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Magnetic resonance sounding (MRS) is a geophysical method that can determine
groundwater content directly and quantitatively. However, as MRS uses the
Earth’s magnetic field as the background field, MRS signals are weak and cannot
be shielded. Reliably extracting MRS signals in a strong noise environment
is difficult. In this study, a data processing scheme using the adaptive local
iterative filtering (ALIF) algorithm is proposed to extract MRS signal envelopes
accurately. Based on the uncertainty of the initial amplitude and relaxation
time, the decomposition order and mask coefficient of the ALIF algorithm are
selected via traversal. Simulation results show that in the case of Gaussian
noise and power frequency harmonic noise, the ALIF algorithm can reliably
extract the MRS signal envelopes, and the correlation coefficient between the
extracted and noiseless envelopes is 0.97. Under various noise types, amplitudes,
and relaxation times, the average SNR increases by 30 dB∼42 dB. The ALIF
algorithm is also suitable for extracting multi-exponential MRS signal envelopes.
A comparative analysis between harmonic modeling cancellation and ensemble
empirical mode decomposition shows the superiority of the ALIF algorithm, and
the processing of the field data further verifies the effectiveness and practicability
of the algorithm.

KEYWORDS

magnetic resonance sounding, groundwater, adaptive local iterative filtering, SNR,
envelope extraction

1 Introduction

Shortage and uneven regional distribution of freshwater resources are global
problems. As part of freshwater resources, groundwater is an indispensable and
important resource for ensuring human life and production (Pan et al., 2021). In
Western China and many mountainous areas, shortage of water resources can
seriously restrict economic development. At the same time, with the advancement of
industrialization and modernization, geological disasters caused by groundwater, such
as ground collapse, landslides, mine water inrush, and tunnel water inflow, emerged
(Lin et al., 2020a). Therefore, the high-precision and high-efficiency exploration of
groundwater has become a primary issue in the field of water resource research.
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As an advanced geophysical method, magnetic resonance
sounding (MRS), which is based on the nuclear magnetic resonance
phenomenon of hydrogen protons, is used to realize the direct
quantitative detection of groundwater (Legchenko and Valla,
2002). Compared with conventional drilling methods, MRS can
yield hydrogeological information such as water content, location,
and the reservoir medium without damage (Hertrich, 2008).
Therefore, in recent years, MRS was widely used in groundwater
detection, evaluation, and monitoring and for early warning of
potential geological hazards (Qin et al., 2019; Legchenko et al., 2020;
Wang et al., 2020). Although MRS has the above advantages, in
practical applications, MRS signals are weak and can be detected
only at the nanovolt level owing to its use of the Earth’s magnetic
field as the background field. Moreover, shielding measures cannot
be taken. Random noise, power line harmonics, and occasional
spikes in the environment can also affect MRS signals, thereby
making the reliable extraction of MRS signals difficult (Larsen and
Behroozmand, 2016; Lin et al., 2020b; Grombacher et al., 2021).

To solve the aforementioned problems, the classic processing
flow involves the following steps. First, a non-linear energy operator
or statistical staking is used to remove the spikes (Dalgaard et al.,
2012). Second, the harmonicmodeling cancellation (HMC)method
based on the principle of least squares is used to remove the power
line harmonics (Larsen et al., 2014). Third, the multiple collected
data are stacked to suppress the random noise (Jiang et al., 2011).
Finally, envelope extraction and the gate integration processing
of the stacked data are conducted to invert the underground
hydrogeological information (Müller-Petke et al., 2016). Recently, a
method based on synchroextracting transform is used to eliminate
the harmonics in a strong noise environment and improve the
processing efficiency (Jiang et al., 2021). For the special case of co-
frequency harmonics (the Larmor frequency is equal to one of
the power line harmonics, or the difference is less than 3 Hz), the
reference coupling and non-linear fitting methods can be adopted
(Liu et al., 2018; Wang et al., 2018). For varying harmonic noise
in magnetic resonance sounding signals, A frame-based denoising
method is proposed based on multi-channel Wiener filtering in
the frequency domain to achieve the removal of noise. (Li et al.,
2020a). An approach for intensive sampling sparse reconstruction
(ISSR) and kernel regression estimation (KRE) is proposed to
suppress random noise (Yao et al., 2019). The statistical method of
maximum likelihood estimation (MLE) is used to estimate nuclear
magnetic resonance parameters and suppress random noise in MRS
(Li et al., 2020b).Theuse of amodified short-time Fourier transform
(MSTFT) method to eliminate MRS random noise when in a high-
level noise surrounding (Lin et al., 2021). In view of the peak noise
contained in the acquisition signal in practice, a method is proposed
to calculate the filtering coefficient by using the transformation
coefficient of non-peak noise data and filter the coefficient of data
containing peak noise (Diao et al., 2022).

In addition, the use of bi-phase pulse (BPP) method to shorten
the dead time of the instrument, thereby reducing the loss of
MRS signal, but also to suppress noise (Li et al., 2014; Du et al.,
2019). Remote reference coils and denoising method based on
adaptive noise cancellation (Dalgaard et al., 2012; Müller-Petke
and Costabel, 2014; Zhang et al., 2019) can also be employed to
suppress correlation noise inMRS signals.The above data processing
methods involve two steps: first, noise is removed or suppressed

using various strategies, and second, MRS signal envelopes are
extracted. However, the two steps restrict each other and affect the
MRS signal extraction accuracy.

