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The effects of global warming are felt not only in the Earth’s climate but also in the
geology of the planet. Modest variations in stress and pore-fluid pressure brought on
by temperature variations, precipitation, air pressure, and snow coverage are
hypothesized to influence seismicity on local and regional scales. Earthquakes can
be anticipated by intelligently evaluating historical climatic datasets and earthquake
catalogs that have been collected all over theworld. This study attempts to predict the
magnitude of the next probable earthquake by evaluating climate data alongwith eight
mathematically calculated seismic parameters. Global temperature has been selected
as the only climatic variable for this research, as it substantially affects the planet’s
ecosystem and civilization. Three popular deep neural network models, namely, long
short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), and
transformer models, were used to predict the magnitude of the next earthquakes in
three seismic regions: Japan, Indonesia, and the Hindu-Kush Karakoram Himalayan
(HKKH) region. Several well-known metrics, such as the mean absolute error (MAE),
mean squared error (MSE), log-cosh loss, and mean squared logarithmic error (MSLE),
have been used to analyse these models. All models eventually settle on a small value
for these cost functions, demonstrating the accuracy of these models in predicting
earthquake magnitudes. These approaches produce significant and encouraging
results when used to predict earthquake magnitude at diverse places, opening the
way for the ultimate robust prediction mechanism that has not yet been created.
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1 Introduction

Climate change is defined as an alteration in the climate as measured by statistical
parameters such as the global mean surface temperature. The term “climate” here refers to
the long-term pattern of meteorological conditions that has prevailed over the past three
decades. Climate is made up of many factors, such as temperature, humidity, precipitation,
air pressure, wind speed, evaporation, cloud cover, condensation, radiation, and
evapotranspiration. The climate and temperature of Earth are increasingly influenced by
both natural forces, such as variations in solar radiation, and human activities, such as the
burning of fossil fuels and deforestation. Changes in the relative amounts of solar radiation
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and the Earth’s emitted infrared radiation are the root causes of
climate change. Observations indicate that the global temperature
rose by 1.4°F (0.78°C) between 1900 and 2005 (Singh and Singh,
2012). Several additional climatic events, such as extreme heat
waves, glacial melting, sea ice loss, soaring sea levels, frequent
heavy rains and ocean acidification, are intimately related to
global warming. The effects of global warming are not restricted
to climate change alone; the entire planet is grappling with the effects
of an energy imbalance. This imbalanced energy might manifest as
isostatic rebound, a volcanic explosion, or an earthquake. Human
activities have been the primary source of the planet’s warming
during the past few decades (Intergovernmental Panel on Climate
Change, 2014).

According to records, there has been a significant rise in
temperature in the Northern Hemisphere over the past
1,400 years (Pachauri et al., 2014). The previous three decades
have seen the bulk of this warming. Figure 1 displays the annual
variance in global surface temperature relative to the 20th century
average. Climate change has led to an increase in sea level, a decrease
in ice cover, and exacerbation of severe meteorological conditions,
such as intensified tropical cyclones and severe droughts. Increased
emissions of greenhouse gases from power plants, industry, and
automobiles exacerbate this warming, which impacts not only the
Earth’s climate but also the geology of the planet (Singh and Singh,
2012). This growth primarily originated from the burning of fossil
fuels and growing urbanization. Additionally, enhanced climatic
forcing perpetuates this warming owing to rising quantities of
greenhouse gases (McCormick et al., 2007).

Climate change has sparked widespread concern among
scientists and policymakers in recent years. As the Earth warms,
Greenland and polar regions’ ice sheets and mountain glaciers melt,
lessening the glacial load on the crust. The crust relaxes and
rebounds as these glaciers melt. Glacial melting has boosted the
flow of glacial rivers. There has been a massive outflow of water into

the ocean as a result, which might disrupt the delicate equilibrium of
plate tectonics on a global scale (Glick, 2011; Mara and Vlad, 2013).
Solid Earth is unloaded due to the decay of glacial ice sheets and caps
as shown in Figure 2. This unloading can cause crustal deformation
and mantle expansion. (Smiraglia et al., 2007; Pagli and
Sigmundsson, 2008). The crust progressively rises owing to
isostatic rebound because of erosion or glacial melting, causing
crustal deformations and tectonic motion (Larsen et al., 2005).

According to satellite data collected worldwide, glacier mass is
decreasing in the high mountain regions of Alaska, coastal
Greenland, arctic Canada, the southern Andes, and Asia.
Furthermore, significant amounts of water are being discharged
into the oceans (Kaser et al., 2006; Meier et al., 2007; Gardner et al.,
2013; Abdullah et al., 2020). Figure 3 depicts a global summary of the
World Glacier Monitoring Service’s findings on the mass changes of
selected glaciers (Global Glacier State – World Glacier Monitoring
Service, 2021). This figure shows the changes in glacier mass over
time, as measured in millimetres of equivalent water.

Since the Industrial Revolution, it has been largely believed that
global warming has played a major role in rising global sea levels
(Church and White, 2011). Furthermore, it is assumed that the
decay of glacier ice and ocean thermal expansion played a significant
role in global sea-level rise during the 20th century (Church and
White, 2011).

Figure 4 shows the rise in sea level since 1993 (black line).
Thermal expansion (red line) and increased water mostly owing to
melting glaciers (blue line) are just two of the many factors for which
exact estimates are available. As shown in Figure 5, the subsidence of
the crust is initiated by the additional weight imposed by global sea-
level rise. In addition, subsidence of the crust can promote plate
tectonics to counterbalance the increased stress caused by the added
seawater.

Earthquakes occur when the Earth’s tectonic plates move as a
result of a sudden and large release of internal energy. Earthquakes
are one of the most devastating natural disasters. Earthquakes
frequently hit without notice, giving people little time to make
preparations. In addition, earthquakes frequently cause other

FIGURE 1
Global surface temperature (yearly) compared to the average
temperature of the 20th century, Duration 1880–2020. Years that
were colder than normal are shown by blue bars, while years that were
warmer than average are represented by red bars. Source:
Climate.gov (NOAA).

FIGURE 2
Effect of Glacier Melt on Earth’s crust.
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natural disasters, such as surface fault rupture (Bray, 2001), tsunamis
(Jain, Virmani, and Abraham, 2019), snow slides (Podolskiy et al.,
2010), landslides (KEEFER, 1984), soil liquefication (Verdugo and
González, 2015), and fires (Cassidy, 2013), which exacerbate the
crisis. Devastating earthquakes cause deaths (Ambraseys and
Melvilleand, 1983), massive infrastructure damage (Bilham,
2009), societal defeat, and a rapid economic downturn (So and
Platt, 2014). In the last two decades, earthquakes have caused more
than half of all natural disaster-related fatalities (Bartels and
VanRooyen, 2012). The devastating effects of significant
earthquakes can be lessened with timely and accurate predictions
that allow for the adoption of preventative measures. A reliable
forecast indicates an earthquake’s location, time, and magnitude.
These predictions can save many lives and resources. Although
several strategies employing diverse input factors have been offered,
such accurate forecasts are uncommon in past research (Otari and
Kulkarni, 2012). Researchers in seismology and related disciplines
have attempted to identify earthquake precursors. Since the end of
the 19th century, these unusual phenomena have typically occurred
before earthquakes. According to various studies, earthquakes can
be predicted by observations of numerous precursors, such as
temperature increases (Zandonella, 2001; Sadhukhan et al.,
2021b; Sadhukhan et al., 2021c; Maji et al., 2021), ionospheric
analysis (Pulinets, 2004), animal behaviour (Fidani, 2013; Cao
and Huang, 2018), hydrogeological and gas geochemical analysis
(Hartmann and Levy, 2005) and radon gas emissions (Petraki et al.,
2015).

