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Utilization and exploitation of marine resources by humans have contributed
to the growth of marine research. As technology progresses, artificial
intelligence (AI) approaches are progressively being applied to maritime
research, complementing traditional marine forecastingmodels and observation
techniques to some degree. This article takes the artificial intelligence
algorithmic model as its starting point, references several application trials, and
methodically elaborates on the emerging research trend of mixing machine
learning and physical modeling concepts. This article discusses the evolution
of methodologies for the building of ocean observations, the application of
artificial intelligence to remote sensing satellites, smart sensors, and intelligent
underwater robots, and the construction of ocean big data. We also cover
the method of identifying internal waves (IW), heatwaves, El Niño-Southern
Oscillation (ENSO), and sea ice using artificial intelligence algorithms. In addition,
we analyze the applications of artificial intelligence models in the prediction
of ocean components, including physics-driven numerical models, model-
driven statistical models, traditional machine learning models, data-driven deep
learning models, and physical models combined with artificial intelligence
models. This review shows the growth routes of the application of artificial
intelligence in ocean observation, ocean phenomena identification, and ocean
elements forecasting, with examples and forecasts of their future development
trends from several angles and points of view, by categorizing the various uses
of artificial intelligence in the ocean sector.

KEYWORDS

artificial intelligence, marine science, ocean observation, ocean element forecasting,
ocean phenomena

1 Introduction

The study and exploration of the oceans began centuries ago, initially for commercial
and military purposes. It subsequently developed into a systematic discipline belonging
to a large and important branch of Earth sciences. Over the centuries, human
beings have exploited and utilized marine resources and studied marine application
technologies, providing an effective means for human understanding of the marine
world with multiple sources and scales in spatial information. Research in marine
science is inseparable from advanced research methods. We review the development and
current research of AI techniques in ocean observation, ocean element forecasting, and
numerical models. The pitfalls of poor interpretability of AI techniques have led more
scholars to study AI techniques combining physical information (Schneider et al., 2022).
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With the advancement of technology and the advent of big
data in recent years, the storage volume of Earth system data has
far exceeded tens of petabytes (Agapiou, 2017). We require rapid
and timely analysis and processing of the massive data of ocean
observation and simulation to construct accurate and real-time
forecast data in a shorter period. Emerging technologies such as
AI are gradually being applied to research and development in
the field of ocean, which to a certain extent, can complement and
assist the traditional numerical forecasting models in the weak
links of traditional ocean forecasting. For some prediction and
forecasting problems, classical mathematical models and traditional
ocean theories cannot be easily described accurately, especially for
the regional ocean and climate mechanisms humans have not yet
mastered (Yu, 2021).With the increase in the amount of information
acquired by the ocean, data-driven AI technology may, in turn,
be a strong point in these fields. How to use ocean data-driven
AI has become a vital issue in ocean AI (Chengcheng and Ge,
2018).

Ocean observation is the foundation for the study and use
of the ocean, which has a deep historical foundation, and in
recent decades remote sensing technology (Boukabara et al., 2019)
and sensor network technology (Lu et al., 2019) have developed
rapidly. Chengcheng and Ge (2018) describe the development
of ocean big data acquisition, analysis, and application. Ocean
observation technology, driven by ocean big data, has gradually been
combined with big data enabling technology, blockchain platform
technology, and AI application technology, leading to the research
and development of smart ocean technology (Zhang et al., 2020).
This technology uses AI to combine satellite remote sensing data,
sensor networking, and traditional robotics to make intelligent
ocean observations. The ocean data generated by observations
inevitably produce errors, and AI algorithms can reconstruct the
data.

Many physical phenomena in the ocean have a critical impact
on the Earth’s climate, marine ecology, and human activities, e.g.,
internal waves, heatwaves, and eddies. Traditional methods are
based on physical knowledge using satellite data for identification.
The development of AI has brought new ideas for the application
of ocean data. Applying the new technology in ocean phenomena
identification proves its sufficient accuracy and identification speed.
In this paper, we mainly sort out the AI identification methods of
internal waves, heatwaves, the ENSOphenomenon, and sea ice using
ocean remote sensing data.

Numerical and statistical models are essential tools for
forecasting traditional ocean elements. By complementing and
synergizing the technology in AI with traditional ocean theory and
numerical forecasting, the effect and value of data-driven prediction
forecasting can effectively compensate for the uncertainty factor of
statistical methods of numerical forecasting. Ocean big data AI has
become a new bridge between ocean data and technology, playing an
essential role in the detection and simulation of ocean currents, sea
ice, and seafloor targets (Chen et al., 2022a). Although deep learning
models show their greatmerits, they still have problems such as poor
interpretability and traditional prediction methods not constrained
by physical laws. Therefore, more and more researchers are now
combining physical information constraints with AI techniques to
form physics-driven AI methods, which can better solve scientific
problems using physical laws for model modeling.

The AI techniques in the ocean domain have also been analyzed
in relevant research reports. Sonnewald et al. (2021) focuses on three
branches covering the field: observations, theory, and numerical
modeling, discussing the historical background and the application
of ML theory to oceanographic exploration advances, model error,
bias correction, and an emphasis on current and potential uses in
data assimilation. However, today’s machine learning techniques
still encounter development bottlenecks. Their interpretability
remains insufficient to allow purely data-driven models to be
trusted, so hybrid models that combine machine learning with
physical modeling may have better scope for future development
(Reichstein et al., 2019; Schneider et al., 2022). The research on
physically drivenmachine learning has not yetmatured, so the above
reviews provide relatively limited descriptions of this aspect.

In this survey, we demonstrate the development route of ocean
observation, identification of ocean processes, and ocean element
forecasting by merging numerous instances of AI applications in
ocean field technology based on the AI algorithm model. Alongside
these instances, we concentrate on the specialized application of
AI technology to large data sets. In addition, the article illustrates
the considerable study effort on AI models in the fields of ocean
element forecasting and ocean phenomena identification, as well as
the research directions that have evolved in recent years to combine
AI with physical modeling concepts. We have provided proper
nouns and abbreviations throughout the text in the Supplementary
Materials.

2 The application of AI in ocean
observation

Ocean observation is the basis for studying the ocean,
developing the ocean, and using the ocean. Ocean observation
technologies such as buoys, remote sensing, and drones have also
promoted the development of marine science. Ocean observation
capability also reflects a country’s comprehensive national power.
Through the observation and investigation of the ocean, human
beings can more fully understand and use the laws of the ocean so
that they can better carry out their productive lives. This chapter is
mainly divided into two parts to elaborate. See Figure 1. The papers
covered in this section are listed in Tables 1, 2.

2.1 History of ocean observation

The first global observations of the ocean date back to the
Challenger expedition in 1873 AD (Sonnewald et al., 2021), which
first studied the global distribution of ocean depth, temperature,
and salinity and revealed the three-dimensional structure of the
ocean. This expedition also significantly increased interest in the
oceans. Countries worldwide have sent ocean exploration vessels
to conduct regional or global ocean exploration surveys. By the
1940s, humanity introduced radar precision navigation systems
for submarine detection in World War II, which also brought
a revolution in ocean observation. In the second half of the
20th century, several countries launched many satellites for ocean
observation, such as the first artificial satellite launched by the Soviet
Union in 1957 and the Seasat satellite launched by the United States
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FIGURE 1
The Application of AI in Ocean Observation. First, the history of ocean observation is presented, followed by a discussion of the inadequacies of
conventional ocean observation methods, the strategies for merging ocean observation with artificial intelligence, and then the reconstruction of data.

TABLE 1 Statistics of ocean observation papers.

