive hyperbolic coherent noise we added to the data in one shot
gather was 5. Their recurrence frequency is between 5 and 20 Hz, the
propagation velocity is between 300 and 800 m/s, and the wavelet is the
Ricker wavelet with the central frequency randomly assigned from 5 to
20 Hz. Overall, we generated 1,600 models and their corresponding
waveform data pairs—clean and noisy data.

We divided the data into a training set, a validation set, and a test set.
In the training set, overfitting almost always occurs if the training time is
long enough. Therefore, we stopped iteration once the misfit did not
decrease in the validation set and assessed the model’s predictability on
the test set. A total of 150 data pairs were randomly selected as the
validation or test set, and the remaining 1,300 data were used for the
training process.

3.2 Denoising results of synthetic data

The network training was conducted on an NVIDIA V100 GPU and
an Intel Xeon CPU.With a learning rate of 10–3, the learning process was
completed within 60 epochs. The learning rate is a tuning parameter that
controls the step size of moving toward theminimum of themisfit at each
iteration. Within 60 epochs, the misfits of the training and validation
datasets sharply decreased before 20 epochs and both turned flat
afterward. Please refer to the Supplementary Material to understand in

FIGURE 3
Synthetic clean data, noisy data, and the noise are shown with the AGC applied. The noisy data, the superposition of the clean data and the noise, has an
RMSE equal to 0.29.
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detail how the misfits of the training and validation sets decrease with
epochs. Although training 60 epochs took about 27 h to finish, denoising
one noisy shot gather via the trained network only needed
60 milliseconds. In practice, instead of inputting an entire shot gather,
we did patch-wise training because of GPU memory limitations. We
followed Mandelli et al. (2019), segmenting the seismic images into
smaller training patches and making them half overlap with adjacent
patches in the same image for better denoising efficacy. The patch size was
256-by-256, and the total number of patches for training and validation in
one epoch was 15,600 and 1,800, respectively.

3.2.1 Effect of gain settings
The trained U-net successfully denoised the synthetic data. Table 2

shows the average RMSE after denoising decreases from 0.225 to
0.092 and 0.091 for the AGC and the 2D AGC, respectively. One of the
clean and noisy (RMSE = 0.29) datasets from the test set and the added
noise shown in Figure 3, including two repetitive coherent noises, are
located at 2,000 m and 2,650 m, respectively. In the noisy data, the
surface waves dominate at the near offset. As offset increases, signal
amplitude declines rapidly, and noise gradually dominates, blurring
the reflection signals. Therefore, denoising approaches are necessary
to improve the coherency of the reflection signals. The denoised results
pre-processed by two gain methods are shown in Figure 4 with the
AGC applied. The repetitive coherent and other noises, including
random noise and dead traces, were generally removed from the noisy
data in both results. We will compare traces at their actual values
without applying the gain later in zoomed images.

Denoised results depended on the gain settings of the input data,
while the noise was generally attenuated. The 2D AGC did not work
efficiently at the near offset during training. Figure 5 shows the
denoised and desired clean results with the gain methods applied
as well as the corresponding residual and removed noises. The residual
and removed noise panels are the clean and noisy data subtracted from
the denoised data. In Figure 5B, the reflection signals near 1,000 m
were indiscernible in the denoised result and the clean data. The 2D
AGC uses a moving window to scale traces from their adjacent
receivers’ amplitude, which leads to the strong ground roll at the
near offset, dramatically lowering the amplitude of the reflection
signals. The small amplitude contributes less to the network
parameters’ optimization, so the denoising performance is less
effective at the near offset. The same situation may also happen
near noise strips. Therefore, the window design for the 2D AGC
should be carefully considered and has a larger spatial range than the
influence range of the strip.

Additionally, the general AGC had uneven amplitude in its
results. Because the entire shot gather had a wide range of
amplitudes, we cropped a section from it with coherent repetitive
noise. The zoomed images are shown in Figure 6 in their actual
amplitudes. The repetitive, coherent noise was attenuated by the
networks using either the AGC or the 2D AGC. The improvement of
the signals was clearer when we compared the clean, noisy, and
denoised traces. The strongly oscillating noise was suppressed, and
the denoised traces of the gain methods 1 and 2 fit well with the clean
trace. However, the denoised data pre-processed by gain method

FIGURE 4
Denoising comparison of two gain methods. Images are applied using the AGC. The results using method 1 (the AGC) have an RMSE of 0.09 and those
using method 2 (the 2D AGC) have an RMSE of 0.07.
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1 have uneven amplitudes between traces, which do not occur in the
zoomed images of the clean data and the denoised result gained by
method 2.