The majority of earthquake prediction techniques rely on the
existence of particular precursors (Ikram and Qamar, 2014).
However, in reality, these precursors often do not materialise with
subsequent seismic occurrences or are hard to recognize, so these
approaches may not always produce desirable outcomes (Wang
et al., 2020). As the precursors do not necessarily occur before every
earthquake, it is exceedingly difficult to generalize and standardize these
prediction systems. This has led to the proposal of novel methods for
future earthquake prediction (Tiampo and Shcherbakov, 2012).

Earthquake prediction can be of two types: long-term and short-
term. Predicting earthquakes within the next several days, weeks, or
months is a very challenging task requiring a great deal of data and
analysis. As a result, it ought to be reliable and accurate, with a
minimum of false positives (Goswami et al., 2018). Short-term
forecasts are commonly used to evacuate a region ahead of an
earthquake. Long-term prediction is based on the timing and
location of past earthquakes. Therefore, the existing tectonic
context, historical data, and geographical information are
evaluated to determine where and how frequently earthquakes
occur. However, it can help define building code standards and
develop emergency response plans.

Earthquake prediction is a vital subject in seismology since
successful prediction can save lives, property, and infrastructure.
Although earthquakes appear to be active and spontaneous, they
often fail to provide favourable outcomes. Numerous technologies,
such as mathematical analysis, artificial intelligence, and machine
learning algorithms, have been proposed to address this issue. Many
different approaches have been used in recent theoretical and
practical investigations of earthquake prediction. Air ionization,
radon migration, latent heat release, variation in surface
temperature, air pressure, relative humidity, cloud formation,
coupling with precipitation anomalies, radio wave propagation,
ionosphere and magnetosphere effects are all climate-associated
variables that have been identified as potential precursors to
future earthquakes (Daneshvar and Freund, 2017).

Earthquake prediction models perform admirably for earthquakes
of moderate magnitude; however, the results obtained with large shocks
are disappointing. Large earthquakes cause the most damage and
concern. As high-magnitude earthquakes are uncommon, it is
difficult to predict them due to a lack of appropriate evidence. After
a decade of effort, the seismology community has been unable to devise
a system for earthquake prediction. Predictions of earthquakes continue
to be impossible due to the inadequacy of current technology to
monitor stresses and pressure changes more precisely through
scientific equipment positioned beneath the crust; hence,
considerable seismic data are always limited. Due to a lack of
multidisciplinary collaboration between seismology and computer
science departments to accurately predict and quantify earthquake
occurrences, earthquake prediction has remained a challenging
endeavour to date. Due to the extremely non-linear and complex
geophysical processes that create earthquakes, no mathematical or
empirical relationship exists between any physically recordable
parameter and the timing, magnitude, or location of a future
earthquake (Panakkat and Adeli, 2007).

The following is the outline of the study: The relevant prior research
is outlined in Section 2. The research’s data and methodology are
described in Section 3, and its analytical methods are presented in
Section 4. The deep neural network models employed in this research
are outlined in Section 5, and their results are discussed in Section 6.
Finally, Section 7 draws the necessary conclusion.

2 Related work

There is increasing evidence in the scientific community
suggesting that climate change also contributes to geological
occurrences such as tremors, tsunamis, and volcanic eruptions. In

FIGURE 3
Variation in the cumulative mass of reference glaciers. The value
is expressed as a meter water equivalent (mwe) compared to 1976.
Source: World Glacier Monitoring Service (WGMS).
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recent years, numerous researchers throughout the world have been
striving to verify the effect of climate change on seismicity. The
occurrence of earthquakes is assumed to be a random and extremely
non-linear process, and no model exists that can predict the exact
time, position, and magnitude of earthquakes. Numerous studies
have been undertaken on earthquake occurrences and forecasts,
yielding a variety of conclusions regarding the subject.

Several studies have revealed significant irregularities in climatic
factors before large earthquakes. Satellite thermal imaging has
revealed long and short-term temperature abnormalities
preceding major earthquakes (Tronin et al., 2002; Pulinets et al.,
2006; Jiao et al., 2018; Pavlidou et al., 2019). These transient
abnormalities might vary by 2°C–4°C between four to 20 days
before an earthquake and gradually disappear thereafter

(Ouzounov et al., 2007). Some unexpected abnormalities were
found above clouds in the atmosphere and the lithosphere
(Sasmal et al., 2021). A variety of factors, such as changes in the
crust’s geophysics, contribute to the occurrence of seismic
foreshocks. The lithosphere-atmosphere-ionospheric coupling
(LAIC) model can be used to defend against these irregularities
(Pulinets and Ouzounov, 2011; Carbone et al., 2021).

Preliminary research was conducted on the aberrant variations
in the enhanced surface-latent heat flux and water vapour anomaly
before the Colima and Gujarat earthquakes (Dey and Singh, 2003;
Dey et al., 2004). Many different climate factors and processes may
influence seismic activity. Changes in many critical climatic
variables often precede severe earthquakes. These include surface
latent heat flow, precipitation, wind speed, cloudiness and vertical

FIGURE 4
Rise in global sea levels as seen through satellite altimeters, Period: 1993–2018. Source: NOAA.

FIGURE 5
Land subsidence caused by additional seawater.
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air flow (Mansouri Daneshvar and Freund, 2021). At many regional
and temporal scales, comprehensive studies utilizing various time
intervals and spatial resolutions indicate increased precipitation
preceding large seismic events. Therefore, a significant positive
relationship seems to be present between seismicity and
precipitation prior to the major shocks (R = 0.711).

Consequently, seismic events foretell climatic abnormalities,
increase precipitation, and create cyclones. Heavy rainfall across
the seismic region within 5 days after a large earthquake was shown
to be substantially correlated with such events (Zhao et al., 2021).
Approximately 74.9% of earthquakes in China were followed by
epicentral rainfall, while 86.6% of earthquakes were accompanied by
seismic area rainfall. Rainfall is more prevalent in earthquake zones
than in the 30-year climatic trends, and earthquakes predominate
during the monsoon season (Zhao et al., 2021).

Increased rainfall has been seen in Iran and the neighbouring
middle east region just before major earthquakes between 2002 and
2013 (Mansouri Daneshvar et al., 2014). The researchers investigated
the geographical correlations between seismic occurrence and
meteorological changes by grouping 39 significant earthquakes into
eight seismological areas. They found moderate and high correlations
(R2) between the preceding precipitation and the magnitudes and
hypocentre depths of large earthquakes. Further studies indicated
that rainfall has the capacity to anticipate earthquake sequences
beginning at least three and a half months in advance. The
estimated lagged correlation demonstrates a positive relationship
between precipitation and subsequent earthquake occurrence days,
with lags ranging from 3 to 103 days (Mansouri Daneshvar et al., 2021).

Even though earthquakes lead to all types of climatic anomalies,
rainfall statistics are largely significant factors in estimating the place
andmagnitude of possible tremors. Extremely dry conditions (drought)
often precede major earthquakes, and then one or more years of above-
average precipitation are usually followed by tremors (Huang et al.,
1979). Fluctuations in surface heat flow around the epicentre zone have
been related to enhanced thermal energy at the Earth’s surface, which is
thought to be the cause of this anomalous precipitation. The increase in
sensible heat flow aids the process of evapotranspiration, which
produces atmospheric water vapour. This might lead to the
formation of clouds and abnormal precipitation. Researchers have
shown that semi-stationary linear cloud development is also
associated with increased seismicity (Guangmeng and Jie, 2013;
Thomas et al., 2015). Abnormal rainstorms over the epicentral area
have also been documented prior to major earthquakes (Mullayarov
et al., 2012; Daneshvar and Freund, 2017).