Observation technology Content or methods Papers

Remote Sensing

Deep learning-based network supervised classification and target detection Li et al. (2020)

Deep learning based image super-resolution model Ducournau and Fablet (2016)

Multi-scale feature fusion based on deep learning Du et al. (2019)

Deep learning-based attention mechanism Ghaffarian et al. (2021)

Data Fusion Network Raizer (2013)

Backward propagation neural network Li et al. (2020)

Semantic segmentation of hyper-segmented remote sensing images based on deep learning Dong et al. (2022b)

Main achievements and problems of artificial intelligence technology in environmental remote sensing Yuan et al. (2020)

Smart Sensor Networking

Smart sensor networks embedded with data assimilation Howe et al. (2010)

A new generation of marine smart sensors with flexible interoperability Cater et al. (2009)

Software-defined intelligent wireless sensor networks Luo et al. (2022)

Marine sensor network clock synchronization technology Jia et al. (2019)

SUNSET, a framework for underwater sensor network simulation, emulation and testing at sea Petrioli et al. (2015)

Smart Robot

Gliding robot fish with multi-link fins imitating the BCF model Wang et al. (2021)

Mesobot, an intelligent underwater robot for ocean twilight zone observation Yoerger et al. (2021)

Intelligent marine inspection robot system Jin et al. (2020)

in 1978 (Stewart, 1988), which also contributed to the development
of ocean observation. In 1985, theWorld Climate Research Program
(WCRP) launched its first international cooperative project, the
Tropical Ocean and Global Atmosphere (TOGA). This project
focuses on sea-air interactions on seasonal to interannual time
scales, mainly focusing on the equatorial eastern Pacific Ocean

where ENSO occurs. In this project, observations are made by
a three-dimensional network of satellite systems, aircraft, survey
ships, ground-based sounding stations, moored buoys, and drifting
buoys (Lin and Yang, 2020). In the 21st century, several atmospheric
and oceanic scientists proposed the Argo project, which opened a
new era in ocean environment observation, establishing an ocean
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TABLE 2 The ocean big data reconstruction paper.

Methods Papers

Traditional reconstruction methods

Dynamic optimal interpolation method Ma and Jing (2004)

Data interpolation empirical orthogonal function Liu and Wang (2018)

Improved empirical orthogonal function for data interpolation Ping et al. (2016)

Reconstruction methods combined with AI

super-resolution convolutional neural network Ducournau and Fablet (2016)

machine learning-based IFBN model Li et al. (2021)

evolutionary product unit neural network Durán-Rosal et al. (2016)

a machine learning-based model Park et al. (2019)

observation network and placing many automatic detection buoys
into the ocean. In 2002, China officially announced its participation
in the Argo program. After nearly 20 years of effort, the Argo
Ocean Observing Network, consisting of more than 3,000 Argo
profiling buoys, has been built worldwide. It provides continuous
information on ocean temperature, depth, salinity measurements,
and current velocities up to 2,000 m. It is available for free research
and application by scientists worldwide.

As early as the 17th century, studies have shown that some
surveyors began to make observations of sea level. The first devices
used to observe sea level were graduated rods, often called “tide
rods,” fixed in a position where the observer could read the
instantaneous height of the sea level at any time (Wöppelmann et al.,
2006). The point tide gauge was invented in the 1970s and uses a
measuring device tomeasure the tide height and then record the data
through computer processing.This instrument has the advantages of
high automation, high accuracy, and ease of use, so it has beenwidely
used.

Since the 19th century, many atmospheric pressure sensors have
been used for ocean observations. Sea level pressure data are used
to calculate trends for diagnosing climate models and constructing
climate indices. For example, the tropical Pacific SLP field defines
multivariate ENSO indices (Wolter and Timlin, 2011). Sea level
pressure data also contribute directly or indirectly tomany reanalysis
products used in climate assessments. Climate-related changes in
mean atmospheric load or SLP correspond to sea level changes of
about 1 cm for a 100 hPa difference, the so-called inverse barometer
effect (Wunsch and Stammer, 1997). Sea level pressure observations
can also be used to assess changes in the frequency and intensity of
temperate storms and to monitor and predict monsoonal changes
and trends in extreme weather.

2.2 Defects of traditional observation
methods

However, traditional ocean observation methods have several
limitations. Drifters used for surface observations have financial
difficulties in deployment, there are still limitations in distribution,
the Arctic is mainly devoid of drifting buoys, maintaining global
distribution is complex, and achieving this goal requires the
cooperation of multiple countries (Centurioni et al., 2019). There
are also some problems with shipboard observation techniques,
namely the structure of the ship itself and the placement of its

sensors can make errors when measuring data (Berry et al., 2004;
Popinet et al., 2004). Although moored buoys can provide a variety
of realistic, high-quality ocean observations (Bourras, 2006), they
cannot achieve global coverage due to maintenance costs and
deployment problems.

In recent decades, AI has become popular, and more and more
fields are using AI technology, and the ocean is no exception.

2.3 Technologies of ocean observation

AI was first introduced in 1956 (Spector, 2006). At first,
it was only intended to use some mechanical tools to replace
humans in doing some simple and tedious tasks. In the 21st
century, with the accumulation of global ocean quasi-real-time 3D
observation data, the growth rate of ocean data has accelerated
by 40%, which has given rise to the growing trend of ocean big
data (Overpeck et al., 2011). Various countries have increasingly
recognized the importance of big data in social development and
national core competitiveness (Chengcheng andGe, 2018).With the
rapid development of computer hardware and software, computer
capacity and computing power have been much improved, and
the cost has been reduced significantly. AI-related technologies
such as machine learning, deep learning, and pattern recognition
have advanced rapidly, bringing a boon to the marine field. The
smart ocean combines AI and the ocean, the deep development
of ocean information, and the nervous system to understand and
plan the ocean (Jiang et al., 2018). Making full use of ocean big data
can help human research to achieve better development in coping
with climate change, protecting the ecological environment, and
preventing natural disasters (Rasouli et al., 2012; Kim et al., 2014;
Deo and Şahin, 2015; Rosso et al., 2020; Lou et al., 2021; Syeed et al.,
2022).

2.3.1 Remote sensing technique
Satellite remote sensing technology is also a way of ocean

observation and constitutes the essential modern ocean technology
innovation (Liu et al., 2017). Figure 2 shows the acquisition process
of remote sensing data. Traditional processing of satellite remote
sensing data is highly dependent on personnel with specialized
knowledge. It requires manual processing and interpretation by
combining satellite remote sensing data characteristics, actual
conditions, and ocean expertise. It is time-consuming and
challenging to guarantee accuracy. Deep learning of remote sensing
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FIGURE 2
Remote sensing data acquisition process. Ocean data is taken as input, and the remote sensing information is finally acquired through pre-processing,
geometric correction, image enhancement, image crop, image mosaicing, and color grading turn.

FIGURE 3
The Identification of Ocean Phenomena. This section describes four ocean phenomena (internal waves, heatwaves, ENSO, and sea ice).

has flourished with the technological development of AI and the
open sharing of remote sensing data sets. Various forms of AI,
including machine learning, have been used successfully on many
satellite remote sensing problems (Haupt et al., 2008; Hsieh, 2009;
Krasnopolsky, 2013; Ball et al., 2017; Boukabara et al., 2019).

Remote sensing data are fundamental to ocean prediction,
revealing new phenomena at critical spatial and temporal scales
previously unavailable using in situ observational data alone
(Liu et al., 2017). These data can provide rich data fuel for data-
driven deep learning, and data-driven deep learning provides a
promising avenue for making full use of ocean remote sensing big
data. This win-win situation has also led several research scholars
abroad to conduct exploratory research around AI-based satellite
remote sensing applications, proposing new ideas, methods, and
techniques. Li et al. (2020) reviewed the application of supervised
classification and target detection based on deep learning networks
in extracting several typical ocean phenomena from ocean remote
sensing images, such as ocean internal wave detection, coastal
flood detection, and sea ice detection. Ducournau and Fablet
(2016) Ducournau and Fablet used a deep learning-based image

super-resolution model to address the reduction of sea surface
temperature data derived from ocean remote sensing. Du et al.
(2019) developed the DeepEddy deep learning model to solve
the problem of ocean eddy detection using synthetic aperture
radar (SAR) image data. Yuan et al. (2020) presented the main
results and problems of AI techniques in environmental remote
sensing, detailed the traditional neural network and deep learning
network structures and the applications of both methods in
marine as well as other aspects, and pointed out the technical
bottlenecks of AI in combining physical model simulation,
incorporating geographic laws and small sample-based and
migration learning. Ghaffarian et al. (2021) introduced a remote
sensing image processing method based on a deep learning
attention mechanism, which can improve the overall accuracy
when using deep learning methods for remote sensing image
classification, image segmentation, change detection, and target
detection. Therefore, combining AI with satellite remote sensing
for ocean observation big data is vital for the development and
progress of the ocean field, remote sensing technology, and AI
field.
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2.3.2 Smart sensor networking
The so-called ocean intelligent sensors also apply AI technology

to the sensors. These sensors also play a tremendous auxiliary role
in ocean observation. With many advantages, such as small size,
easy networking, and resistance to electromagnetic interference,
it is also expected to become an auxiliary measurement tool
in ocean observation. Howe et al. (2010) developed an intelligent
sensor network that combines many of the fundamental elements
of ocean observing systems, embeds a data assimilation framework,
and facilitates adaptive sampling and calibration. Cater et al. (2009)
define a new generation of smart ocean sensors that can be
located and identified on the World Wide Web. They demonstrate
“plug-and-play” interoperability in the field and provide data that
can be shared, processed, and presented to end users across
many disciplines and applications. Sensors are primarily deployed
in networks in the ocean to facilitate ocean observation. An
ocean sensor network is an underwater wireless sensor network
that typically consists of a variety of ocean sensors, autonomous
underwater vehicles, surface research vessels, and in some cases,
coastal radars and large gliders. Different types of underwater
devices in such a network can communicate through underwater
communication technologies to form an underwater wireless
network.