Among the two gain methods we used in this study, we
preferred the 2D AGC method. While the 2D AGC method did
not work efficiently at the near offset, its denoised results have
better fidelity with no uneven amplitude between traces. According
to the testing results, having uniform amplitudes in seismic gathers
is crucial for the network. The uneven amplitude was due to the
neglection of adjacent traces’ amplitudes in the AGC method, as

shown in Figure 5A. It uses a moving window, scaling the
amplitude along the time axis. When traces are contaminated by
strong noise during the entire recording time, gain method
1 underperforms because signals are decreased to extremely
small values, which makes it difficult for the network to update
parameters. On the other hand, the 2D AGC uses a 2D window to
scale traces from their adjacent receivers’ amplitudes, so input data
for training have a smoother amplitude change. Therefore, we
applied the 2D AGC to the field data within a constraint offset
range.

FIGURE 5
Desired clean data and the predicted denoised results in network training with amplitude recovered using the (A) AGCmethod and (B) 2D AGCmethod.
The residual and the removed noise are, respectively, the clean data and the noisy data subtracted from the denoised results.
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3.2.2 Limitation test
We carried out a limitation test of the network before applying it to

the real data. The following network was trained using data pre-
processed by the 2D AGC because its denoising results had higher
fidelity. The deep learning method performs inefficiently if inputs
significantly differ from the training set (Yu et al., 2019). However,
inputs are never identical to the training set. Their maximum
acceptable difference is vague, so we investigated the possible
situations when the trained network can directly perform on data
and when re-training a network may be needed.

We generated seismic data with a source wavelet and noise types
different from the training set to study whether the trained network
can denoise successfully. The models for waveform modeling were
built as mentioned previously. The source wavelets were the Ricker
wavelet with a central frequency of 15 Hz and a sine-cubed wavelet
with a central frequency of 30 Hz and a half-period duration. The sine-
cubed wavelet of time f(t) can be expressed as

f t( ) � 0.75πfC sin π t × fC( )( )3 if t ∈ 0, 1/fC[ ] else f t( ) � 0. (7)

FIGURE 6
Zoomed images of the synthetic data pair and the denoised results. The traces noted as green lines in panels are used to compare denoised results gained by
the AGC (method 1) and the proposed 2D AGC (method 2). The trained network using no matter the AGC or the 2D AGC for energy recovery can suppress the
strong oscillation noise. However, the denoised result pre-processed by the AGC method has uneven amplitude change that does not exist in the clean data.

FIGURE 7
Synthetic data pairs for the limitation test. Waveformmodeling was calculated using the (A) Ricker wavelet and (B) sine-cubedwavelet. The noise types in
noisy data include Gaussian noise, coherent noise in the magenta boxes, three linear noises, and spike noise.
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FIGURE 8
Limitation test results with three different noise types and two source wavelets, including the (A) Ricker wavelet and (B) sine-cubedwavelet. The zoomed
denoised results are located in the magenta boxes in Figure 7.

TABLE 3 Denoising performance on different types of noises and wavelet (in terms of RMSE).

Wavelet type Noise type Noisy data Denoised data

Sine-cubed wavelet 0.278 0.500

Sine-cubed wavelet Linear noise 0.282 0.501

Sine-cubed wavelet Spike noise 0.283 0.661

Sine-cubed wavelet Linear noise and spike noise 0.286 0.662

Ricker wavelet 0.200 0.108

Ricker wavelet Linear noise 0.202 0.110

Ricker wavelet Spike noise 0.203 0.559

Ricker wavelet Linear noise and spike noise 0.206 0.560

Note: The same Gaussian noise and coherent noise are added to all noisy data.
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In the equation, t denotes the time and fC is the central frequency.
Then, we added not only the noise types mentioned previously but also
linear and spike noises to investigate how the network reacts to noise
never trained before. The clean and noisy data with all kinds of noise
are shown in Figure 7. To discuss the denoising quality, we zoomed in
on the magenta box, as shown in Figure 8.

Expectably, the denoising network’s performance is relevant to
the wavelet and noise types in the training set. Table 3 lists the
RMSEs of the noisy data with different noise types and those of the
corresponding denoised results. The trained network did not
denoise the data modeling with the sine-cubed wavelet no
matter what noise was added, as shown in Figure 8B. Although
the repetitive coherent noise was attenuated in the noisy data
modeling with the Ricker wavelet, the network did not achieve
the expected results once the spike noise was included, as shown in
Figure 8A. Therefore, we recommend re-training the network if the
source wavelet differs from the training set and de-spiking the
seismic data before applying the trained network to the data.
Depending on the spikes’ character, one can remove them as
outliers in the data, directly apply a frequency filter, or use de-
spiking algorithms.

3.3 Denoising results of field data

The field dataset was collected in an experimental survey led by the
Consortium for Research in Elastic Wave Exploration Seismology
(CREWES) at the University of Calgary to investigate the effect of low

FIGURE 9
(A) Example of field data in a shot gather and the corresponding denoising results of (B) the processing flow and (C) the flow with the U-net denoising
step. Two magenta boxes indicate the locations of the pumpjack noise.