Some intriguing studies explicitly establish a correlation between
the incidence of earthquakes and the increase in surface
temperature. Begley (2006) claims that earthquakes occur when
nucleation processes release significant amounts of stored energy
along the fault plane. Reduced stress on the crust as a response to

glacial decay generates “isostatic rebound,” which eventually results
in fault resurfacing and increased seismicity. Numerous researchers
have attempted to establish the connection between rising
temperatures and seismic activity (Usman and Amir, 2009;
Usman et al., 2011; Usman, 2016). The study region included
several glaciers. Rising global temperatures caused these glaciers
to melt, relieving pressure on the Earth below. As a result, seismic
activity may have increased, causing the Earth to rebound. Most
earthquakes on the Richter scale were between 3.0 and 3.9, and
seismic activity continued to grow with rising temperatures. Further
research showed that an increase in temperature is associated with
an increase in the number of shallow earthquakes (between 0 and
80 km). A plausible correlation between rising earthquake activity
and climate change was proposed by Mara and Vlad (2013). Glacial
ice sheets cover 10% of Earth’s entire crustal area; hence, any
changes in their extent due to glacier decay would have
significant implications on the planet’s tectonic stability.

The rapid depletion of ice caps is another obvious effect of global
warming. McGuire (2013)’s study suggests that the decline in ice
sheets can also produce earthquakes. He asserted that a rise in global
temperature over several decades triggered the melting of enormous,
thick ice sheets, enabling the crust to bounce back. As global sea
levels continue to rise indefinitely, load-related crust deformation at
ocean basin margins may ultimately “unclamp” coastal faults. There
is substantial evidence of a major relationship between climatic
change and earthquakes during the transition from the previous ice
age, notably in North America and Scandinavia. The environment of
the Northern Hemisphere, notably Alaska, is significantly impacted
by climate change and global warming (Hinzman et al., 2005).

Sadhukhan et al. (2021c) studied the relationships between
earthquake magnitudes and variations in global temperature by
applying signal processing methods. Semblance analysis was used to
verify the association between these two dynamics. The causality test
reveals that the two dynamics are strongly connected, indicating that
one may be expected given the historical data of the other. The authors
then employed a variety of statistical signal processing techniques to
explore the multifractal, non-linear, and chaotic nature of two
dynamics: earthquake magnitude and global temperature variations
(Sadhukhan et al., 2021b). A correlation study determined the degree of
correlation between global earthquake frequency and global
temperature changes (Maji et al., 2021). Additionally, RNN-based
deep learning models are used to verify the relationship between
climate change and seismicity (Sadhukhan et al., 2021a).

Using statistical methods such as correlation and regression
analysis, Masih (2018) investigated the correlation between climate
change and the frequency of earthquakes. Furthermore, the study
asserts that climate change due to global warming triggers the
decline of glacial ice sheets, depressurization of the underlying
rocks and reactivation of faults, thereby classifying the region as

TABLE 1 Magnitude of completeness of earthquake catalogs and range of coordinate bounds considered for different regions.

Regions Latitude range Longitude range (Mc)

Japan 20°N to 45°N 122°E to 153°E 4.3

Indonesia 6°08′N to 11°15′S 94°45′E to 141°05′E 4.3

Hindu-Kush Karakoram Himalaya 16° N to 39° N 61° E to 105° E 4.1
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seismically active with frequent earthquakes. Molchanov (2010)
used correlation analysis to explore the relationship between
climatic change (temperature) and crustal seismicity. He found
that fluctuations in temperature and seismic activity exhibited

comparable tendencies. Evidence was presented by Swindles et al.
(2017) that glacial extent, driven by climate, impacted the frequency
of seismic events and volcanic activity in Iceland throughout
millennia.

FIGURE 6
Cumulative count of earthquakes that occurred in (A) Indonesia, (B) Japan and (C)HKKH Region ordered by decreasing magnitude on a logarithmic
scale (main). Frequency—Magnitude distribution in seismic catalogs of (A) Indonesia, (B) Japan and (C) HKKH Region (inset).
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Based on the preceding discussions, an attempt has been made to
predict themagnitude of the next probable earthquake by evaluating the
climate data along with eight mathematically calculated seismic
parameters. Three widely used deep neural network models, namely,
long short-termmemory (LSTM), bidirectional long-termmemory (Bi-
LSTM), and transformer models, were used to predict the magnitude of
future earthquakes in a given seismic region using climate data and
eight seismic parameters calculated from a predefined number of past
significant seismic events with a predefined threshold magnitude or
greater. Since global temperature has such a profound effect on the
planet’s ecosystems and civilization, it has been chosen as the single
climatic variable for this analysis. The geological structure and features
are the same throughout the study area. This makes it possible to make
accurate models of the relationship between global temperature and
mathematically derived seismic parameters for predicting the
magnitude of the next earthquake. These models can accurately
predict the magnitude of the next approaching earthquake, which is
the significance of this work. In addition, they have a high-performance
metric for accurately forecasting earthquake magnitude ranges.

3 Data and methods

Deep learning-based earthquake prediction research has been
carried out in Indonesia, Japan and the Hindu-Kush Karakoram
Himalaya (HKKH) region. Each of these places has a high frequency

of earthquakes, making them suitable for earthquake prediction
research. The underlying dataset for this research is a temporal series
of historical seismicity for the indicated locations. Global
temperature anomaly data extracted from the global land and
ocean temperature anomaly dataset maintained by the National
Oceanic and Atmospheric Administration (NOAA) of the
United States Department of Commerce has been used as the
experimental dataset (https://www.ncei.noaa.gov/access/
monitoring/climate-at-a-glance/global/time-series). Additionally,
historical seismicity data from the United States Geological
Survey (USGS), which is publicly available at https://earthquake.
usgs.gov/earthquakes/search/, have also been used for this
investigation. This study explored both datasets from January
1921 to December 2020. The coordinate boundaries of these
regions are shown in Table 1, and their catalogs are evaluated to
calculate the magnitude of completeness. The minimum magnitude
below which an earthquake catalogue is deemed incomplete is
known as the catalogue’s magnitude of completeness (Mc).
Among the well-known catalog-based approaches for calculating
Mc, fitting a Gutenberg-Richter model to the observed frequency-
magnitude distribution has received much attention in recent works
(Wiemer, 2000; Pavlenko and Zavyalov, 2022; Yuliastuti et al., 2022).
This method has a major limitation in dealing with a small number
of events in a catalog. In this study, the Gutenberg-Richter law of
seismic magnitude distribution has been deployed, as all the seismic
catalogues used have a wide time frame and a broad experimental
study region for capturing enormous seismic events to computeMc.

This method sorts earthquakes into “bins” based on the number
of occurrences with magnitudes exceeding a predetermined
threshold. The count for each bin is then displayed on a similar
logarithmic scale. If they were statistically accurate, the data would
form a straight line. Although it is nearly impossible to obtain
statistically perfect datasets, we can estimate Mc using this
relationship. When a straight line is fitted to the data, the point
where the data deviate from the line indicates the level of
completeness. Figures 6A–C depict the cumulative count of
earthquakes that occurred by decreasing magnitude on a
logarithmic scale for Indonesia, Japan and the HKKH region,
respectively. Table 1 summarizes the magnitude of completeness
computed for these regions.

In this study, global temperature anomaly data, along with eight
seismic parameters, were utilized to determine the seismic potential
of any region. The parameters are selected based on Gutenberg
Richter’s law of earthquake magnitude distributions, and recent
earthquake prediction research (Panakkat and Adeli, 2007; Panakkat
and Adeli, 2009; Asim et al., 2018). The number of instances in each
of the three datasets varies according to the seismic events recorded
in the catalogues of the individual regions. Before processing seismic
parameter computation, the earthquake database is purged of all
seismic events with magnitudes below the threshold. This eliminates
erroneous or incomplete data in determining seismic parameter
trends. The most recent 100 records prior to each earthquake event
have been considered to calculate these seismic parameters. These
parameters are then used along with global temperature anomaly
data to forecast the magnitude of the next earthquake.

A vector of seismicity characteristics created for each preceding
significant seismic event as well as the monthly global temperature
anomaly are the inputs for the deep neural network. Each seismic

FIGURE 7
Research methodology used in this research.
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zone is unique, and different seismic parameters display various
characteristics. Consequently, independent training of the LSTM,
Bi-LSTM, and transformer models is conducted using 80% of the
available seismic records in the relevant datasets for each area. After
the models have been trained, the results are evaluated against the
remaining 20% of the datasets. Figure 7 depicts the overall flowchart
of the suggested research technique for estimating the magnitude of
an impending earthquake.