In contrast, marine sensors can form various sensing and
detection tasks for marine applications. Luo et al. (2022) proposed a
software-defined intelligent wireless sensor network to solve ocean
monitoring problems such as sea surface and subsea monitoring.
Marine sensor networks have a wide range of applications and a high
potential for ocean observation and prediction.

2.3.3 Intelligent robots
Combining traditional robots with AI and using them for

ocean observation has also given birth to many intelligent robots
for ocean observation, such as underwater robots fish, marine
robots, and oil drilling robots. Traditional robots can be called
programmable machines and perform a series of operations
and instructions automatically or semi-automatically. With the
addition of AI technology, these robots can automate and learn
independently. Wang et al. (2021) designed a gliding robot fish with
multi-linked fins in a BCF-like mode to exploit marine resources
and monitor oil rigs. This robotic fish can swim flexibly, glide
efficiently in three dimensions, and analyze gliding motion and fish-
like swimming behavior. Yoerger et al. (2021) designed a Mesobot
intelligent underwater robot for observation in the ocean twilight
zonewith target detection, classification, and tracking of underwater
animals.

2.4 The reconstruction of ocean big data

For scientific research in the ocean, two characteristics of ocean
big data: accuracy and spatiotemporal continuity, are crucial. The
actual process of generating ocean data from ocean observations
leads to missing or unavailable data due to errors in observation
equipment, satellites, weather, and other factors, which then involves
the problem of data reconstruction (Sun et al., 2018). Interpolation
algorithms are usually used to achieve the reconstruction of ocean
data. Ma and Jing (2004) used a dynamic optimal interpolation

method to assimilate sea surface temperature (SST) data from the
Bohai Sea in July, combinedwith the shelf seamodel (HAMSOM) for
validation. Liu and Wang (2018) used data interpolation empirical
orthogonal functions to perform the missing VIIRS ocean color
dataset. Ping et al. (2016) proposed an improved data interpolation
empirical orthogonal function algorithm to solve the problem of
missing values of spatiotemporal sea surface temperature data.

However, the interpolation process leads to the loss of important
information, resulting in large data reconstruction errors and posing
a huge challenge for traditional data reconstruction methods. The
emergence of AI also alleviates this problem very well. Among the
methods of AI, deep learning can learn complex models from a
large amount of sample data and can control the model’s efficiency.
For example, Ducournau and Fablet (2016) used a super-resolution
convolutional neural network (SRCNN) to solve the problem of
shrinking satellite-generated sea surface temperature (SST) data.
Li et al. (2021) proposed a newmachine learning-based IFBNmodel
based on Bayesian networks and information flow for interpolating
multiple oceans missing time series of variables. This method has
better accuracy, validity, and stability. Durán-Rosal et al. (2016)
used an evolutionary product unit neural network to solve the
problem of reconstructing a large amount of missing data in
marine buoys (Durán-Rosal et al., 2016). Park et al. (2019) used a
machine learning-based model for chlorophyll concentration data
reconstruction to improve the availability of chlorophyll-a data.

3 The identification of ocean
phenomena

This chapter is mainly divided into four parts to elaborate (see
Figure 3). The significant papers covered in this section are listed in
the Table 3.

3.1 Internal waves

Ocean internal waves are a wave phenomenon that occurs
in densely stable and stratified oceans. Due to differences in
temperature and salinity, this phenomenon usually occurs in densely
stratified bodies of water (Zheng et al., 2021b). Large amplitudes,
long crests, and long propagation distances characterize internal
waves (IW) (Zhang et al., 2022). Internal waves occur at all ocean
depths and differ from other waves in that they play an essential
role in transmitting the energy of mesoscale and large-scale motions
(Dong et al., 2022a). In addition, internal waves cause disturbances
at the ocean’s surface, which can cause problems for maritime
transport. Internal waves have more energy, which can modify
the atmosphere, while the critical role of internal waves is in
ocean acoustics, ocean mixing, marine engineering, and submarine
navigation (Li et al., 2020; Vasavi et al., 2021). As a result, internal
waves have attracted extensive research interest.

Scientists have long recognized the potential of using satellite
imagery to study IW. Satellite images can compensate for in situ
observations to study the generation, propagation, evolution, and
dissipation of IW. SAR is an active sensor that measures the
roughness of the sea surface. It is unaffected by cloud cover and
can image the sea surface at a spatial resolution of 1 m to tens of
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TABLE 3 Identification of ocean phenomena with AI.

Ocean phenomena Methods Papers

Internal waves

SegNet-based internal wave segmentation algorithm Zheng et al. (2021a)

DL model with inverting internal wave amplitudes Pan et al. (2018)

R-CNN model learning from multiple data sources Zheng et al. (2022)

Heatwaves

decision trees and random forests Asadollah et al. (2022)

multi-task fully connected neural network Iglesias et al. (2015)

ConvLSTM Jung et al. (2020)

ENSO

CNN with transfer learning Ham et al. (2019)

beyond spring predictability barrier using ConvLSTM Gupta et al. (2020)

parallel deep CNN with a heterogeneous architecture Ye et al. (2021)

Sea ice

multilevel fusion network (MLFN) based on CNN Gao et al. (2019)

four DL models’ feature fusion combines ConvCRF Panchi et al. (2021)

end-to-end RES-UNET-CRF with Dual Loss Nagi et al. (2021)

FIGURE 4
Flowchart of internal wave identification.

meters in all-weather, day, and night conditions (Li et al., 2020).
In principle, the internal wave-induced flow will interact with the
sea surface and modulate the distribution of small slopes of the
character, so the optical sensor receives the sunlight reflected by
those modulated small slopes due to the mirror reflection. As a
result, internal waves will appear to be bright and dark bands
on the optical remote-sensing images. Therefore, the parameters
of internal waves are indirectly reflected by the stripes on visual
remote-sensing images (Pan et al., 2018). In layperson’s terms,
internal oceanic waves appear as irregular streaks of alternating
light and dark in SAR images. This feature makes SAR graphics
the primary means and means by which scientists study internal
waves.

Nowadays, machine learning is developing rapidly and is also
being used to solve some of the problems in the ocean. It shows
powerful advantages, for example, in studying internal waves.
The general flow is shown in the Figure 4. As mentioned above,
internal oceanic waves appear as irregular streaks of alternating
light and dark in SAR images. However, this feature can easily be
confusedwith other similar oceanic phenomena. In addition, during
the polarity transition of internal waves, the separation distance
between the light and dark bands becomes wider (Zheng et al.,
2021a). Segmenting the maritime internal wave fringes is necessary
to determine the position of internal waves in SAR images. A
considerable amount of research has been devoted to segmenting
oceanic internal wave streaks in SAR images to obtain the role