Another type of data processing method can be used for
MRS signal envelope extraction. Empirical mode decomposition
(EMD) and ensemble EMD (EEMD) can directly extract MRS
signal envelopes while removing noise (Ghanati et al., 2016, 2014).
However, both methods experience the problem of mode aliasing,
and satisfactory results can be obtained only when the signal-
to-noise ratio (SNR) is high. In addition, REF. (Liu et al., 2019).
proposed the use of a sliding window based on spectral analysis
to recover complex MRS signal envelopes; however, this method is
unsuitable for extracting multi-exponential MRS signal envelopes.
At present, most methods for extracting MRS Parameters require
prior knowledge of precise Larmor frequency to detect signal
envelope, and are susceptible to residual noise after de-noising.
Lin et al. (2022) proposed to use the orthopedic regularizationProny
method to extract MRS Signals from high-frequency oscillation
data, and to retain complete signal information by estimating signal
parameters.

Adaptive local iterative filtering (ALIF) is an adaptive signal
processing method proposed by Ref. (Cicone et al., 2016). This
method adopts the idea of iterative filters (Lin et al., 2009) and
constructs a filter function with adaptive characteristics using
the basic solution system of the Fokker–Planck (FP) differential
equation. Compared with the EMD method (Zhao and Su, 2019;
Li et al., 2021), ALIF can obtain more accurate intrinsic mode
function (IMF) components and has better capabilities to suppress
mode aliasing. Therefore, the use of the ALIF algorithm to process
MRS signals is proposed in this study. Moreover, the decomposition
order and selection criteria of filter coefficients are analyzed to
realize the effective extraction of MRS signal envelopes.

2 Principles and methods

2.1 Principle and characteristics of MRS
signals

The basic principle of MRS is to supply an alternating current
with a Larmor frequency to a coil laid on the ground to form
an alternating magnetic field underground. Hydrogen protons in
groundwater are excited, thereby losing their equilibrium state. After
a certain period of time, the power supply current is removed,
and the hydrogen protons return to their equilibrium state. At the
same time, MRS signals are generated and picked up by the coil
on the ground for obtaining groundwater distribution information
(Behroozmand et al., 2015).

The expression of MRS signals can be represented by the
following formula.

E (t) = E0e
− t

T*2 ⁡cos(2π fLt+ϕ0) , (1)

where E0 represents the initial amplitude, which is proportional to
the water content; T*

2 represents the lateral relaxation time, which
is related to the pore size of the underground medium; fL indicates
the Larmor frequency, which is related to the local Earth’s magnetic
field, with a global variation range of 1.3 kHz∼3.7 kHz; and ϕ0
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represents the initial phase, which is related to the conductivity of
the underground medium.

2.2 Principle of ALIF algorithm

TheALIFmethod is an improvement of the IFmethod.Thebasic
principle of the IF algorithm is similar to that of the EMD algorithm
(Zhou et al., 2019), which obtains IMF components through the
screening process (Huang, 1998). However, the IF method uses a
sliding operator instead of the EMD envelope mean to solve the
problem (Lin et al., 2009).

For a given signal f(x) to be decomposed, the sliding operator
Γ( f)(x) is obtained by calculating the convolution with f(x) and the

filter function ω(x).

Γ ( f) (x) = ∫
ln

−ln
f (x+ t)ω (t)dt, (2)

where ω(t) represents the filter function, and ln represents the filter
interval, and its calculation formula is as follows:

łn = 2⌊λ
N
k
⌋, (3)

where N represents the number of sampling points of signal f(x),
k represents the number of extreme points of the signal to be
decomposed, λ is a scalar parameter, λ ∈ [1,3], and ⌊⋅⌋ indicates
rounding down.

Next, the wave operator is obtained by subtracting the sliding
operator from the signal to be decomposed, as follows:

κ ( f) (x) = f (x) − Γ ( f) (x) , (4)

FIGURE 1
Results of MRS signal processing with the ALIF algorithm; (A) and (B) are the time domain diagram and frequency domain diagram, respectively, of the
noisy MRS data (gray), noise-free MRS signal (blue), and signal envelope extraction by the ALIF algorithm (red); (C) from top to bottom, nine IMF
components and residual signals decomposed by the ALIF algorithm.
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The specific steps of the IF algorithm are as follows:
Step 1: The filtering interval ln is calculated using Eq. 3.
Step 2: The sliding operator Γ ( f) (x) is solved using Eq. 2.
Step 3:Thefluctuation operator κ ( f) (x) is calculated using Eq. 4.
Step 4: The fluctuation operator κ ( f) (x) is judged on whether

it meets the conditions of the IMF components. If the conditions
are satisfied, then the first IMF component c1 (x) is obtained. If
the conditions are not satisfied, then κ ( f) (x) will be regarded as
the signal to be decomposed. Steps 1 to 3 are repeated until the
conditions of the IMF components are met. Then, the filtering is
terminated.

Step 5: c1 (x) is subtracted from the signal f (x) to be decomposed
to obtain the following:

γ1 (x) = f (x) − c1 (x) , (5)

Moreover, γ1 (x) is taken as the original signal, and steps 1 to 4 are
repeated to obtain the second IMF component.When γn (x) presents
monotonic trend characteristics, the cycle is terminated, and several
IMF components are obtained. At this time, f (x) can be expressed
as

f (x) =
n

∑
i=1

ci (x) + γn (x) , (6)

In the IF algorithm, the ω (x) filter function is fixed and
must be set in advance. When dealing with non-linear and non-
stationary signals, the function will lead to waveform distortion,
poor adaptability, and other issues. To solve this problem, Ref.
(Cicone et al., 2016). proposed an improved algorithm, namely,
the ALIF algorithm, which uses the FP equation solution
as the filter function to enable the filter function to change
adaptively during the decomposition process. The FP equation
is a partial differential equation describing the time evolution
of the particle velocity probability density function under the
influence of the drift and diffusion effects. The expression of the FP
equation is

∂
∂t
h (x, t) = −α ∂

∂x
[p (x)h (x, t)] + β ∂2

∂x2
[q2 (x)h (x, t)] , (7)

where p (x) and q (x) are smooth differentiable functions, and under
the condition of [a,b] (where a < 0 < b), the following conditions
are satisfied. 1)q (a) = q (b) = 0, and for any x ∈ (a,b) all meet the
condition of q (x) > 0. 2)p (a) < 0 < p (b). In addition, α, β is the
steady-state coefficient with a value range of (0,1).