3.1 Seismic parameters

The investigation of seismic parameters and their computations
are inspired by the work (Panakkat and Adeli, 2007; Adeli and
Panakkat, 2009; Panakkat and Adeli, 2009). Eight parameters were
derived from seismic catalogs to predict the magnitude of an
imminent earthquake. The most recent n records (n = 100) prior
to each earthquake event are used to calculate these earthquake
parameters. These parameters are then used along with global
temperature anomaly data to forecast the magnitude of the next
earthquake. The parameters are numerical representations of
seismic facts such as the Gutenberg–Richter law, foreshock
frequency, seismic energy release, and typical temporal
earthquake magnitude distribution. Consequently, a feature
vector of eight parameters depicts the region’s internal geological
state prior to each earthquake occurrence.

3.1.1 Time elapsed (T) for the last “n” seismic events
The first seismic parameter addressed in this study is time T,

which reflects the time interval between the last n occurrences, where
n is 100 in our study and t is the time of the earthquake.

T � tn − t1

Most earthquakes are preceded by significant precursor activity,
such as a series of foreshocks. Indeed, some of the most popular
earthquake prediction models (Zaliapin et al., 2003) are based on the
frequency and intensity of foreshocks. The foreshock frequency can
be measured using the T value, which depends on the set magnitude
threshold. A high T value indicates a dearth of foreshocks, which
may indicate a diminished likelihood of a subsequent large seismic
event in many seismic zones. On the other hand, a small T value
indicates a relatively high foreshock frequency and an increased
probability of a subsequent large seismic event.

3.1.2 The mean magnitude (Mmean)
The second seismic parameter is the average magnitude of the

100 most recent earthquakes. It is proportional to the magnitudes of
foreshocks since the seismic activity of magnitude M increases just
before a large earthquake.

Mmean � ∑Mi

n
(2)

Following the accelerated release theory (Bufe and Varnes,
1993), the quantity of energy released by a fractured fault
increases exponentially as the period between earthquakes
decreases. In other words, the measured mean magnitudes of
foreshocks increase just prior to the occurrence of a large
earthquake.

3.1.3 The slope of the Gutenberg-Richter curve
(b—value)

The Gutenberg–Richter inverse power law is utilized to illustrate
the relationship between the number of earthquakes n with a
magnitude equal to or higher than M,

log n( ) � a − bM (3)
where parameter a denotes the intensity of seismicity and parameter
b represents the ratio of minor to major events. These are the two
seismic parameters considered in this study. The b-value determines
the frequency of smaller earthquakes relative to larger ones: the
greater the b-value, the more frequent smaller earthquakes. Multiple
studies link the b-value to the Earth’s crust’s differential stress, with
low b-values seen in highly strained zones or faults and high b-values
in less stressed locations. Using the maximum likelihood (ML)
method, the b-value can be calculated as follows:

b̂ � 1
ln 10( ) Mmean −Mc( ) (4)

where Mc and Mmean are the magnitudes of completeness of the
catalogue and the mean magnitude of past n events (n is 100),
respectively.

3.1.4 The y-intercept of the Gutenberg-Richter
curve (a value)

The values of a and b in the Gutenberg–Richter inverse power
law provide a regression line that can estimate future earthquake
frequencies. The G-R distribution has constant parameters a and b.
The expression below represents the value of a

â � log10
N M( )

T
( ) + bMc ;M≥Mc (5)

where N(M) represents the number of earthquakes of a specific
magnitude M.

3.1.5 Magnitude deficit (ΔM)
Themagnitude deficit is another seismic parameter in this study.

Based on the Gutenberg and Richter (1956) relationship, it measures
the difference between the largest observed magnitude and the
largest predicted magnitude.

ΔM � Mmax ,observed −Mmax ,expected (6)
whereMmax ,observed is themaximummagnitude observed in the previous
n events and Mmax ,expected is the largest magnitude projected by the
inverse power-law relationship in the previous n occurrences. Due to the
probability that an event of the largest magnitude would occur only once
among n occurrences, N = 1, log N = 0, and Eq. 3 yields

Mmax ,expected � a

b
(7)

3.1.6 Rate of the square root of the seismic
energy (dE1/2)

The rate of the square root of seismic energy release (dE) is another
seismic parameter associated with seismic activity. Most seismic zones
are open physical systems with a constant accumulation of energy
induced by lithospheric plate movement. These systems retain relative
equilibrium if frequent low-magnitude seismic activity dissipates the
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increasing accumulation of energy (Roeloffs, 2000). When low-
magnitude seismic activity is halted for an extended period due to
frictional or mechanical causes, the physical system conserves energy;
this phenomenon is known as “seismic quiescence.” When the
accumulated energy exceeds a predetermined level, it is released as a
large seismic event (Tiampo, Rundle, McGinnis, Gross, and Klein,
2002). Hence, the rate at which seismic energy is emitted is a critical
parameter of seismicity in quiescent environments. The following
equation represents the square root of the seismic energy released.

dE1/2 � ∑E1/2

T
(8)

where E1/2 is the square root of seismic energy (E), determined from
the associated Richter magnitude and expressed in ergs by the
following empirical relation.

E( ) � 10 11.8+1.5M( ) (9)

3.1.7 Sum of mean square deviations from the
regression line using the Gutenberg-Richter
inverse power law (η—value)

This metric assesses the degree to which observed seismic data
conform to theGutenberg-Richter inverse power-law relationship. Lower
values indicate that it is more likely that the observed distributionmay be
approximated by the power law. In contrast, larger values indicate
increased unpredictability and the inability of the power law to
represent magnitude-frequency distributions.

η � ∑ log10Ni − a − bMi( )( )2
n − 1( ) (10)

3.1.8 Mean time between characteristic events (µ)
This is the average duration or interval between occurrences of a

particular attribute over the past n instances. According to the elastic
rebound hypothesis (Reid, 1910), certain seismic zones demonstrate
periodic trends in the slow accumulation of stress and eventual release
via large earthquakes. Researchers have shown that the time between
large earthquakes is rather consistent (Kagan and Jackson, 1991). Large
earthquakes of this magnitude are known as typical occurrences. In this
context, magnitudes are providedwithin a certain approximation range.
For example, earthquakes of magnitudes between 5 and 5.5 are
considered to have the same typical magnitude. Ideally, typical
occurrences occur at roughly equal intervals of time. Suppose
ti Charecteristic denotes the observed time interval between
characteristic occurrences of magnitude Mi, and the total number of
characteristic events is represented by nCharecteristic. In that case, the
mean time between characteristic occurrences (µ) can be calculated
using the following equation:

µ � ∑ ti Charecteristic( )
nCharecteristic

(11)

The input of the deep neural network is a vector of seismicity
parameters generated for each prior significant seismic event and the
global temperature anomaly for the month. A collection of seismic

FIGURE 8
Architecture of (A) LSTM, (B) Bi-LSTM and (C) Transformer Model used in this research.
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parameters exhibiting maximum performance in one region may
not do so in other region. Additionally, global temperature
anomalies have a substantial impact on earthquakes. Together
with the global temperature anomaly, all seismic parameters are
employed concurrently to construct a deep learning-based model for
earthquake magnitude prediction. The next section provides an
overview of the deep neural network models utilized in this study.

4 Analytical methods

This section gives a concise summary of the analytical
procedures utilized in this investigation.

4.1 Deep neural networks

Neural network architecture is generally used to implement deep
learning. Deep neural networks use a series of non-linear processing
layers, with basic components operating in parallel. It consists of an
input layer, several concealed layers, and an output layer. Nodes or
neurons connect the various levels. Each hidden layer uses the
output of the preceding layer as its input. In data science, deep
learning has emerged as a powerful technique for tackling previously
intractable problems in the natural world (Sadowski and Baldi, 2018;
Bourilkov, 2019). This is assisted by deep learning’s enhanced
capacity to find intricate patterns in extremely large datasets.