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2023.1090185
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Song et al. 10.3389/feart.2023.1090185

of internal waves in the ocean. Zheng et al. (2021a) proposed a
SegNet-based oceanic internal wave streak segmentation algorithm,
which can obtain the positions of internal waves. The results show
that the method can identify whether the SAR image contains
internal waves, get the respective roles of light and dark stripes
in the SAR image, and can accurately determine the relative parts
of light and dark stripes. Zheng et al. (2021b) used support vector
machine (SVM) to classify SAR images to obtain images containing
internal waves. Then, the Canny edge detection method was used
to detect and identify the oceanic inner wave streaks in the SAR
images. These streaks were filtered by three parameters, namely
length, area ratio, and direction, and finally, the positions of the
oceanic internal wave streaks were obtained. Zheng et al. (2022)
proposed a Mask RCNN-based algorithm for the segmentation of
internal waves. The results show that the proposed method can
identify the presence or absence of internal waves and obtain the
respective positions of light and dark stripes in the image. In
addition, based on the relative positions of the identified light and
dark stripes, the time of polarity transition of internal oceanic
waves can be further determined. It was found that there is another
category of research dedicated to the inversion of some parametric
information of internal waves. For example, Vasavi et al. (2021)
combine numerical and machine learning methods to perform
noise removal. Then The data enhancement of SAR maps using
convolutional neural network (CNN), followed by segmentation
and feature extraction of wave parameters such as frequency,
amplitude, longitude, and latitude using U-Net. Finally, for the
modeling of internal waves, the Korteweg-de Vries (KdV) solver
is used to take the internal wave parameters as input and give
the velocity and density maps of the internal waves. Zhang et al.
(2022) developed an AI-based wave amplitude inversion model
using laboratory experiments and in situ satellite observations
using a migration learning approach. The results are more accurate
than the conventional KdV equation. Pan et al. (2018) introduced
a deep learning model to invert the internal wave amplitudes
based on many optical remote sensing images to investigate the
relationship between internal wave amplitudes and the characteristic
parameters of remote sensing images. The inversion results are in
good agreement with the observed data. While the above studies
have almost always used a single data source, Drees et al. (2020)
uses a multimodal deep learning algorithm to obtain information
from multiple data sources. The authors utilize a multimodal
neural network approach, SONET, which is trained jointly on two
modalities, radiometric full-resolution image (OLCI) and Water
data product (SRAL). A joint representation of the two modalities
is then obtained and compressed by the fully connected (FC) layer
until the output layer returns a classification result. Good results in
internal wave recognition were achieved. His multimodal approach
may become a hot topic for future internal wave research.

3.2 Heatwaves

Heatwaves are a major cause of weather-related deaths
(Robinson, 2001). Heatwaves become increasingly severe, long-
lasting, and recurrent as global temperatures rise (Asadollah et al.,
2022). In recent years, heatwaves have received widespread attention
for their wide-ranging impacts on human health, ecosystems,

agriculture, and the economy (Gao et al., 2018). The prediction
of heatwaves is the primary task in heatwaves research. Defining a
heatwave is one of the main obstacles to heatwaves prediction and
analysis. Heatwaves are usually defined according to their location
and timing (Perkins and Alexander, 2013; You et al., 2017). The
most common definition is the accumulation of excessive sensible
heat resulting in a heat load (Sanderson et al., 2017; You et al.,
2017). Based on this heat load concept, Khan et al. (2019a); Perkins-
Kirkpatrick andGibson (2017) uses different temperature thresholds
and periods to define heatwaves.

Heatwaves are usually predicted using temperature prediction
models, mainly classified as statistical or dynamic models. Kinetic
models rely on physical interactions between the ocean, atmosphere,
and land to develop predictive models, which makes model
development computationally intensive. As a result, statistical
models are widely used in developing heatwaves prediction models
(Perkins-Kirkpatrick and Gibson, 2017; Gao et al., 2018). Machine
learning has a huge advantage in learning the complex non-linear
interactions of heatwaves by and with large-scale atmospheric
variables. Today, many studies are usingmachine learning to predict
heatwaves, and all have achieved good results. Asadollah et al.
(2022) develops a physical empirical model using two classical
machine learning algorithms, decision trees (DT) and random
forests. It employs a novel hybrid technique of Ada-Boost regression
and decision trees (ABR-DT) to predict the annual number of
heatwaves days. The annual variability of HWD is effectively
modeled, and experiments show that the model can be used
to forecast heatwaves years. Iglesias et al. (2015) has developed a
multi-task deep, fully connected neural network for predicting
heatwaves trained on historical time series data. Experimental
studies have shown that the neural network is a generative method
that can be applied to heatwaves or various other climate problems.
Chattopadhyay et al. (2020) proposes a data-driven extremeweather
prediction framework based on simulated predictions of novel
deep learning pattern recognition techniques Capsule Networks
(CapsNet) that can achieve 80% accuracy for heatwaves. Khan et al.
(2019b) presents a statistical model called quantile regression
forest (QRF) for predicting heatwaves with different time-lags in
Pakistan using weather climate variables. The study demonstrates
the strength of the QRF model in predicting conditional quartiles,
which helps explain some of the extreme temperature behavior.
Khan et al. (2021) uses machine learning (ML) algorithms such as
SVM, random forests, and artificial neural networks to develop
a climate change resilient heatwaves prediction mode that has
been shown to provide reliable predictions under climate change
scenarios. Jung et al. (2020) used convolutional long-term short-
term memory (ConvLSTM) to predict SST in Korea’s South China
Sea region for up to 7 days. The study also examined anomalously
high SST predictions based on three ocean heatwaves categories
(i.e., warning, caution, and watch out). The study shows that
ConvLSTM can successfully predict ocean heatwaves up to 5 days in
advance.

3.3 ENSO

ENSO is currently the world’s largest coupled sea-air model,
occurring in the equatorial central and eastern Pacific Ocean,
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influencing climate around the world and significantly impacting
ecological and agricultural development. ENSO can not only
change the state of the Pacific Ocean and atmosphere but also
have a significant impact on global climate (Yang et al., 2018),
precipitation (Ropelewski and Halpert, 1987), and ecosystems in
remote areas (Adams et al., 1999). Therefore, the analysis and
prediction of ENSO are critical. However, traditional analytical
models face challenges due to insufficient data, spring predictability
barriers (SPB), and model uncertainty. To address these issues,
researchers have begun to apply AI techniques to ENSO studies
to explore the impact of ENSO on extreme global climate
change.With the rapid development of AI techniques, more and
more researchers are trying to apply them to the analysis and
prediction of ENSO. Nooteboom et al. (2018) used a hybrid model
of classical linear statistical methods with autoregressive integrated
moving average (ARIMA) (Box and Pierce, 1970) and artificial
neural network (ANN) methods. The hybrid model gives slightly
better prediction results than the traditional numerical model,
using the potential of machine learning (ML) to overcome SPB
(Guckenheimer et al., 2017). Mekanik and Imteaz (2012) used
multiple linear regression and non-linear ANN to explore the lag
time relationship between ENSO and Indian Ocean dipole (IOD)
for spring rainfall in Victoria. The results show that the ANN model
using Southern Oscillation Index-Dipole Mode Index (SOI-DMI)
can achieve a spring precipitation correlation coefficient of 96.96%.
In comparison, the multiple regression model can only achieve
66.15%.

In recent years, with the gradual application of AI in various
fields, researchers have recently started to use deep learning
for ENSO analysis and prediction. Promising results have been
achieved using deep learning methods to analyze and predict
ENSO, overcoming the challenges of SPB and obtaining predictions
of ENSO type and intensity. Ham et al. (2019) predicts ENSO
index, intensity, and type for the next 18 months using a CNN
model. Coulibaly et al. (2000) investigated the impact of climate
indices such as ENSO on the observed energy inflow projections
from 1991 to 1996 by Recurrent Neural Network (RNN) models.
Broni-Bedaiko et al. (2019) combines climate complex network
analysis with a neural network regression task. It uses metrics to
train long short-term memory networks (LSTM) neural networks
as predictors to predict the ENSO phenomenon. Huang et al.
(2019) compared LSTM with linear regression (LR) models to
determine the advantages of a simple DL model for ENSO event
prediction. The results show that the prediction results of the
two methods are comparable when the monthly inputs are the
same.

ConvLSTM outperforms almost all running models for
the prediction of ENSO events when considering post-spring
predictions. By combining LSTM time series modeling features
and multidimensional data processing properties of CNN,
Gupta et al. (2020) successfully overcame SPB using the ConvLSTM
model to achieve prediction of Niño3.4 index monthly averages
12 months in advance. Ye et al. (2021) proposed a parallel deep
convolutional neural network, i.e., MS-CNN, which could not
accurately predict the Niño3.4 index of strong ENSO, and
the prediction error increased with time. However, the model
was more accurate than other models in predicting ENSO in
spring.