FIGURE 10
Processing flow.
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frequencies on seismic reflections (Margrave et al., 2012). The site is
situated near Hussar, Alberta. Dynamite and two different vibroseis
sources were tested with five different receiver types. Among them, we
selected the dataset generated by dynamite and recorded using the 10-
Hz geophones. A measure of 2 kg of dynamite created the most
apparent signals among all sources, and the 10-Hz geophones
commonly used in the industry did not introduce instrument noise

in the low-frequency range. The seismic line is 4.5 km long with a
rolling source and fixed receivers spaced 20 m and 10 m, respectively.

The seismic reflection methods use reflectors at different subsurfaces
to image the underground structure. The reflection signals have
hyperbolic patterns in the time-offset domain and can represent the
locations of the subsurfaces after themove out correction and the stacking
process. However, in our dataset, noise, including ground roll, pumpjack

FIGURE 11
(A) Example of field data in a CMP gather and the corresponding denoising results of (B) the processing flow and (C) the flow with the U-net denoising
step. Two magenta boxes indicate the locations of the pumpjack noise. The traditional processing flow can improve the continuity of the reflection signals
contaminated by the pumpjack noise; because the frequency range of the signal and noise overlap, some flat noise remains. However, if the U-net denoising
step is applied, the flat noise does not exist.

FIGURE 12
Seismic reflection images (A) without and (B) with the trained U-net applied in the processing flow. With the U-net denoising step included in the
processing flow, the seismic reflection image is clearer below 2000 m and less affected by the pumpjack noise. Between 200 and 400 CMP, some vertical
discontinuities caused by the pumpjack noise are suppressed by the U-net method.
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noise, and noise due to human activity, seriously contaminates the
reflection signals, as shown in Figure 9A. Therefore, we aimed to
preserve reflection signals while attenuating different types of noise.
The processing flow is shown in Figure 10. Noise suppression is
applied after the geometry setup and static correction. We used the
radial filter to attenuate ground roll and the noise of pumpjack and
human activity because radial filtering effectively reduces the noise with a
specific velocity at specific frequency band levels (Henley, 2003; Saeed
et al., 2014). Subsequently, we sequentially removed shot and receiver
effects, compensated for energy loss, and improved temporal resolution.
After velocity analysis, we applied surface-consistent residual statics and
trim statics to improve the continuity of the reflection signals in the final
profile. Last, we used FX deconvolution to suppress random noise.

The signal improvement in the field data is hardly quantified as
we carried out for the synthetic data because the noise-free seismic
data in the field are never known. Instead, we qualitatively evaluated
the field data’s improvement by comparing the coherency
improvement of reflection signals in different domains. Raw data
(Figures 9A, 11A) and denoising results are shown in shot gathers
and CMP gathers with and without the trained U-net applied. The
corresponding final seismic profiles are shown in Figure 12. The
pumpjack noise and ground roll were suppressed by radial filtering,
as shown in Figures 9B, 11B. The pumpjack noise initially masked
some hyperbolic reflection signals in the raw data (magenta boxes in
Figures 9, 11). After radial filtering was applied, the reflection signals
had better continuity along their hyperbola. Hence, we expected that
the filtered reflection signals on the final seismic profile had been
improved. However, some flat noise remained. It is because the
frequency range of the noise and the signal overlap. We tried
replacing the radial filtering with the curvelet-based filtering in
the flow, but the flat noise remained. Additionally, we expected
that the noise can be suppressed after the deconvolution because the
wavelets of the source and the noise are different; however, the noise
is still apparent after processing. On the other hand, the reflection
signals were more coherent if we used the U-net to denoise the data.
Figure 9C shows the denoised results with the U-net applied in a shot
gather. The pumpjack and random noises were suppressed
successfully. No flat noise is seen in the gather. The better
denoising performance of the U-net is also seen in the CMP
domain, as shown in Figure 11C. With the U-net applied, the
reflection signals initially masked by the pumpjack noise had
better coherency in the CMP gather than without the U-net
shown in Figure 11B. In final seismic profiles, as shown in
Figure 12, the difference between with and without the U-net
denoising applied is clear at the deeper layers. Below 2,000 m, the
profile with the U-net applied has clear reflectors and fewer vertical
discontinuities caused by the pumpjack noise.

4 Conclusion

We used a deep learning technique (U-net) to suppress coherent
noise in seismic shot gathers. Our results indicate that U-nets can be
effective at seismic noise attenuation. Gaining the seismic amplitudes
prior to noise attenuation is necessary and influences the final
denoising quality. We found that using a 2D AGC method to scale
amplitude is effective. The performance of the trained network heavily
depends on the training dataset. Before applying the trained network

to the field data, we tested the denoising performance of the trained
network on data with noise different from the training set. Re-training
of the noise reduction process may be required if the training data
significantly differs from the actual data.

Repetitive coherent noise is difficult to suppress by traditional
methods, which require noticeable differences between signals and
noise. However, the neural network extracted noise features during
training and successfully attenuated noise without detailed
geophysical assumptions. Compared with the processing flow with
radial filtering and deconvolution, the U-net improved the noise
suppression and showed promise as another tool in our signal
enhancement kit.
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