Long-term contextual information is mostly accessible in the
internal states of the network, where these activities are stored.
Recurrent neural networks (RNNs) are a robust modelling method
for such sequential data because of their cyclic connections. RNNs
are highly effective in applications involving the labelling and
prediction of sequences. Recurrent neural networks use inputs
from previously active networks to improve predictions. This
method allows RNNs to employ a dynamic contextual window
over the input sequence instead of the static contextual window
used by feed-forward networks (Sak et al., 2014).

4.1.1 Long short-term memory recurrent neural
network

LSTM networks are a special kind of recurrent neural network
that are designed to recognize the importance of context in making
sequence predictions. LSTM networks were first proposed in
1997 by Hochreiter and Schmidhuber (1997). LSTM is a kind of
RNN that overcomes the difficulties of handling long-term
dependencies (Graves, 2014). In addition, LSTMs do not suffer
from the vanishing gradient problem (Hochreiter, 1998; Gers et al.,
2000). LSTMs have feedback connections, in contrast to deep feed-
forward neural networks. In both context-free and context-sensitive
language learning, LSTM models outperform RNNs (Gers and
Schmidhuber, 2001). In addition to handling single data points
in vectors or arrays, they can handle data sequences. Because of this,
LSTMs excel in processing and predicting time series.

The LSTM model, in contrast to the RNN’s hidden layer
neurons, is made up of a unique collection of memory cells. The
LSTM model is dependent on the state of the entity. The gate
structure filters information to maintain and refresh the state of
memory cells. The gate structure includes input, forget, and output
gates. There are three sigmoid layers and one tanh layer in every
memory cell (Qiu et al., 2020). The forget gate ft of the LSTM unit
determines which cell state information is omitted from the model.
The memory cell translates the previous moment’s output ht−1 and
the current moment’s external information xt into a long vector
[ht−1, xt] to represent the current moment.

FIGURE 9
Learning graph of the LSTM, Bi-LSTM and transformer models
using (A) Indonesia Earthquake Catalogue, (B) Japan Earthquake
Catalogue and (C) HKKH Region Earthquake Catalogue.
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ft � σ Wf. ht−1, xt[ ] + bf( ) (12)

Wf and bf are the forget gate’s weight matrix and bias,
respectively, and σ is the sigmoid function. The forget gate’s
primary function is to monitor how much of the prior cell state
Ct−1 is reserved for the current cell state Ct. The gate outputs a value
between 0 and 1 based on ht−1 and xt, with 1 signifying total reserve
and 0 indicating total discard. The input gate it regulates the amount
of the current time network input xt reserved for the cell state Ct,
avoiding unnecessary data from entering memory cells. The first

step is determining which cell state has to be modified; the sigmoid
layer chooses the modified value, as illustrated in Eq. 13. The
alternative option is to modify the cell state’s data. Using the
tanh layer, a new candidate vector Ĉt is generated to govern the
amount of new information provided, as indicated by Eq. 14.

it � σ Wt. ht−1, xt[ ] + bi( ) (13)
Ĉt � tanh Wc. ht−1, xt[ ] + bc( ) (14)

The final step is to update the cell states of the memory cells
using Eq. 15

Ct � ft*Ct−1 + it*Ĉt (15)
TheOt output gate controls howmuch of the current cell state is

discarded.

Ot � σ Wσ . ht−1, xt[ ] + bo( ) (16)
The final output value of the cell is stated as

ht � Ot*tanh Ct( ) (17)

4.1.2 Bidirectional long short-term memory
recurrent neural network

Bidirectional networks provide significant advantages over
unidirectional networks in a variety of contexts (Cui et al., 2022).
Bidirectional LSTM is derived from bidirectional RNN (Schuster
and Paliwal, 1997), which employs two hidden layers to examine
sequence input in both forward and backward directions. Two
hidden layers are connected to the same output layer through
bidirectional LSTMs. Using positive sequence inputs from time
T − n to time T − 1, the forward layer generates a sequence of
output values, denoted by �h. In contrast, the reverse layer
generates a sequence of values, denoted by h

←
, using inverted

sequence inputs from time T − n to time T − 1. The outputs of the
forward and backwards layers are calculated using the
conventional LSTM Eqs 12–17. The bidirectional LSTM layer
generates the YT output vector, whose elements are determined
using the equation.

yt � σ �h, h
←( ) (18)

Here, the σ function is used to mix the two output sequences. It may be
a function of summation, average, concatenation, or multiplication.
Using earthquake magnitude prediction as an illustration, the final
output of a bidirectional LSTM layer may be expressed in the form of a
vector, YT[yT−n, . . .yT−1], where the last element, yT−1, indicates the
expected magnitude of the next earthquake.

4.1.3 Transformer model
The self-attention-based transformer for sequence modelling

has recently been introduced and has been a tremendous success
(Parikh et al., 2016; Vaswani et al., 2017). In contrast to RNN-based
approaches, the transformer model may access any historical
segment regardless of distance. It excels at recognizing recurring
patterns with long-term dependencies. The performance benefits of
transformer models in prediction have been widely established (Li
et al., 2020). Numerous recent studies have applied it in image,
music, and speech processing (Huang et al., 2018; Parmar et al.,

FIGURE 10
Plot of projected and actual magnitude as a function of time for
the Indonesia earthquake catalogue using the (A) LSTM, (B) Bi-LSTM,
and (C) transformer models.
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2018; Povey et al., 2018). However, scaling attention to extremely
long sequences is computationally expensive since the space
complexity of self-attention rises quadratically with sequence
length (Huang et al., 2018). When forecasting time series with
exact precision and substantial long-term dependence, this
becomes a serious issue. In addition, the space complexity of the
canonical transformer, which rises quadratically with input length L,
may create a memory bottleneck. The sparse transformer (Child
et al., 2019), with a complexity of O(n �

n
√

), and the sparse log
transformer (Li et al., 2020), with a complexity of O(n (log n)2), are

some solutions to this problem. These methods have made it
possible to simulate long-term time series.

The transformer model is composed of encoders and decoders.
Each encoder layer’s primary responsibility is to create data
describing relationships between inputs. In contrast, the decoder
component takes all the encoded data and uses the embedded
context information to produce a new sequence of output values.
Both the encoder and decoder are built of modules that may be
layered on top of one another. The bulk of modules are composed of
multi-head attention and feed-forward layers. The attention
mechanism translates a query and a collection of key-value pairs

FIGURE 11
Plot of observed magnitude against anticipated magnitude
utilizing (A) LSTM, (B) Bi-LSTM, and (C) transformer models on the
Indonesia earthquake catalogue.

FIGURE 12
Error distribution of the (A) LSTM, (B) Bi-LSTM, and (C)
transformer models applied to the Indonesia earthquake catalogue.
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to output in this instance. The encoder consists of six identical layers
with two sublayers stacked together. The first is a multi-head self-
attention layer, while the second is a simple position-wise, fully
connected feed-forward network. In addition, a residual connection
is created surrounding each sublayer, followed by a normalizing
layer. Similar to the encoder, the decoder consists of six layers with
the same sublayers. Furthermore, multi-head attention is applied to
encoder outputs to help in the production of target translations.

The attention function in a transformer is a mapping of a query
and an arrangement of key-value sets to output, with the query, keys,

values, and output all being vectors. The input consists of queries
and keys in dimension dk and values in dimension dv. Each query is
multiplied by all keys and then divided by

��
dk

√
. The result is a

weighted sum of the values, with each value receiving a weight
defined by the compatibility function of the query with its
corresponding key. The softmax function is then used to obtain
weights for the values from the output. In practice, we calculate the
attention function in parallel on a set of queries, keys, and values and
store the results in a matrix Q, K, and V. The calculation for the
output matrix is as follows:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (19)

4.2 Evaluation criteria

To evaluate the performance of these deep learning models, the
following four evaluation criteria were considered: mean absolute
error (Willmott and Matsuura, 2005), mean square error (Pishro-
Nik, 2014), log-cosh loss (Grover, 2021) and mean squared
logarithmic error (Mean Squared Logarithmic Error Loss, 2021).