3.4 Sea ice

Polar sea ice is a sensitive indicator of global climate change.
Information on sea ice types is essential for ship navigation and
predicting polar climate change. However, due to the large size and
harsh environment of the polar regions, most polar regions are
difficult to access, and the cost of fieldwork is very high. Ice extent
and thickness are decreasing throughout the Arctic, and as the ice
melts, pockets of ice become more mobile, allowing hazards such as
ice floes to disperse. Sea ice retreat, especially in the Arctic, is one of
the essential measures to address global climate change. Therefore,
sea ice cover and concentration are essential for conducting climate
change studies, polar navigation, and successful offshore operations.

SAR has proven to be an ideal remote sensing technique for
generating detailed sea ice information because of its inherent ability
to image surfaces at a high resolution independent of daylight and
weather conditions. In addition, its polarization capability allows
SAR to respond differently to sea ice types and open water. Since the
launch of the first civilian SAR instrument, Seasat, in 1978, polar sea
ice monitoring has been the primary mission of satellite-based SAR
satellite operations. In order to process a large amount of available
data in real-time, automated methods are needed to detect ice floes.
Applying machine learning algorithms to sea ice classification has
long been a focus of interest. Features are manually selected and
extracted, and then, these features are fed into traditional machine
learning algorithms, such as SVM (Leigh et al., 2013; Liu et al., 2014;
Zakhvatkina et al., 2017), random forest (RF) algorithms (Tan et al.,
2018), or artificial neural networks (Ressel et al., 2015). Automatic
sea ice segmentation (ASIS) (Soh and Tsatsoulis, 1999), developed
in 1999, combines image processing, data mining, and machine
learning to segment unpolarized SAR images automatically. Another
sea ice classification algorithm (Scheuchl et al., 2005) uses the
Wishart algorithm to classify fully polarized single- and dual-
frequency SAR data from sea ice and achieves good results.
Kim et al. (2015) used decision tree and random forest machine
learning methods to map land-fixed sea ice in Antarctica. The
performance of traditional machine learning depends heavily on
selecting features. In contrast, data-driven deep learning models
with the ability to extract features automatically have come to the
forefront in recent years.

CNN is a classical deep learning model, but its low-layer
features perform poorly in sea ice detection tasks. Therefore,
Gao et al. (2019) introduced multilayer feature fusion to exploit the
complementary information between low, medium, and high-level
feature representations and proposed a transferred multilevel fusion
network (MLFN) model to achieve stronger feature extraction.
Chen et al. (2017) proposed a combination of CNN and CRF
to solve the problem of poor CNN localization. In addition,
Wang and Li (2021) also stacked multiple U-Net models with
different specializations for the sea ice segmentation task based
on a multi-feature fusion approach, which has higher accuracy
than any individual classifier. Cooke and Scott (2019) used a
DenseNet model to estimate sea ice concentration by training on
a dataset containing SAR images. Based on this, Kruk et al. (2020)
proposed a new algorithm for predicting sea ice development stages
based on deep learning concepts, using a combination of SAR
images and CIS ice maps to create labeled datasets, completing
a comparative analysis of DenseNet and U-Net performance.
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FIGURE 5
This figure shows a flow chart of sea ice identification by feature fusion. Four models, PSPNet, PSPDenseNet, DeepLabV3+, and UPerNet, generate
different feature maps and perform feature fusion. The synthesized feature maps are then passed through the ConvCRF post-processing layer to
achieve the recognition of rich sea ice. Adapted from Figure 5 of (Panchi et al., 2021).

Furthermore (panchi2021supplementing) extracts different features
for feature fusion by PSPNet, PSPDenseNet, DeepLabV3+, and
UPerNet, and the fusion results are post-processed by ConvCRF
to achieve the effect of identifying rich sea ice types. The process
is shown in the Figure 5. In addition, the lightweight pixel-
based deep residual neural network model MSI-ResNet for sea ice
classification performs better than the classical SVM classifier for
sea ice identification (Zhang et al., 2021). Nagi et al. (2021) took
advantage of CNN and convolutional conditional random fields
(Conv-CRF), where RES-UNET computes expressive features to
generate coarse segmentation maps. At the same time, Conv-CRF
uses spatial co-occurrence pairwise potential as well as RES-UNET
segmentation maps to generate final predictions. Comparing the
experimental results with conventional segmentation networks such
as UNET, DeepLabV3, and FCN-8 demonstrates the effectiveness of
the proposed architecture.

4 Ocean element forecasting

This chapter is mainly divided into four parts to elaborate (see
Figure 6).The papers covered in this section are listed in theTable 4.

4.1 Numerical models and statistical
models

Numerical ocean models have played an essential role in ocean
observation and ocean forecasting since their inception in the
last century. More than 40 ocean data models are now available,
including numerical ocean models for different seas and different
ocean sciences.

Countries generally establish such numerical ocean models.
Such as theHYCOMmodel applied globally by the National Centers
for Environmental Prediction (NCEP) of theUnited States; the LIM2
model of the United Kingdom Met Office; the CONCEPTS model

of Canada; and the MRI.COM model of the Japan Meteorological
Agency, which has developed the Global Ocean forecasting system
and regional nested high-resolution ocean forecasting system.
For marine disasters and early warning forecasting, the United
States, Japan, and other countries have developed the GFDL
model, T213L3 model, etc. Operational forecasting systems based
on marine ecodynamics have been opened internationally for
marine ecological environment forecasting. The European Regional
Seas Ecosystem Model (ERSEM) contains several refined cyclic
processes that can characterize the vital biochemical processes in
the shelf sea ecosystem.Thismodel, coupled with the hydrodynamic
model, has been operationalized at the Met Office in the United
Kingdom. Furthermore, it can provide ecosystem health, water
quality monitoring, harmful algal bloom prediction, and other
product services in the northwest European shelf sea. The model,
coupled with a hydrodynamic model, is operational at the Met
Office in the United Kingdom and can provide ecosystem health,
water qualitymonitoring, harmful algal bloomprediction, and other
product services in the NW European shelf sea (Yu, 2021).

Numerical models are characterized by physical law constraints
and require high computational and time costs to compute large
models, resulting in a lack of ease of use and convenience.

4.2 Model-driven statistical models and
traditional machine learning models

4.2.1 Statistical models
Numerical prediction models have always occupied the main

position of marine environmental forecasting due to the single
means of observation, the short age of observation data, and
the small sample size of data in the early days. Numerical
models are characterized by physical constraints and require high
computational and time costs to compute large models, making
them less easy to use. As an adjunct to numerical models, statistical
models have also been helpful in ocean data observation. Physical
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FIGURE 6
Ocean element forecasting. Four components comprise the AI approach to ocean element forecasting: physics-guided numerical models,
model-guided statistical and traditional machine learning models, data-guided deep learning models, and the combination of physical models and AI.
Each section describes the most prevalent model algorithms and model optimization techniques in the area of ocean element forecasting.

laws do not constrain statistical models, are more concerned with
correlations among ocean data, and play more freely. Statistical
models used more often today include support vector regression
(SVR), Markov models, etc.

The autoregressive moving average (ARMA) model, the
autoregressive (AR) model, and the autoregressive integrated
moving average model (ARIMA) models are classical time series
models. The effective wave height of the Portuguese coastline
region is the prediction work using AR models (Soares et al., 1996;
Soares and Cunha, 2000). Agrawal and Deo (2002) used ARIMA
and ARMA models to predict waves at multiple intervals along
the Indian coast. Although classical time series models are well
adapted, they do not apply to complex ocean conditions due to their
assumption of linearity and smoothness. Effective wave heights are
generally non-linear and non-stationary, so classical time series
cannot accurately predict non-linear and non-stationary waves.

The principle of the SVR model is to find the optimal
hyperplane to minimize the distance from all data points in the

sample to the hyperplane. In the prediction study of chlorophyll-
a, Amorim et al. (2021) evaluated and compared SVR, MLP, RF,
and ARIMA algorithms. Comparing the algorithms, SVR reached
the best R2 (0.78) and RMSE (1.113 µg L1), however, these were
only slightly better results (MLP = 0.76; 1.144 µg L1 and RF =
0.75; 1.189 µg L1) (Amorim et al., 2021). The advantage of the SVR
model in the forecast study is that it can avoid the complexity
of the high-level ocean data space and solve the corresponding
high-dimensional space decision problem directly in the linearly
separable case. When the kernel function is known, it can simplify
the analysis difficulty of the high-dimensional space problem; the
disadvantage is that it requires high parameter tuning of the model
and consumes more space for storing training samples and kernel
matrix.