The diffusion effect will occur in ∂2

∂x2
[q2 (x)h (x, t)] and drive the

equation solution h (x) to move from the center point of interval
(a,b) to endpoints a and b. At the same time, −α ∂

∂x
[p (x)h (x, t)]

makes h (x) converge from endpoints a and b to the center of
interval (a,b). When they are balanced, the following equation is
obtained.

−α ∂
∂x
[p (x)h (x, t)] + β ∂2

∂x2
[q2 (x)h (x, t)] = 0, (8)

At this time, the equation has a non-zero solution h (x) and
satisfies the following conditions.

1) For any x ∈ (a,b), h (x) ≥ 0.
2) For any x ∉ (a,b), h (x) = 0.
This outcome means that the solution set of the equation is on

interval [a,b], and the FP equation solution h (x, t) (t is ignored,

IMF={}

while the number of extrema of f ≥2 do

f1 = f

while the stopping criterion is not satisfied

do

compute the filter length ln(x) for fn(x)

fn+1(x) = fn(x) − ∫
ln(x)
−ln(x)

fn(x+t)wn(x,t)dt

n = n+1

end while

IMF=IMF ⋃{fn}

f = f−fn
end while

IMF=IMF ⋃{f}

Algorithm 1. ALIF Algorithm IMF=ALIF( f)

and the notation is abbreviated as h (x)) is used as the filtering
function ω (x) of the ALIF algorithm. As ω (x) changes in interval
(a,b), different analytical values can be solved.Therefore, themoving
average operator can be calculated as follows:

Γ ( f) (x) = ∫
ln(x)

−ln(x)
f (x+ t)ω (x, t)dt, (9)

Other filtering steps are the same as those of the IF algorithm.
The ALIF algorithm contains two nested loops: an Inner Loop, to
compute each single IMF, and an Outer Loop, to derive all the
IMFs.

In the process of algorithm implementation, in Ref. (Crank and
Nicolson, 1996), the FP equation solution h(x) can be given by a
numerical solution. In the case of a = −b, it is a type I linear phase
system in the discrete time domain (Oppenheim, 1999).

3 Results and discussion

3.1 Implementation of ALIF algorithm

An MRS signal with an initial amplitude of 100 nV, an lateral
relaxation time of 200 ms, a Larmor frequency of 2,325 Hz, and
an initial phase of π/4 rad is constructed. Gaussian noise with a
noise level (standard deviation) of 100 nV and power frequency
harmonics in the 80th order are added to the MRS signal. The
fundamental frequency of the power frequency harmonics is in
range of (49.90,50.10) Hz, the amplitude of each harmonic is
between (0,150) nV, and the phase is between (−π,π) rad. Similarly,
16 groups of noisy MRS datas are randomly generated, and the
synthetic data are conducted using the ALIF algorithm.

Figure 1 shows the time domain and frequency domain results
before and after envelope extraction by the ALIF algorithm as
well as the decomposed IMF components. The decomposition
order n selected for the experiment is 9, and the mask coefficient
λ is 1.4. As shown in Figure 1, the ALIF algorithm realizes
the reliable extraction of MRS signal envelopes. The extracted
envelope is in good agreement with the noiseless envelope, and
the correlation coefficient is 0.97. It can also be seen in Figure 1
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FIGURE 2
Uncertainty of fitting parameters corresponding to different mask coefficients and decomposition orders; (A) uncertainty of initial amplitude; (B)
uncertainty of relaxation time; the darker the blue color, the smaller the uncertainty of the processed data.

TABLE 1 Processing results of ALIF algorithm under different noise types and noise amplitudes and T*2 changes.

Variables Size SNR_org (dB) SNR_pro (dB) ΔSNR (dB) E0_fit (nV) T*2_fit (ms)

White Noise Amplitude (nV) 200 −15.8 19.7 35.5 99.8 ± 3.0 200.6 ± 7.0

400 −17.3 15.5 32.8 100.0 ± 6.3 200.3 ± 14.7

600 −18.9 12.4 31.3 99.7 ± 8.4 203.4 ± 18.1

800 −20.5 10.0 30.5 101.2 ± 13.1 203.2 ± 33.3

Harmonic Amplitude (nV) 100 −24.1 13.2 37.3 98.4 ± 6.9 204.4 ± 15.4

300 −33.3 7.2 40.5 100.8 ± 10.5 199.1 ± 19.8

400 −35.8 5.8 41.6 99.8 ± 8.4 201.2 ± 17.1

600 −39.3 3.6 42.9 102.7 ± 17.4 197.4 ± 27.3

T*
2 (ms) 50 −21.4 13.5 34.9 111.4 ± 9.8 51.3 ± 2.9

100 −18.4 18.4 36.8 102.9 ± 3.7 100.0 ± 3.4

200 −15.4 22.2 37.6 99.5 ± 1.9 199.6 ± 3.8

400 −12.4 23.4 35.8 98.0 ± 1.3 399.8 ± 5.9

600 −10.7 23.8 34.5 97.2 ± 1.2 596.2 ± 9.5

that the envelope extraction process realizes the effective removal of
noise, and the extracted envelope retains the characteristics of MRS
signals.