4.2.1 Mean absolute error (MAE)
The MAE refers to the average absolute vertical or horizontal

distance between each point in a scatter plot and the straight line
through the origin. Consequently, MAE indicates the average
absolute difference between projections and objectives. Thus,
MAE assesses how well a forecast matches the actual results.

MAE � 1
n
∑n
i�1
〈yi − ŷi〉 (20)

4.2.2 Mean square error (MSE)
The MSE reflects the deviation between the forecasts and the

original projections. It is the average squared deviation between the
prediction and the target. Since it is dependent on a square term,
negative values are impossible. Thus, it comprises both the
estimator’s variance and its bias. The MSE is the sample standard
deviation of the differences between anticipated and observed values
for the specified number of observations.

MSE � 1
n
∑n
i�1
〈yi − ŷi〉2⎛⎝ ⎞⎠ 1

2 (21)

4.2.3 Log-cosh loss
In regression problems, the Logcosh loss is another smoother

metric than the MSE. Logcosh computes the logarithm of the
hyperbolic cosine of the prediction error (Grover, 2021).

Logcosh t( ) � ∑
p∈P

log (cosh p − t( )⎞⎠ (22)

where p denotes the predicted value and t represents the true value.
Log(cosh(x)) is generally equivalent to (x**2) / 2 for small x and
abs(x) − log(2) for large x. This shows that Logcosh behaves

FIGURE 13
Performance metrics using (A) LSTM, (B) Bi-LSTM, and (C)
transformer model on the Indonesia earthquake catalogue.
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similarly to the mean squared error but is less affected by the
occasional drastically incorrect predictions (Chris, 2019).

4.2.4 Mean squared logarithmic error (MSLE)
The mean squared logarithmic error is the average of the

squared differences between the log-transformed actual and
forecasted values over the observed data.

In general, the above formula expresses the loss function:

L y, ŷ( ) � 1
N

∑N
i�0

log yi + 1( ) − log ŷi + 1( )( )2 (23)

where ŷ denotes the predicted value. This loss may be
understood as a ratio between the actual and anticipated
values over time.

log yi + 1( ) − log ŷi + 1( ) � log
yi + 1
ŷi + 1

( ) (24)

The addition of “1”to both y and ŷ is for mathematical
convenience, as log(0) is not defined, and both y and ŷ can be zero.

5 Model architecture and training

This work uses deep learning methods to provide predictions
regarding the magnitude of future earthquakes based on
temperature anomalies and eight other seismic parameters for a
specific location. The vectors consisting of temperature anomaly
data and eight seismic parameters are fed into neural networks with
two types of recurrent units: long short-term memory cells and
bidirectional long short-term memory cells. These vectors are also
supplied into a transformer model that employs an attention
mechanism by variably weighting the significance of each
incoming data element. Because each region has unique features
and is distinct from others, independent training was conducted to
construct a prediction model based on seismic parameters that are
distinctive to each region.

5.1 LSTM model

There are 32 LSTM units in the primary layer of the LSTM
model. To prevent overfitting, a dropout layer is applied thereafter at
a rate of 0.2. When a system is overfitted, it might produce good
training results but poor testing outcomes. Overfitting occurs when a

system depends excessively on its historical data, rendering it rigid
and incapable of adjusting to new input. After that, we have two
layers of dense units connected by a linear layer, another layer of
dense units activated by a rectified linear unit (ReLU), and a third
dense unit serving as the output. The output layer itself consists of a
single dense unit.

The number of epochs and batch size are two trivial
hyperparameters that must be determined prior to training based
on experience and extensive trial and error. The number of epochs is
a hyperparameter that controls how many times the learning
algorithm will iterate through the training dataset. One epoch
denotes that every sample in the training dataset has had the
opportunity to influence the internal model parameters. The
batch size is a hyperparameter that determines how many
samples should be processed before modifying the internal model
parameters. Here, we pick batch sizes of 128 and 50 epochs using a
regional earthquake catalogue, including thousands of earthquake
events (data rows). This means that the dataset is divided into
subsets consisting of 128 samples each. After every 128 samples, the
model weights are recalculated. The model examines the entire
dataset fifty times using fifty epochs.

The model’s architectural representation is shown in Figure 8A.
Figure 9 shows the learning graph generated by deep learning models
(LSTM, Bi-LSTM, and transformer) utilizing the processed dataset of
three seismic zones. A learning curve is a graph that illustrates how the
learning performance of a model varies with experience or time.
Learning curves are frequently utilized in deep neural network
algorithms that learn gradually and adjust their internal parameters
over time. The major goal of our work with deep neural networks is to
reduce error as much as possible. The objective function is typically
characterized by a loss function, with “loss” referring simply to the value
produced by the loss function. In this study, all three sets of seismic
catalogs were used to build learning curves during the training phase,
and the default loss function used was mean square error loss. Low
scores suggest higher learning, while a zero score shows that the training
dataset was learned accurately and without any mistakes. Here, the
training loss plot reduces to the point of stability with a minimal
number of epochs, indicating a satisfactory fit of the model with three
seismic catalogs.

5.2 Bi-LSTM model

In the Bi-LSTM model, the main layer comprises twenty-four
LSTM units that can operate in both directions. To prevent

TABLE 2 Results of different models during training and testing using Indonesia Dataset.

Deep learning model Training/Testing MAE MSE Log cosh MSLE

LSTM Training 0.08843572 0.01310756 0.00649545 0.00144156

Testing 0.06639543 0.00727642 0.03899113 0.00362271

Bi-LSTM Training 0.08356770 0.01164968 0.00577789 0.00121235

Testing 0.12627309 0.02757473 0.04940383 0.01127941

Transformer Training 0.08918558 0.01352705 0.00669890 0.00170022

Testing 0.09195120 0.01389874 0.05343387 0.00689498
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overfitting, the subsequent layer is a dropout layer with a dropout
rate of 0.2. The next layers are also unchanged: a layer of dense
units activated by a ReLU function, another layer of dense units
connected linearly, and a final dense unit serving as the output.
The final output layer consists of a single dense output unit.
Figure 8B displays an architectural depiction of the model.
Figure 9 displays the training loss plot’s gradual decline to
stability after a few epochs, indicating that the model fits the
three seismic datasets well.

5.3 Transformer model

Here, a multi-head self-attention system has been implemented.
This method employs self-attention processes to model sequence
data to identify complex correlations of varied lengths from time-
series data. Furthermore, this transformer-based technique may
describe a wide spectrum of non-linear dynamical systems. The
Q, K, and V configurations depend on the input via various thick
layers. The next section is optional and depends on the scale of our
model and data. However, we will also completely bypass the

FIGURE 14
Plot of projected and actual magnitude as a function of time for
the Japan earthquake catalogue using the (A) LSTM, (B) Bi-LSTM, and
(C) transformer models.

FIGURE 15
Plot of observed magnitude against anticipated magnitude
utilizing (A) LSTM, (B) Bi-LSTM, and (C) transformer models on the
Japan earthquake catalog.
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decoder. This indicates that just one or more layers of the attention
block will be utilized. In the last phase, a few thick layers will be
employed to estimate anything we want to predict. Figure 8C depicts
the model’s implemented architecture.

Each attention block comprises a feed-forward block, a self-
attention block, and a normalization block. The sizes of the inputs
and outputs for each block are the same. Adam (Kingma and Ba,
2015) is an excellent initial optimizer for training that has been used
in this research. Dropout approaches for regularization are applied
in the encoder’s and decoder’s three types of sublayers: self-
attention, feed-forward, and normalization. The dropout rate for

each sublayer is 0.2. The training loss plot stabilizes after a few
epochs, as shown in Figure 9, demonstrating a decent model fit to
the three seismic datasets.

6 Results and observations

This study attempts to estimate the magnitude of incoming
earthquakes based on fluctuations in global temperature and eight
seismic parameters of the previous 100 earthquake events by

FIGURE 16
Error distribution of the (A) LSTM, (B) Bi-LSTM, and (C)
transformer models applied to the Japan earthquake catalogue.