4.2.2 Traditional machine learning models
The traditional machine learning (ML) is an effective empirical

method. It is a collection of algorithms (e.g., neural networks,
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support vector machines, decision trees, random forests, genetic
programming, etc.) that can solve multivariate, non-linear, non-
parametric regression or classification problems. The traditional
ML-based modeling capability makes it highly capable of solving
problems in the Earth’s marine sciences.

The application of traditional ML-based approaches is divided
into three domains (Lary et al., 2016):

1. The system’s deterministic models are computationally intensive,
and machine learning can be used as a code accelerator tool.

2. No deterministic model exists, but an empirically based ML
model can be derived using existing data.

3. Classification problems that wish to identify specific spatial
processes or events.

The generalized additive model GAM is characterized by
simplicity and ease of interpretation. However, at the same time,
simplicity is also the most significant weakness because, in the real
world, the relationship between features and results is non-linear.
GAM models are particularly suitable for analyzing time series
datasets in the Earth’s marine sciences. Time series signals can often
be explained by multiple additional components, such as trends,
seasonality, and daily fluctuations, which can be easily incorporated
into GAM models. Researchers have widely used GAM models and
their derivatives in modeling analysis to predict changes in SST
(Miftahuddin, 2016; Humaira et al., 2019).

From statistical models such as GAM to machine learning
models, random forest RF performs well in complex prediction
problems characterized by non-linear dynamics. RF is a
classification regression algorithm based on the aggregation ofmany
decision trees and is widely used for sea salt and wave prediction
(Liu et al., 2015; Callens et al., 2020).

RF is famous for its good performance and little hyperparameter
tuning. As with all machine learning models, there are biases to
consider, variance tradeoffs, the balance between models, models
that do not generalize to new data, andmodels that have preferences
or fail to learn training data features.

The extreme gradient boosting (XGBoost) belongs to the
Gradient Boosting Decision Tree (GBDT) model. It shares many
features and advantages with RF (interpretability, predictability, and
simplicity), but the key difference is that the decision trees that
facilitate performance improvement are constructed sequentially.
Jin et al. (2020) has used XGBoost to estimate the intensity of
tropical cyclones in the South China Sea. XGBoost and its variant
AdaBoost have also been applied to wave height prediction in
Malaysian waters (Anggraeni et al., 2021). However, the drawback
of XGBoost is also apparent: the time-space overhead is enormous,
which is very unfriendly to progressively larger training data.

The main reason for LightGBM is to solve the problems
encountered by GBDT in massive data so that GBDT can be used
better and faster in practice. While retaining the advantages of
XGBoost, LightGBM optimizes the traditional GBDT algorithm,
enabling it to speed up the training of GBDT models without
compromising accuracy. Considering the effective performance of
LightGBM models in regression, Gan et al. (2021) developed a
LightGBM model for predicting estuarine water levels in the lower
Columbia River region and outperformed the commonly used
NS_TIDE model overall. Su et al. (2021) combined LightGBM with
The Ocean and Land Color Instrument (OLCI) and in situ data

to estimate near-coastal chlorophyll-a concentrations and map the
spatial distribution of chlorophyll-a concentrations.

Some of the variables that may play a role in predicting elements
of the ocean environment are atmospheric conditions (temperature,
solar radiation, cloud, precipitation, wind speed, etc.), autoregressive
features (past values of elements), temporal information (seasons),
and variables in adjacent spaces. Feature engineering uses domain
expertise and statistical analysis to extract the most appropriate
set of features for a given problem from the entire dataset,
improving prediction accuracy and accelerating model convergence
by selecting the most relevant features for the response variable.
Figure 7 shows the basic steps of feature engineering. For machine
learning, raw data rarely provides the most information, so
it must consider the combination and transformation of raw
data.

Feature engineering is an essential part of machine learning.The
good or bad feature engineering will primarily affect the final result
of machine learning, which is also the disadvantage of machine
learning compared with deep learning.

4.3 Data-driven deep learning models

As Big Data brings new perspectives to scientific research,
more and more disciplines are moving toward data-driven analysis,
including research in the field of oceanography. Data-driven deep
learning techniques have recently been widely used in forecasting
ocean elements. By mining the correlation between ocean elements
and extracting spatial and temporal features from a large amount
of ocean data, mathematical models for ocean element forecasting
have been established, enabling the ability to input realistic data and
then obtain accurate forecast data. Commonly used AI methods
include ANN, CNN, LSTM, and ConvLSTM. These methods have
been widely used in forecasting ocean elements, such as sea wind,
sea surface height (SSH), SST, etc. Due to the poor interpretability
and lack of physical constraints of AI, such deep learning methods
cannot replace the current traditional numericalmodelingmethods.
Combining AI with numerical ocean models is a significant
development direction in the future.

4.3.1 ANN
ANN has been widely used to predict ocean parameters because

of their higher predictive efficiency than traditional statistical
techniques. Without the interpretability of neural networks in
physical mechanisms, neural networks can sometimes be used
to complement or replace traditional methods for optimization
problems. Their excellent performance has encouraged researchers
to use neural network models in many practical applications.
ANN was first applied to sea level prediction in a 1997 study
(Röske, 1997). Since then, ANN has been more widely promoted
in marine research. For example, ANN has been applied to ocean
salinity (Chen and Hu, 2017) and wave prediction (Ducournau
and Fablet, 2016) in specific sea areas. Some extreme marine
meteorological phenomena, such as storm surges and extreme
sea level heights, can also be estimated using ANN (Sahoo and
Bhaskaran, 2019). Moreover, relatively simple neural networks can
also accurately predict surface currents in most global navigable
oceans (Sinha andAbernathey, 2021). Chen et al. (2022b) developed
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FIGURE 7
Basic steps of feature engineering. From a large amount of initial feature data, the features that are not relevant to the problem are eliminated, the
features that are more relevant to the problem are selected, and the subset of features that are most important to the problem is generated.

a deep neural network (DNN) model to retrieve vertical profiles of
chlorophyll-a from surface ocean data, an improvement that helps
improve predictive power compared to shallow ANN (Das and Roy,
2019).

4.3.2 CNN
CNN plays an essential role in developing ocean environment

elements and extreme climate predictions by extracting image
features to reflect spatial informationHuang et al. (2022). Jiang et al.
(2018) combined shallow learning (SL) and CNN to forecast
atmospheric typhoon events using SST. In a comparison experiment
using meteorological parameters for forecasting SST in Japanese
waters, CNN can identify extreme forecasting phenomena such as
typhoons with higher accuracy than LSTM and deepMLP (Patil and
Iiyama, 2022a). Formarine ecology, the chlorophyll-a prediction can
be performed using two different scales of CNN models for overall
and local training (Jin et al., 2021), and the average RMSE of CNN
Model II (7 × 7) was 0.191, which is significantly lower than that
of CNN Model I (48 × 27), which was 0.463. Since CNN alone
extracts only spatial feature information, it does not work excellently
in ocean element forecasting with mainly spatial and temporal
features.