In the implementation of the ALIF algorithm, the selected
decomposition order n and mask coefficient λ are crucial. To
obtain optimal parameters, experimental research on parameter
selection is conducted by taking the parameter estimation
uncertainty of E0 and T*

2 as the measurement criterion. Generally,
the value range of the mask factor λ is between 1.0 and
3.0, and the decomposition order n does not exceed 20. The
traversal method is employed to select the parameters. The
mask factor λ takes 0.2 as the interval, and the decomposition
order is traversed from 2 to 20. Then, the estimated E0 and T*

2

uncertainty diagrams of the algorithm corresponding to each mask
coefficient and decomposition order can be obtained. A superior
coefficient combination can be obtained through a comprehensive
comparison.

Figure 2 presents the results of the uncertainty of E0 extracted
by non-linear fitting when each mask coefficient is matched with
different decomposition orders n, and the MRS signal envelope is
extracted by the ALIF algorithm. As the mask coefficient changes
from small to large, the corresponding optimal decomposition
order changes from large to small. Corresponding to different
mask coefficients, the matching decomposition order can obtain
the small fitting parameter uncertainty of the initial amplitude
and relaxation time. In this study, the mask coefficient λ=1.4 and
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FIGURE 3
The fitting errors of related parameters under different power frequency harmonic amplitudes; (A) Boxplot of initial amplitude fitting values at different
power frequency harmonic amplitudes; (B) Boxplot of relaxation time fitting values at different power frequency harmonic amplitude.

FIGURE 4
The fitting errors of related parameters under different power frequency harmonic amplitudes; (A) Box diagram of initial amplitude fitting values at
different power frequency harmonic amplitudes; (B) Box plots of the fitting values of the mean relaxation time at different power frequency harmonic
amplitudes.

FIGURE 5
The fitting errors of related parameters under different relaxation times; (A) Boxplot of initial amplitude fitting values at different relaxation times; (B)
Boxplot of relaxation time fitting values for different relaxation times.
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FIGURE 6
The fitting errors of relevant parameters at different Larmor frequencies; (A) Boxplot of initial amplitude fitting values at different Larmor frequencies;
(B) Boxplot of fitted relaxation time values at different Larmor frequencies.

decomposition order n=9 are selected as the optimal ALIF algorithm
combination.

3.2 Stability analysis of algorithm

To verify the stability of the ALIF algorithm, simulation
experiments are conducted under different noise types and noise
amplitudes andT*

2 changes.Table 1 shows the changes in the average
SNR before and after processing with the ALIF algorithm and the
fitting results of E0 and T*

2 when the random noise level changes,
the power frequency harmonic noise amplitude changes, and T*

2
changes. Considering the randomness of the noise generated by the
simulation data, the results in Table 1 are obtained by the statistics
of 100 groups of data in each case. Specifically, SNR_org represents
the original SNR, SNR_pro represents the SNR after ALIF
algorithm processing, ΔSNR represents the improved SNR ratio,
and E0_fit and T*

2_fit represents initial amplitude and lateral
relaxation time extracted after ALIF algorithm processing.

Table 1 shows that when the white noise amplitude changes
from small to large, the average value of the original SNR gradually
decreases. The SNR increases up to 35 dB after processing, but the
fitting uncertainty of the initial amplitude and relaxation time also
increases gradually. For the power frequency harmonics, when the
amplitude changes from small to large, nearly the same variation law
as the above random white noise is presented, the SNR increases
up to 42 dB after processing. When the white noise amplitude
(100 nV) and power frequency noise amplitude (150 nV) remain
unchanged and relaxation time T*

2 changes from small to large, the
average value of the original SNR changes from low to high. After
processing with the ALIF algorithm, the fitting uncertainty of the
initial amplitude decreases gradually, whereas the fitting uncertainty
of the relaxation time increases gradually, but the relative error value
of the corresponding relaxation time shows a decreasing trend.

In order to discuss the stability of the algorithm in depth,
box plots of the initial amplitude and average relaxation time
uncertainties obtained by processing with the ALIF algorithm at

different white noise amplitudes, powerline harmonic amplitudes,
different T*

2 and different Larmor frequencies are given in Figures 3,
4, 5, 6, respectively. As can be seen from Figures 3, 4, with the
constant change of white noise amplitude and power frequency
harmonic noise amplitude, the median of T*

2 and E0 in 100 statistical
results is basically similar to the set parameter (100 nV and 200 ms),
but the range frame of 25%–75% and the maximum and minimum
range of both increase with the increase of noise. It is consistent with
the trend of statistical results obtained when the two changes are
presented in Table 1.

As can be seen from Figure 5, when the average relaxation time
T*
2 keeps increasing, the median of E0 in the statistical results keeps

approaching the set value (100 nV), and then gradually away from
the set value. The range box of 25%–75% and the maximum and
minimum range of E0 gradually decrease with the increase of T*

2,
and then gradually increase, indicating that whether T*

2 is too large
or too small, will affect the accuracy of the fitting extraction results of
E0. Especially when T*

2 =50 ms, the extraction result of E0 has a large
error, which seriously deviates from the set parameter (100 nV), and
the accuracy is not high.WhenT*

2 is about 50 ms, the corresponding
type of aquifer is often clayey sand, and MRS Signal is weaker. With
the gradual increase ofT*

2, themedian ofT*
2 in the statistical results is

very close to the set value, which can also be seen from Table 1. The
range box of 25%–75% and the maximum and minimum range of
T*
2 also increase, which is consistent with the change trend reflected

in Table 1.
When Larmor frequency approaches the frequency of the co-

frequency harmonics, that is, when the difference between Larmor
frequency and the co-frequency harmonics gradually decreases, it
can be seen from Figure 6 that the 25%–75% range frame and
the maximum and minimum range of the initial amplitude E0
and relaxation time T*

2 increase as Larmor frequency gradually
approaches the co-frequency harmonics. Obviously, when Larmor
frequency is close to the same frequency harmonic, the error is
larger.