FIGURE 17
Performance metrics using (A) LSTM, (B) Bi-LSTM, and (C)
transformer model on the Japan earthquake catalogue.

Frontiers in Earth Science frontiersin.org16

Sadhukhan et al. 10.3389/feart.2023.1082832

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1082832


utilizing prominent deep learning algorithms, including LSTM, Bi-
LSTM, and transformer. Three datasets from different places,
namely, Indonesia, Japan and the HKKH areas, are utilized to
test the proposed system’s performance. The training stage
employed 80% of the total dataset for each area, with the
remaining 20% used in the testing stage. A network makes every
attempt to forecast outcomes as precisely as possible. The cost
function determines the network’s accuracy by penalizing it when
it fails. The best result is the one with the lowest cost. During
training, a repetition phase is commonly conducted by separating
the training data into equal-sized batches. The number of samples
per batch is a hyperparameter that is normally established via trial
and error. An epoch is the number of iteration steps in a neural
network. The network simulates the time series data once in each
epoch. The number of epochs is the most important parameter in
the prediction task. With fewer epochs, the model’s accuracy is poor,
and the error is greater. By increasing the number of iterations, the
model finally converges to the point where the results of two
subsequent epochs do not differ considerably. Because of
computational resource constraints, the value of this parameter
in the LSTM, Bi-LSTM, and transformer is set to 50.

Another aspect influencing model accuracy is the number of
neurons in the hidden layers. If it is set too high, overfitting might
occur, and the model will be incapable of effectively imitating the
data. Dropout layers have been utilized to address this difficulty,
which deactivates numerous neurons. Four metrics have been
employed to assess the performance of these models: mean
absolute error (MAE), mean squared error (MSE), log-cosh
loss, and mean squared logarithmic error (MSLE). MAE and
MSE are deviation measures that indicate how far the predictions
are from the target values. Prediction models perform better
when these deviation values are smaller. The log-cosh loss is
the logarithm of the prediction error’s hyperbolic cosine. MSLE is
the time-dependent ratio between true and anticipated values.
The MAE, MSE, log-cosh loss, and MSLE values all started to
converge after running these deep learning models on the training
dataset.

6.1 Results for Indonesia earthquake
catalogs

By examining pre-processed seismic datasets from Indonesia,
deep learning algorithms were utilized to investigate the influence
of global temperature fluctuations on earthquake occurrences and

evaluate how the actual and predicted magnitudes vary over time.
Figure 10 illustrates this. Based on our observations, these models
can project magnitudes ranging from 3.8 M to 5.8 M. Figure 11
depicts the predicted magnitude as a function of the observed
magnitude. The x-axis represents the model’s projected
magnitude, while the y-axis represents the observed or actual
magnitude recorded in the seismic dataset. The diagonal line in
the plot’s centre represents the estimated regression line. Because
each data point is quite close to the anticipated regression line, we
can conclude that the LSTM model fits the data fairly well. The
figure also indicates that the model can predict earthquakes up to
5.8 M. Figure 12 shows a histogram of the errors produced by a
deep neural network when forecasting the magnitude of the next
upcoming earthquake. The difference between actual and
projected values is referred to as “errors.” These error
numbers may be negative since they represent the extent to
which the projected values differ from the actual values. The
bulk of the anticipated magnitudes have errors near 0.0, with
larger deviations being rare. The distribution is approximately
symmetrical, with LSTM model values ranging from −0.2 to 0.2.
As shown in Figure 13, the performance of each deep learning
model improved as the deviation metrics decreased with
increasing epochs. Tables 2 compare all deviation metrics
calculated by the models used in the Indonesia earthquake
datasets during training and testing. On the Indonesia
earthquake dataset, all models performed well. As
demonstrated in Table 2, the Bi-LSTM model had the lowest
deviation metrics throughout the training period. When these
models were fed an unknown test dataset, the LSTM model
outperformed the others with the lowest deviation metrics. In
the testing stage, the LSTM model surpasses the others, with the
lowest MAE = 0.066, MSE = 0.007, log cosh loss = 0.039, and
MSLE = 0.003.

6.2 Results for Japan earthquake catalogs

Deep learning methods were utilized to evaluate the pre-
processed seismic data from Japan. The study evaluates how the
predicted and actual magnitudes vary over time, as shown in
Figure 14. These models can predict magnitudes ranging from
3.8 M to 5.8 M based on our observations. Figure 15 illustrates the
predicted magnitude as a function of the observed magnitude.
The x-axis indicates the model’s predicted magnitude, while the
y-axis represents the observed or true magnitude recorded in the

TABLE 3 Results of different models during training and testing using Japan Dataset.

Deep learning model Training/Testing MAE MSE Log cosh MSLE

LSTM Training 0.08027671 0.01125622 0.00558602 0.00086602

Testing 0.11644269 0.03810051 0.08179306 0.01769146

Bi-LSTM Training 0.07906428 0.01045002 0.00519146 0.00519146

Testing 0.11087309 0.03210166 0.08217995 0.01514046

Transformer Training 0.08336054 0.01210611 0.00600353 0.00101726

Testing 0.08364009 0.01541917 0.05494469 0.00753877
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seismic database. Because each data point is relatively near the
predicted regression line, we can infer that the transformer
model, fits the data fairly well. The figure also indicates that
the model can predict earthquakes with magnitudes up to 5.8 M.

Figure 16 shows the distribution of errors made by a deep neural
network when predicting the magnitude of the next impending
earthquake. Most anticipated magnitudes have errors near 0.0,
whereas greater discrepancies are uncommon. The distribution of
errors for the LSTM and transformer model is confined within the

range from −0.2 to 0.2, indicating a roughly symmetrical
distribution. Figure 17 depicts how each deep learning model’s
performance was enhanced as the deviation metrics dropped with
increasing epochs. Table 3 compare all the deviation metrics
produced by these models in the Japan earthquake datasets
during training and testing. The Bi-LSTM model obtained the
lowest deviation metrics during the training period, as shown in
Table 3. The transformer model outperformed the other models
with the fewest deviation metrics when fed with an unknown test
dataset. In the testing phase, the transformer model surpasses the

FIGURE 18
Plot of projected and actual magnitude as a function of time for
the HKKH region earthquake catalogue using the (A) LSTM, (B) Bi-
LSTM, and (C) transformer models.

FIGURE 19
Plot of observed magnitude against anticipated magnitude
utilizing (A) LSTM, (B) Bi-LSTM, and (C) transformer models on the
HKKH region earthquake catalogue.
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others, with the lowest MAE = 0.083, MSE = 0.015, log cosh loss =
0.054, and MSLE = 0.007.

6.3 Results for HKKH region earthquake
catalogs

Deep learning techniques were also used to examine pre-
processed seismic data from the HKKH area. Figure 18 illustrates
the temporal evolution of the projected and actual magnitudes.

According to our findings, these models can estimate magnitudes
ranging from 3.5 M to 5.2 M. Figure 19 depicts the expected
magnitude as a function of the observed magnitude. The x-axis
represents the model’s projected magnitude, while the y-axis
represents the observed or real magnitude recorded in the
seismic database. We may infer that the LSTM model fits the
data fairly well in contrast to other models because each data
point is close to the predicted regression line. Furthermore, the
image shows that the model can detect earthquakes with magnitudes
of up to 5.3 M. Figure 20 shows a histogram of the errors generated

FIGURE 20
Plot of observed magnitude against anticipated magnitude
utilizing (A) LSTM, (B) Bi-LSTM, and (C) transformer models on the
HKKH region earthquake catalogue.