4.3.3 RNN
RNN is a neural network with a “memory” function, specifically

in that the output of a time series is also correlated with the previous
output. It was designed to track the temporal dependence between
the sequences of ocean elements, making RNN useful in marine
environmental forecasting. The correlation coefficient of RNN is
higher than that of a feedforward neural network when performing
wave prediction (Mandal and Prabaharan, 2006). However, RNN
suffers from the gradient disappearance problem. To overcome this
problem, input gates, output gates, and forgetting gates are added
outside the RNN structure. It produces the long short term memory
network LSTM. The powerful memory capability of LSTM has
been demonstrated in the time-series data of marine environment
forecasting (Song et al., 2021; 2020a). predicts SSH using LSTM
(Zhang et al., 2017). conducted the first study to use time series
plus FC-LSTM to predict SST, followed by comparative experiments

applying RNN and LSTM for SST prediction (Aydınlı et al., 2022).
The integratedmodel of LSTM superimposed onMLP also obtained
better results in predicting SST (Jahanbakht et al., 2021). SWAN-
LSTM models integrating near-coastal wave models have also
emerged to achieve near-coastal wave height predictions (Fan et al.,
2020). As well as a series of experiments with LSTM on currents,
sea level, and even ENSO phenomenon (Broni-Bedaiko et al., 2019;
Ishida et al., 2020; Zulfa et al., 2021). LSTMmodels were also shown
to be effective in predicting chlorophyll-a concentrations (Cho and
Park, 2019; Rostam et al., 2021; Cen et al., 2022). These experiments
have demonstrated the robust performance of the LSTM model. In
addition, the LSTM has a variant of the bidirectional propagation
model, bi-directional long short-term memory (BiLSTM), and a
deep learning architecture based on these two models for wind
speed prediction in the Indian Ocean region proved to be the
most effective BiLSTM model (Biswas and Sinha, 2021). The LSTM
model introduces many parameters that make training difficult, so
the LSTM is simplified to produce a gated recurrent unit (GRU),
synthesizing the forget gate and the input gate into a single update
gate. It also mixes cell states and hidden states with some other
modifications. It has the advantages of faster training and a more
straightforward structure than the LSTM, which also performs well
in marine environmental forecasting. Zhang et al. (2017) predicted
medium and long term SST prediction models based on the
GRU model mitigating the overfitting and underfitting phenomena.
Sukanda and Adytia (2022) used GRU and bidirectional GRU for
wave prediction in the Indonesia region. The GRU model obtained
relatively good values of MSE, RMSE, and R2, 0.0443, 0.2106,
and 0.9756, respectively, while the BiGRU model performs better
than the GRU model with an MSE value of 0.0477, 0.2184 for
RMSE, and 0.9869 for R2. Tropical cyclones often cause intense SSH
changes at sea (Meng, 2022),Meng et al. (2021a); Song et al. (2022b)
use bidirectional GRU to predict tropical cyclone tracks and SSH
changes caused by tropical cyclones. The model evolution of RNN
is shown in Figure 8. Although RNN and its derived networks are
effective in time series ocean element forecasting, they do not extract
spatial information from marine spatio-temporal data. It leaves
significant room for improvement of RNN with single extraction of
temporal features.
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FIGURE 8
Evolution of the RNN family of models. RNN, LSTM, and GRU model structures are shown from left to right. The LSTM adds three gates (forget gate,
input gate, and output gate) to the RNN, and the GRU is a variant of the LSTM that synthesizes forget and input gate into a single update gate.

4.3.4 CNN+RNN
In order to make RNN incorporate spatial dependency features

in addition to extracted temporal features, researchers combined
CNN with RNN. They successfully introduced spatial dependency
extraction into time series information to further improve the
performance of deep learning in ocean environment elements
forecasting. Braakmann-Folgmann et al. (2017) studied combining
CNN and RNN to analyze SSH evolution and predict SLA from
temporal and spatial dimensions. Wei and Chang (2021) predicted
typhoon-induced sea winds and waves around Taiwan Island, using
a model of GRU+CNN to build a typhoon-induced wind and wave
height prediction model. Mahesh et al. (2019) combined CNN and
RNN to predict ENSO using SST with accuracy close to the state-
of-the-art seasonal dynamic prediction model. Ren et al. (2022)
Constructed a C-LSTM model based on CNN network combined
with LSTM to predict typhoon paths with better results than a
single LSTM model. The average surface distance error predicted
by a single LSTM model is 11,503 m, while the prediction error of
CNN+LSTM is only 832 m.

4.3.5 ConvLSTM
In introducing spatial features into time series, the ConvLSTM

model is generated. The ConvLSTM replaces matrix multiplication
with convolution operations for each gate in the LSTMcell (Shi et al.,
2015). The difference between ConvLSTM and CNN+LSTM model
is that the former convolves the state of the hidden layer at
each step, making ConvLSTM more capable of spatial feature
extraction, not only for one-dimensional temporal data but also
for two-dimensional spatio-temporal data. Because of its robust
feature extraction capability, ConvLSTM has shown outstanding
performance in high-precision 2D wave prediction and SST for
short- and medium-term prediction (Xiao et al., 2019; Zhou et al.,
2021). ConvLSTM is also applied to invert SST and SSS (Song et al.,
2022c). Moreover, ConvLSTM predicts chlorophyll-a compared to
3D-CNN models in marine ecological studies, and the results
show that the accuracy of 2D-CNN, 3D-CNN and ConvLSTM are
0.8804, 0.9397 and 0.9799, respectively. (Lee et al., 2020;Wang et al.,
2022b). If ConvLSTM exists, there must exist its twin model

ConvGRU (Xu et al., 2022). extracts non-linear features of typhoons
by ConvGRU combined with an attention mechanism to predict
typhoon trajectories.

4.3.6 Optimization of AI methods
Based on the deep learningmodelsmentioned above, we analyze

the principles and processes of these marine element prediction
models. We believe that two main factors affect the prediction
performance of the models: dataset optimization and parameter
optimization. The construction of datasets is even more critical in
AI algorithms than the algorithms themselves. Taking the prediction
of single-element SST as an example (Patil and Iiyama, 2022b),
target SST data with high spatial and temporal resolution are crucial
for developing deep learning models. ERA5 is one of the most
commonly used ocean reanalysis datasets. JCOPE data have good
temporal and spatial scales and are more regionally compatible with
ERA5 reanalysis data (Miyazawa et al., 2017). Considering the daily
variation of SST, the target SST data has a total of 153 days, adjusted
considering the sensitivity of different models to the dataset. For
example, CapsNet is less sensitive to the size of the dataset, while
CNN has a stronger sensitivity because the former captures richer
feature information from a single image (Chattopadhyay et al.,
2020). Theoretically, multi-element data prediction has higher
accuracy than single-element prediction. Using complex parameters
in the atmospheric ocean to simulate more realistic environmental
states helps to constitute richer features for deep learning models
(Pathak et al., 2022). The parameter tuning of the model mainly
refers to tuning the external parameters or hyperparameters of
the model, which is optimized through iterative trials or with the
help of complex optimization algorithms. In the current study, the
stochastic search algorithm is used to optimize the hyperparameters
because the performance of the DL model is susceptible to them.
The various hyperparameters include the time duration, the number
of hidden layers, the number of cells in each hidden layer, the size
of the convolution kernel in the convolution layer, and the setting
of the loss function. We need to evaluate these hyperparameters
with the validation set to determine the most suitable for this
experiment.
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4.4 Combination of physical models and AI

The Traditional machine learning and deep learning have
proven influential in ocean atmospheres, providing new alternatives
to efficiently identify complex patterns and simulate non-linear
dynamics. However, its predictions do not necessarily obey the
control laws of physical systems and cannot be generalized to
different systems. Therefore, physics-guided machine learning has
emerged, and some results have been achieved. Physics-guided
machine learning uses the laws of physics modeling and machine
learning with deep learning models to solve scientific problems
better.

4.4.1 Physics-guided loss function
There is no way to learn the underlying physical laws when

fitting data using standard deep learning models, which leads to
low physical consistency and poor generalization. The simplest and
most widely used method to incorporate physical constraints is
to design physically guided loss functions, which can help deep
learningmodels to learn data patterns that conform to physical laws.
Jia et al. (2019); Stewart and Ermon (2017); Daw et al. (2017) are
used to guide network learning using a physics-based loss function
that measures the violation of physical principles in the neural
network’s output. Beucler et al. (2021); Wu et al. (2020a) introduce
statistical and physical constraints in the loss function to regulate
the predictions of physical simulations.

4.4.2 Physics-guided design of architecture
Although the inclusion of physical bootstrapping through the

loss function allows the model to learn physical patterns, deep
learning models are still black-box models in most cases. Physics-
guided neural network structures have tighter hard constraints than
the soft constraints of the loss function. So physics-guided structural
models are more interpretable and generalizable. For example, the
LSTM architecture incorporates an intermediate physical variable as
part of the structure that maintains monotonicity (Daw et al., 2020).
Themodel will produce physically consistent predictions in addition
to attaching an exit layer to quantify uncertainty. De Bézenac et al.
(2019) proposed a warping scheme for predicting sea surface
temperature but only considered the linear advection-diffusion
equation. The Turbulence Network (TF-Net) is the combination of
turbulence modeling and deep learning (DL) to produce a novel
deep learning model that enhances the ability to predict complex
turbulence using deep neural networks (Wang et al., 2020).