The results of the above statistical analysis can give information
on the uncertainty of the parameters extracted after processing the
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FIGURE 7
Comparison of signal extraction results by ALIF, HMC and EEMD
algorithms. (A) ALIF, HMC and EEMD algorithms extract the
time-domain image of the real part of the signal; (B) Time domain
image extracted by ALIF, HMC and EEMD algorithms; (C) Frequency
domain images extracted by ALIF, HMC and EEMD algorithms.

MRS signal for the ALIF algorithm with a selected mask factor
of 1.4 and decomposition order of 9 under different noise types,
noise amplitudes, T*

2 variations and different Larmor frequencies,
and through this experiment, it is possible to determine under what
parameter conditions the algorithm can operate stably, and trust its
processing results.

3.3 Comparative analysis with other
algorithms

To further illustrate the performance of the proposed algorithm,
a comparative analysis is conducted between the ALIF algorithm,
EEMD algorithm, and HMC. The parameter setting in the
experiment is the same as that in Section 3.1. Figure 7 depicts
the time domain and frequency domain diagrams of the real part,

imaginary part, andmode amplitude of theMRS envelope processed
by the three algorithms. The original SNR of the noisy MRS data
is −15.1 dB. After processing by the HMC algorithm, the SNR
increases by 17.7 dB–2.6 dB. After processing by the ALIF algorithm
and EEMD algorithm, the SNR increases to approximately 41 dB.
Figure 7 shows that the shape of the extracted envelope after
ALIF and EEMD algorithm processing is smooth, and the power
frequency harmonics and random noise are successfully removed
while extracting the envelope. However, the HMC can remove only
the power frequency harmonics and cannot effectively suppress the
random white noise. The initial amplitudes obtained via fitting after
ALIF and EEMD algorithm processing are 100.2 nV and 98.6 nV,
and the relative errors are 0.2% and 1.4%, respectively. The obtained
relaxation times are 200.1 ms and 208.0 ms, and the relative errors
are 0.1% and 4.0%, respectively. From the data analysis results, it
can be seen that the performance of the ALIF algorithm is better
than that of the EEMD algorithm. In addition, the EEMD algorithm
constantly tries to select some IMF components and residuals
to extract the effective envelope information, whereas the ALIF
algorithm only needs to combine the residual signals to synthesize
the effective MRS signal envelope. Moreover, the ALIF algorithm
is more efficient than the EEMD algorithm. A total of 16 data
processing groups are taken as an example. For a computer with a
3.4 GHz Intel Core i7 processor and 32 GB of memory, the EEMD
algorithm takes approximately 2.8 h, whereas the ALIF algorithm
takes only approximately 1.5 min. Based on the above analysis, the
ALIF algorithm has more advantages than the EEMD algorithm in
extracting MRS signal envelopes.

3.4 Multi-exponential MRS signal
processing

In actual geological conditions, groundwater typically exists in a
water storage mediummixed with a variety of lithologic facies; thus,
theMRS signal may need to be modeled in a multi-exponential way.
The multi-exponential MRS signal can be expressed as follows:

E (t) =
m
∑
i
E0i ⋅ e
(−t/T*

2i) ⋅ cos(2π fLt+ϕ0i), (10)

Eq. 10 is used to construct two groups ofmulti-exponentialMRS
signal data. In the first group, T*

2 is 400 ms and 200 ms, and the
initial amplitude is 100 nV and 150 nV, respectively. In the second
group, T*

2 is 200 ms and 80 ms, and the initial amplitude is 100 nV
and 150 nV, respectively.The Larmor frequency is 2,325 Hz, and the
initial phase isπ/4 rad.The selectionmethod for themask coefficient
and decomposition order in the ALIF algorithm is the same as that
in Section 3.1. The ALIF algorithm, EEMD algorithm, and HMC
are used to process the two groups of data. Figure 8 shows that the
envelope obtained after ALIF algorithm processing is closer to the
noise-free MRS signal envelope than that extracted after HMC and
EEMD algorithm processing. It can be seen that the ALIF algorithm
is also suitable for processing multi-exponential MRS signals.

3.5 Processing of field data

The field data experiment is conducted in the Changchun
Culture Square. In this experiment, the MRS signal is generated by
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FIGURE 8
Time domain and frequency domain diagrams of multi-exponential noisy MRS datas processed by ALIF algorithm, EEMD algorithm, and HMC. In (A)
and (C), T*

2 is 400 ms and 200 ms, respectively, and the initial amplitude is 100 nV and 150 nV, respectively. In (B) and (D), T*
2 is 200 ms and 80 ms,

respectively, and the initial amplitude is 100 nV and 150 nV, respectively.

an arbitrary signal generator, and the JLMRS instrument developed
independently by JilinUniversity is used for the data acquisition.The
instrument collects theMRS signal coupled by the receiving coil and
complex noise from the environment to form the measured MRS
data. The data processed in this experiment are single acquisition
data records.Figures 9A, C presents the time domain and frequency
domain diagrams of the envelope extracted by the three algorithms
(i.e., HMC, EEMD, and ALIF) when the Larmor frequency of
the MRS signal is 2,360 Hz and the relaxation time is 200 ms.
Figure 9B, D depicts the time domain and frequency domain
diagrams of the extracted envelope before and after processing by
the three algorithms when the Larmor frequency of the MRS signal
is 2,351 Hz and the relaxation time is 200 ms.

Table 2 reports the analysis of the results processed by the three
algorithms. The ground truth of the relaxation time in Table 2 is
200 m, the initial amplitude of the first group of data is 168 nV,
and the initial amplitude of the second group of data is 102 nV. The
value of the initial amplitude is calibrated and calculated according
to the comprehensive factors of the experimental environment and
experimental device, δE0 and δT*

2 represents the fitting errors of the
initial amplitude and relaxation time.