FIGURE 21
Performance metrics using (A) LSTM, (B) Bi-LSTM, and (C)
transformer model on the HKKH region earthquake catalogue.
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by deep neural networks while estimating the size of an upcoming
earthquake. Most of the predicted magnitudes have errors near 0.0,
with larger deviations being unusual. In the LSTM model, the
distribution is reasonably symmetrical, with values ranging
from −0.2 to 0.2. Figure 21 shows how the performance of each
deep learningmodel increased as the deviationmetrics dropped with
increasing epochs. Table 4 compare all deviation metrics derived
from the models in the HKKH area earthquake datasets during
training and testing. On the HKKH region earthquake dataset, all
models performed brilliantly. As demonstrated in Table 4, the Bi-
LSTM model had the lowest deviation metrics throughout the
training period. When these models were fed an unknown test
dataset, the LSTM model outperformed the others with the lowest
deviation metrics. According to Table 4, the LSTM model
outperforms the others in the testing phase, with the lowest
MAE = 0.083, MSE = 0.011, log cosh loss = 0.039, andMSLE = 0.005.

The test results presented in Tables 2–4 demonstrate that these
deep learning models can predict the magnitude of an impending
earthquake with a maximum MSE of 0.03 across all three regional
earthquake catalogs. The errors caused by the models may be
approximated to a maximum standard deviation of
0.17 magnitude units over all three datasets. As a result, we can
conclude that these models are extremely accurate in modelling
these datasets, as the error in the magnitude estimations of mild
earthquakes has a maximum standard deviation of 0.17, depending
on the network. Consequently, the results indicate that the models
make fewer errors in their predictions. As a result, we may deduce
that these models accurately simulate the seismic datasets of the
three regions and the global temperature data. Alternatively, these
models have effectively identified a correlation between earthquake
magnitude and global temperature fluctuations.

Using earthquake catalogs from three distinct regions, the
performance of the proposed system is assessed in this section.
Low MSE, MAE, log cosh, and mean squared log error values
indicate that the models fit all three datasets well, indicating a
solid prediction system. The models’ bias or variance errors are
depicted on the training graphs. During the training period, all of the
models converged to identical MSE, MAE, log-cosh loss, and MSLE
values for all three seismic databases. These evaluation criteria are
utilized to evaluate each model’s performance. The convergence of
these evaluation metrics to a small number indicates that the models
fit the dataset with a high degree of precision, suggesting a
correlation between the magnitude of the earthquake and
fluctuations in global temperature. All three deep learning
algorithms utilized in this study performed well and accurately to

predict the magnitude of approaching earthquakes, confirming the
efficiency and usefulness of earthquake modelling.

Temperature has a significant impact on growing heat fluxes
close to earthquake zones. Sensible heat flow boosts
evapotranspiration, one of the processes that moves water vapour
into the atmosphere. This may lead to cloud formation and
increased precipitation. Strong earthquakes are frequently linked
to an increase in precipitation in seismic zones. In addition, climatic
change and global warming increase glacier erosion, resulting a shift
of mass balance on Earth’s crust. This mass redistribution may
enhance the probability of stress release in a previously stressed
region. This is because erosion reduces the system’s overall stress,
which is sufficient to stabilize the system prior to unloading.
Consequently, the loading and emptying of water bodies due to
climate change may have direct effects on local seismicity. The
impact of climate change on regional and transregional earthquakes,
however, needs to be thoroughly investigated.

Most of the hypotheses produced in earthquake precursor signal
studies are based on empirical formulas. Multiple factors contribute
to the occurrence of an earthquake, including the accumulation of
energy caused by tectonic motions, the stress‒strain pattern, the
fault types, the dynamics of the inner earth fluid, and the
geomorphological structure. Consequently, at the concluding
phase of earthquake preparation, extremely complicated
precursory signals may be received. On the basis of the
precursory signal’s characteristics (amplitude, frequency, and
phase), one can provide quantitative information regarding the
probable magnitude, depth, location, and timing of next
earthquake. However, there has not been much progress made
thus far.

7 Conclusion

This study provides a novel method for establishing the
association between earthquake occurrences and climate change
by employing deep learning and finds a sustainable method for
earthquake prediction. This study selected global temperature as the
single climatic variable because it substantially impacts the Earth’s
ecosystem and civilization. Global temperature data along with
several mathematically computed seismic parameters are
considered basic inputs for deep learning algorithms. This study
presented deep learning-based approaches for forecasting the
magnitude of imminent earthquakes utilizing LSTM, Bi-LSTM,
and the transformer model with global temperature anomaly data

TABLE 4 Results of different models during training and testing using HKKH Region Dataset.

Deep learning model Training/Testing MAE MSE Log cosh MSLE

LSTM Training 0.08459742 0.01109308 0.00551731 0.00155243

Testing 0.08320983 0.01106251 0.03971187 0.00549848

Bi-LSTM Training 0.07756183 0.00955157 0.00475307 0.00135416

Testing 0.27909746 0.13874967 0.09162815 0.06378302

Transformer Training 0.08713938 0.01148899 0.00571573 0.00162018

Testing 0.12098440 0.02401065 0.02401065 0.01184748
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on the earthquake catalogs of Japan, Indonesia, and the Hindu-Kush
Karakoram Himalaya area. Approximately 80% of earthquake
datasets are utilized to train the deep learning models. The
remaining 20% of the data were subsequently predicted. A
double hidden layer was employed in the LSTM and Bi-LSTM
models, and a multi-head self-attention system was built into the
transformer model. The accuracy of a model is very sensitive to
various parameters, such as the number of recurrent units in the
hidden layers, the batch size, and the number of epochs. Extensive
testing was carried out throughout the training phase to identify the
optimal values for these parameters. Dropout layers are utilized to
prevent overfitting in all models. The effectiveness of these models
was assessed using the MAE, MSE, log-cosh loss, and MSLE metrics.

The cost functions for all models with varied earthquake datasets
converge to minimal values. For the Indonesia earthquake catalogs,
the LSTMmodel has been found to perform best during testing, with
an MAE = 0.066, MSE = 0.007, log cosh loss = 0.038, and MSLE =
0.003. The model also exhibited the lowest MAE = 0.083, MSE =
0.011, log cosh loss = 0.039, and MSLE = 0.005 when tested with an
unknown dataset obtained from the seismic catalogue of the Hindu-
Kush Karakoram Himalaya region. The transformer model seems to
have the lowest MAE = 0.083, MSE = 0.015, log cosh loss = 0.054,
and MSLE = 0.007 for the earthquake catalogue of Japan. Achieving
such a low value indicates that the models provide a good fit to the
data, suggesting a correlation between the magnitude of the
earthquake and fluctuations in global temperature. Several
regional earthquake catalogs were used to test and validate deep
learning-based techniques, and the results showed that the LSTM,
Bi-LSTM, and transformer models were the most accurate
algorithms for predicting earthquake magnitude. However, the
maximum magnitudes anticipated by these models are confined
between M5 and M6 depending upon the datasets. Due to the
relative scarcity of large seismic occurrences in the historical
earthquake records of a few places, particularly within a time
span suited for retrospective forecasts, it is difficult to quantify
the amount of statistical success in predicting large earthquakes.

The global temperature anomaly is considered as the only climate
variable for this investigation since it strongly affects the Earth’s
ecosystem and civilization. In this experimental study, melting ice
and isostasy have been discussed to explain their relationship with
rising global temperatures and their effect on regional seismicity. As per
our knowledge concern, no dataset has been publicly available for
climatic variables such as precipitation, humidity, air pressure, wind
speed, etc. However, considerations of these variables might change in
the deep neural network models, and a comparative analysis of
earthquake magnitude prediction using temperature and without

using temperature both can be an interesting study as a future scope
of this work.

A very interesting recent study (Christie et al., 2022) on the
eastern Antarctic Peninsula’s Larsen A and B ice shelves points out
the need for more in-depth research to establish our claim as more
robust and accurate. It is interesting to note that if the study can be
carried out based on regional temperature anomalies instead of
global temperature anomalies for some specified regions along with
seismic data, the findings may be more accurate. From the publicly
available dataset, the global temperature anomaly and seismic data
of some specified regions are used as inputs in our experimental
study. The non-availability of regional temperature anomaly data is
indeed a major challenge of this work.
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