Compared with the data processing results in Figure 9, Table 2,
in the first group of data, the deviation between the Larmor
frequency and power frequency harmonics of the MRS signal
is larger (10 Hz), and the three algorithms obtain satisfactory

processing results in the fitting errors of the initial amplitude
and relaxation time. However, owing to the single acquisition
of data, the HMC exerts no inhibitory effect on the random
noise; thus, the SNR improvement is only 9 dB, whereas the SNR
improvement of the ALIF and EEMD algorithms is more than
32 dB. From the time–frequency domain diagram in Figure 9, it
can be seen that after HMC processing, the signal still contains
considerable random noise, thereby resulting in the correlation
between the extracted envelope and ideal signal of only 0.79,
which is significantly lower than 0.99 from the ALIF and EEMD
algorithms.

In the second set of data, the deviation between the Larmor
frequency of the MRS signal and power frequency harmonics is
small (1 Hz), and the original SNR is lower than that in the first set of
data. At this time, the HMC and ALIF algorithms obtain improved
processing results in the fitting errors of the initial amplitude and
relaxation time, and the fitting error of the EEMD algorithm is
obviously larger than that in the first set of data. Therefore, by
combining the processing results and program execution efficiency
of the three algorithms under the above two SNRs and frequency
deviations, it can be seen that the comprehensive performance of
the ALIF algorithm is better than that of the HMC and EEMD
algorithms.
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FIGURE 9
Results of field data before and after processing. In (A) and (C), Larmor frequency is 2,360 Hz and relaxation time is 200 ms. In (B) and (D), Larmor
frequency is 2,351 Hz and relaxation time is 200 ms. Dark gray lines represent the original signal envelope, light gray lines represent the signal envelope
after HMC processing, green lines represent the signal envelope after EEMD algorithm processing, and red lines represent the signal envelope after
ALIF algorithm processing.

TABLE 2 Analysis results of field data processed by the three algorithms.

Data Arithmetic SNR_org (dB) SNR_pro (dB) ΔSNR (dB) δE0(%) δT*2(%) Running Time(s) Coefficient

First set HNC −4.77 4.27 9.04 2.58 −1.57 10.06 0.79

EEMD −4.77 27.32 32.09 −1.01 0.99 335.13 0.99

ALIF −4.77 27.64 32.41 −2.86 0.31 6.85 0.99

Second set HNC −9.07 −0.68 8.39 −0.82 3.75 10.48 0.56

EEMD −9.07 19.80 28.87 11.30 −8.28 309.63 0.99

ALIF −9.07 19.53 28.60 −5.66 5.40 9.98 0.99

4 Conclusion

Focusing on the problem of complicated environmental noise
and difficult-to-realize reliable MRS signal envelope extraction in
the practical application of MRS signal detection instruments, this
study proposes an MRS signal envelope extraction algorithm based
on the ALIF algorithm, which can effectively extract the signal
envelope while removing the noise. The uncertainty of the initial
amplitude and lateral relaxation time is used as the evaluation
criterion to determine the two key parameters of mask coefficient
and decomposition order in the ALIF algorithm. MRS signal
envelope extraction statistical experiments are conducted under

different noise types, noise amplitudes, and relaxation times, and the
results show that the SNR can be improved by 30 ∼42 dB after ALIF
algorithm processing. Through a comparative analysis between
the ALIF algorithm, classical HMC method, and EEMD envelope
extraction algorithm, the ALIF algorithm is proven to demonstrate
superior performance and high computational efficiency and to be
suitable formulti-exponentialMRS signals.Thefield data processing
experiment reveals that for the field data with a frequency deviation
of 1 Hz, a satisfactory data processing effect is obtained. However,
for the envelope extraction of MRS signals with the same frequency
harmonics, the ALIF algorithm must be examined and solved
further.

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2023.1088290
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tian et al. 10.3389/feart.2023.1088290

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

Conceptualization, BT and HL; methodology, CS and LL;
software, CS and LL; validation, CS and LL; formal analysis,
CS; investigation, HD; resources, CS and LL; data curation,
HD; writing—original draft preparation, LL, Y-DL, and BT;
writing—review and editing, Y-DL, C-CC, and BT; visualization,
CS and LL; supervision, HL; project administration, BT; funding
acquisition, BT. All authors have read and agreed to the published
version of the manuscript.

Funding

Research on observation technology of airborne magnetic
vector gradients of low temperature superconductors has received
funding from the National key research and development program
under grant agreement 2021YFB3900201. This work was supported

in part by the Education Department Project of Jilin Province
(Grant Nos. JJKH20211087KJ and JJKH20211052KJ), the Natural
Science Foundation of Jilin Province (Grant Nos. 20190201111JC)
and the Fundamental Research Funds for the Central
Universities.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Behroozmand, A. A., Keating, K., and Auken, E. (2015). A review of the principles
and applications of the nmr technique for near-surface characterization. Surv. Geophys.
36, 27–85. doi:10.1007/s10712-014-9304-0

Cicone, A., Liu, J., and Zhou, H. (2016). Adaptive local iterative filtering for signal
decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Analysis
41, 384–411. doi:10.1016/j.acha.2016.03.001

Crank, J., and Nicolson, P. A. (1996). A practical method for numerical evaluation
of solutions of partial differential equations of the heat-conduction type. Adv. Comput.
Math. 6, 207–226. doi:10.1007/bf02127704

Dalgaard, E., Auken, E., and Larsen, J. J. (2012). Adaptive noise cancelling of
multichannel magnetic resonance sounding signals. Geophys. J. Int. 191, 88–100.
doi:10.1111/j.1365-246X.2012.05618.x

Diao, S., Shi, B., and Xu, A. (2022). Research on extraction method of tunnel
magnetic resonance detection signal based on collaborative filtering. AIP Adv. 12,
115307. doi:10.1063/5.0102375

Du, G., Lin, J., Zhang, J., Yi, X., and Jiang, C. (2019). Study on shortening the dead
time of surface nuclearmagnetic resonance instrument using bipolar phase pulses. IEEE
Trans. Instrum. Meas. 69, 1268–1274. doi:10.1109/tim.2019.2911755

Ghanati, R., Fallahsafari, M., and Hafizi, M. K. (2014). Joint application
of a statistical optimization process and empirical mode decomposition to
magnetic resonance sounding noise cancelation. J. Appl. Geophys. 111, 110–120.
doi:10.1016/j.jappgeo.2014.09.023

Ghanati, R., Hafizi, M. K., and Fallahsafari, M. (2016). Surface nuclear magnetic
resonance signals recovery by integration of a non-linear decomposition method with
statistical analysis. Geophys. Prospect. 64, 489–504. doi:10.1111/1365-2478.12296

Grombacher, D., Liu, L., Osterman, G. K., and Larsen, J. J. (2021). Mitigating
narrowband noise sources close to the larmor frequency in surface nmr.
IEEE Geoscience Remote Sens. Lett. 18, 1376–1380. doi:10.1109/lgrs.2020.
3000639

Hertrich, M. (2008). Imaging of groundwater with nuclear magnetic resonance.
Prog. Nucl. Magnetic Reson. Spectrosc. 53, 227–248. doi:10.1016/j.pnmrs.2008.01.002

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q.,
et al. (1998). The empirical mode decomposition and the hilbert spectrum for
nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454, 903–995.
doi:10.1098/rspa.1998.0193

Jiang, C., Lin, J., Duan, Q., Sun, S., and Tian, B. (2011). Statistical stacking
and adaptive notch filter to remove high-level electromagnetic noise from MRS
measurements. Near Surf. Geophys. 9, 459–468. doi:10.3997/1873-0604.2011026

Jiang, C., Zhou, Y., Wang, Y., Duan, Q., and Tian, B. (2021). Harmonic noise-
elimination method based on the synchroextracting transform for magnetic-resonance
sounding data. IEEE Trans. Instrum. Meas. 70, 1–11. doi:10.1109/tim.2021.3102689

Larsen, J. J., and Behroozmand, A. A. (2016). Processing of surface-nuclear
magnetic resonance data from sites with high noise levels.Geophysics 81,WB75–WB83.
doi:10.1190/geo2015-0441.1

Larsen, J. J., Dalgaard, E., and Auken, E. (2014). Noise cancelling of MRS signals
combining model-based removal of powerline harmonics and multichannel Wiener
filtering. Geophys. J. Int. 196, 828–836. doi:10.1093/gji/ggt422

Legchenko, A., Baltassat, J. M., Duwig, C., Boucher, M., Avilés, G., Soruco, A.,
et al. (2020). Time-lapse magnetic resonance sounding measurements for numerical
modeling of water flow in variably saturated media. J. Appl. Geophys. 175, 103984.
doi:10.1016/j.jappgeo.2020.103984

Legchenko, A., and Valla, P. (2002). A review of the basic principles for
proton magnetic resonance sounding measurements. J. Appl. Geophys. 50, 3–19.
doi:10.1016/S0926-9851(02)00127-1

Li, F., tian Li, K., Lu, K., and Li, Z.-Y. (2020a). Cancellation of varying harmonic
noise in magnetic resonance sounding signals. J. Appl. Geophys. 177, 104047.
doi:10.1016/j.jappgeo.2020.104047

Li, F., tian Li, K., Lu, K., and yu Li, Z. (2020b). Random noise suppression and
parameter estimation for magnetic resonance sounding signal based on maximum
likelihood estimation. J. Appl. Geophys. 176, 104007. doi:10.1016/j.jappgeo.2020.104007

Li, T., Feng, L.-B., Duan, Q.-M., Lin, J., Yi, X.-F., Jiang, C.-D., et al. (2014). Research
and realization of short dead-time surface nuclear magnetic resonance for groundwater
exploration. IEEE Trans. Instrum. Meas. 64, 278–287.

Li, W., Cai, N., Ning, Z., Dong, Y., and Wang, H. (2021). Error compensation
for optical encoder via local-sinusoidal-assisted empirical mode decomposition
with an optimization scheme. IEEE Trans. Industrial Electron. 69, 9596–9604.
doi:10.1109/tie.2021.3112968

Lin, L., Wang, Y., and Zhou, H. (2009). Iterative filtering as an alternative
algorithm for empirical mode decomposition. Adv. Adapt. Data Analysis 1, 543–560.
doi:10.1142/s179353690900028x

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2023.1088290
https://doi.org/10.1007/s10712-014-9304-0
https://doi.org/10.1016/j.acha.2016.03.001
https://doi.org/10.1007/bf02127704
https://doi.org/10.1111/j.1365-246X.2012.05618.x
https://doi.org/10.1063/5.0102375
https://doi.org/10.1109/tim.2019.2911755
https://doi.org/10.1016/j.jappgeo.2014.09.023
https://doi.org/10.1111/1365-2478.12296
https://doi.org/10.1109/lgrs.2020.3000639
https://doi.org/10.1109/lgrs.2020.3000639
https://doi.org/10.1016/j.pnmrs.2008.01.002
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.3997/1873-0604.2011026
https://doi.org/10.1109/tim.2021.3102689
https://doi.org/10.1190/geo2015-0441.1
https://doi.org/10.1093/gji/ggt422
https://doi.org/10.1016/j.jappgeo.2020.103984
https://doi.org/10.1016/S0926-9851(02)00127-1
https://doi.org/10.1016/j.jappgeo.2020.104047
https://doi.org/10.1016/j.jappgeo.2020.104007
https://doi.org/10.1109/tie.2021.3112968
https://doi.org/10.1142/s179353690900028x
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tian et al. 10.3389/feart.2023.1088290

Lin, T., Zhu, J., Wang, H., Teng, F., and Zhang, Y. (2020a). A review on the
progress of the underground nuclear magnetic resonance method for groundwater
disaster forecasting detection of tunnels and mines. J. Appl. Geophys. 177, 104041.
doi:10.1016/j.jappgeo.2020.104041

Lin, T.-T., Li, Y., Gao, X., andWan, L. (2021). Randomnoise suppression ofmagnetic
resonance sounding signal based onmodified short-time Fourier transform.Acta Phys.
Sin. 70, 163303. doi:10.7498/aps.70.20202044

Lin, T., Li, Y., Lin, Y., Chen, J., and Wan, L. (2022). Magnetic resonance sounding
signal extraction using the shaping-regularized Prony method. Geophys. J. Int. 231,
2127–2143. doi:10.1093/gji/ggac317

Lin, T., Yao, X., Yu, S., and Zhang, Y. (2020b). Electromagnetic noise
suppression of magnetic resonance sounding combined with data acquisition
and multi-frame spectral subtraction in the frequency domain. Electronics 9, 1254.
doi:10.3390/electronics9081254

Liu, L., Grombacher, D., Auken, E., and Larsen, J. J. (2019). Complex envelope
retrieval for surface nuclear magnetic resonance data using spectral analysis. Geophys.
J. Int. 217, 894–905. doi:10.1093/gji/ggz068

Liu, L., Grombacher, D., Auken, E., and Larsen, J. J. (2018). Low noise, multichannel
surface nmr receiver systemwithwireless connections to receiver coils.ASEGExt. Abstr.
2018, 1–4. doi:10.1071/aseg2018abt7_1h

Müller-Petke, M., Braun, M., Hertrich, M., Costabel, S., and Walbrecker, J.
(2016). MRSmatlab — a software tool for processing, modeling, and inversion
of magnetic resonance sounding data. Geophysics 81, WB9–WB21. WB9–WB21.
doi:10.1190/geo2015-0461.1

Müller-Petke, M., and Costabel, S. (2014). Comparison and optimal parameter
settings of reference‐based harmonic noise cancellation in time and frequency domains
for surface‐NMR. Near Surf. Geophys. 12, 199–210. doi:10.3997/1873-0604.2013033

Oppenheim, A. V. (1999). Discrete-time signal processing. Pearson Education India.

Pan, J., Lu, K., Wang, Z., Li, K., and Li, Z. (2021). Advantages of the optimum pulse
moment in surface nmr and application in groundwater exploration. Groundwater 59,
199–213. doi:10.1111/gwat.13046

Qin, S., Ma, Z., Jiang, C., Lin, J., Bai,M., Lin, T., et al. (2019). Application ofmagnetic
resonance sounding to tunnels for advanced detection of water-related disasters: A
case study in the dadushan tunnel, guizhou, China. Tunn. Undergr. Space Technol. 84,
364–372. doi:10.1016/j.tust.2018.11.032

Wang, Q., Jiang, C., and Luo, K. (2020). Tunnel magnetic resonance tomography for
2-dwater-bearing structures using rotating coil with separated loop configuration. IEEE
Trans. Geoscience Remote Sens. 59, 843–853. doi:10.1109/tgrs.2020.2995995

Wang,Q., Jiang, C., andMullerpetke,M. (2018). An alternative approach to handling
co-frequency harmonics in surface nuclear magnetic resonance data. Geophys. J. Int.
215, 1962–1973. doi:10.1093/gji/ggy389

Yao, X., Zhang, J., Yu, Z., Zhao, F., and Sun, Y. (2019). Random noise suppression of
magnetic resonance sounding data with intensive sampling sparse reconstruction and
kernel regression estimation. Remote Sens. 11, 1829. doi:10.3390/rs11151829

Zhang, J., Du, G., Lin, J., Yi, X., and Chuandong, J. (2019). Improving the
signal-to-noise ratio of underground nuclear magnetic resonance data based on
the nearby reference noise cancellation method. IEEE Access 7, 75265–75275.
doi:10.1109/access.2019.2920845

Zhao, Y., and Su, Y. (2019). The extraction of micro-Doppler signal with emd
algorithm for radar-based small uavs’ detection. IEEE Trans. Instrum. Meas. 69,
929–940. doi:10.1109/tim.2019.2905751

Zhou, Y., Ling, B. W.-K., Mo, X., Guo, Y., and Tian, Z. (2019). Empirical mode
decomposition-based hierarchical multiresolution analysis for suppressing noise. IEEE
Trans. Instrum. Meas. 69, 1833–1845.doi:10.1109/tim.2019.2914734

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2023.1088290
https://doi.org/10.1016/j.jappgeo.2020.104041
https://doi.org/10.7498/aps.70.20202044
https://doi.org/10.1093/gji/ggac317
https://doi.org/10.3390/electronics9081254
https://doi.org/10.1093/gji/ggz068
https://doi.org/10.1071/aseg2018abt7_1h
https://doi.org/10.1190/geo2015-0461.1
https://doi.org/10.3997/1873-0604.2013033
https://doi.org/10.1111/gwat.13046
https://doi.org/10.1016/j.tust.2018.11.032
https://doi.org/10.1109/tgrs.2020.2995995
https://doi.org/10.1093/gji/ggy389
https://doi.org/10.3390/rs11151829
https://doi.org/10.1109/access.2019.2920845
https://doi.org/10.1109/tim.2019.2905751
https://doi.org/10.1109/tim.2019.2914734
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