4.4.3 Hybrid Physics-ML models
In addition to the two designsmentioned above that incorporate

the physical system into a loss function or neural network structure,
there exists a combination of physical and data-drivenmodelmodels
into a generalized hybrid model. A straightforward approach is to
provide the output of the physical-based model as input to the
data-driven model, which is visualized in Figure 9, for example, the
physics-based machine learning model PBML for short-term wave
forecasting (Wu et al., 2020b). The inputs and outputs of the PBML
model are first determined by the main variables in the physics-
based wave model, and then machine learning algorithms are used
to train and perform multi-step ahead forecasts. A framework based

on a combination of GAN and physical numerical models for
predicting SST is also used to train the neural network model using
the physical-based numerical model and then calibrate the model
parameters using observed data (Meng et al., 2021b).

4.4.4 Application of AI in numerical models
The ocean and the atmosphere have their physical laws, which

a set of controlling equations can represent (Haidvogel et al., 2017;
Schultz et al., 2021). Numerical ocean models are a commonly used
method for forecasting ocean elements, essentially the numerical
solution of a series of physical partial differential equations using
different numerical analysis methods (Blumberg and Mellor, 1978).
Another way of combining AI and physics is embodied in the
combination ofAI and numericalmodes, thus further improving the
efficiency and accuracy of numerical modes. The ocean numerical
forecasting process is shown in Figure 10.

The combination of AI and numerical modeling is manifested
in three main areas: pre-processing, the model itself, and post-
processing. Pre-processing refers to the optimization of data
assimilation methods. Neural networks have great advantages in
terms of accuracy and efficiency of data assimilation and are
powerful in approximating non-linear systems and extracting
meaningful features from high-dimensional data. These properties
are very useful in the process of data assimilation (O’Donncha et al.,
2018). For example, Choi et al. (2022) assimilated deep learning
results for spatiotemporal prediction in the ocean to a numerical
forecasting system, improving the model’s accuracy. Boosting the
model means replacing some physical parameterization processes
with a machine-learning model. Parameterization means that the
details of the process are not taken into account but that the
physical process is represented by a simplified function represented
by some other defined variables (Liang et al., 2022) proposes a
vertical mixing effect using a deep neural network (DNN) model to
parameterize OSBL turbulence and compares the DNN model with
two traditional physical parameterization methods, KPP-CVMix
and KPP-LF17, showing that the (DNN) model outperforms the
two popular physical-based parameterization methods. There are
two main ways in which machine learning can be applied to the
post-processing of numericalmodels, one is to revise the predictions
of the numerical models, and the other is to use the results of
the numerical model predictions as input or training data for
the deep learning models. Fei et al. (2022) proposed a sea surface
temperature (SST) correction method for convolutional long and
short-term memory (ConvLSTM) networks based on a multi-
attentive mechanism. Zhang et al. (2013) used higher resolution
data on meteorological variables from the National Centre for
Environmental Protection (NCEP) - Global Forecasting System
(GFS) Final Analysis (FNL) dataset to train the neural network. The
study demonstrates that combining AI and numerical models not
only improves the efficiency and accuracy of numerical models but
also saves computational resources.

4.4.5 Signal decomposition hybrid model
The classical time series models such as AR, ARMA, and

ARIMA in statistical models are adaptive models based on linear
and smooth theory predictions. Furthermore, the deep learning
models LSTM developed for time series problems have strong
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FIGURE 9
This figure is a concrete example of a hybrid model for predicting sea surface temperature. A convolution-deconvolution network can generate a
motion field of water. Then, the motion field and the initial input predict the state after a time step by a physical model. Adapted from Figure 1 of
De Bézenac et al. (2019).

FIGURE 10
Schematic diagram of the atmospheric and oceanic numerical model prediction process.

non-linear processing capability. However, the variation of ocean
elements, such as sea wind and waves, is non-linearity and
non-stationary. Therefore although these models have proven to
be robust in ocean forecasting, it is undeniable that they are
still limited when facing non-stationary problems. So the signal
decomposition method has been introduced to the study of ocean
forecasting, as shown in Figure 11. This technique can decompose
complex time series into simple components to overcome the
non-linear and non-stationary state. The signal decomposition
technique can be combined with machine learning and deep
learning to enhance the models’ ability to handle non-stationary
signals. LI et al. (2017) enhanced SVM models to forecast SST
using complementary ensemble empirical mode decomposition
(CEEMD) algorithm. Duan et al. (2016) combined the empirical
modal decomposition algorithm empirical mode decomposition
(EMD) with statistical models model AR and deep learning
model LSTM for wave prediction, respectively, and successfully
enhanced the performance of both models (Hao et al., 2022).
Ensemble empirical mode decomposition (EEMD) and CEEMD
are two improved algorithms of EMD. Each of the two algorithms

was combined with back propagation neural network (BPNN) to
construct a hybrid model for predicting SST, and the results showed
that CEEMD-BPNN was better for predicting SST (Wu et al., 2019).
Moreover, Song et al. (2022a) combined three signal decomposition
techniques (TVF-EMD, WT and CEEMD) with ENN models for
a minute-scale sea level prediction study, respectively, and in the
time series lengths of 1,440, 720, and 360 min, the mean R2
values of TVF-EMD-ENN were best among the four models.
For the 1,440 min sequence length, the average R2 of TVF-EMD-
ENN was 0.952, higher than those of WT-ENN (0.910) and
CEEMD-ENN (0.929). A hybrid prediction model was developed
for wind and wave power prediction, which was based on adaptive
decomposition (Nelder-Mead variationalmode decomposition) and
a convolutional neural network with bi-directional long short-
term memory (Neshat et al., 2022). Meng et al. (2022) applied an
adaptive time-frequency decomposition algorithm to predict SSH
caused by tropical cyclones. Hu et al. (2021) proposed a hybrid
time series prediction model based on integrated empirical modal
decomposition EEMD, LSTM, and Bayesian optimization (BO) for
wind and wave height prediction.
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FIGURE 11
Signal decomposition schematic, the input data is decomposed into multiple sub-signals Z SD1 to ZSDn by the signal decomposition algorithm. The
sub-signal input data-driven model results are combined to obtain the prediction results.

In summary, signal decomposition algorithms enhance the
model’s ability to handle non-stationary signals. However, not all
signal decomposition algorithms apply to a particular problem. For
example, Gan et al. (2021) discusses the application of NS_TIDE,
EEMD, and VMD to river tides. EEMD and VMD are general
signal decomposition algorithms, and VMD can eliminate modal
mixing better than EEMD. NS_TIDE can resolve specific tidal
components compared to VMD but cannot accurately reproduce
sub-tidal water levels during high flow times. Specific problems
should be analyzed to select the appropriate signal decomposition
algorithm.

5 Discussion

5.1 Direction of the application of AI in
ocean observation

In remote sensing, AI models related to ocean observation need
to incorporate physics. Moreover, models lacking physics may not
be very accurate, and most current models used for ocean remote
sensing image information mining are from computer vision. Some
models explicitly serving the ocean should also be developed in the
future. Increase the generalization capability of the models so that
they can be adapted to different ocean observation sensors. In terms
of intelligent sensor networking, itsmobility is currently limited, and
its location is relatively fixed. In the future, it needs to combinemore
unmanned aerial vehicles and autonomous underwater vehicles
to expand its observation range and make it more flexible. For
underwater robots, the current robotic intelligence delays the
established procedures to meet the operating environment of basic
behavior patterns. However, it does not yet have the human brain’s
advanced reasoning evolutionary behavior capabilities. The future
must develop AI robots with higher-order intelligence and behavior
capabilities.

5.2 Direction of identification of ocean
phenomena

Two trends can be summarised by analyzing the evolution
of methods for identifying some marine processes. Firstly, more
AI methods have been used for marine process identification in
recent years, and the models used by researchers are becoming
more advanced. Thus more advanced deep learning models are
a major trend for future development. Other marine elements
related to marine process identification are gradually gaining
attention from researchers, and multi-element studies are becoming
mainstream.

It is clear from the current state of research that most work
has focused on SAR imagery, and more needs to be done to
identify it. The current state of research shows that most of the
work has focused on SAR images. Very little work has been done
to identify ocean phenomena in geostationary satellite images.
In order to fill this gap, ocean phenomena in geostationary
satellite images could be the main object of study in the future,
and more advanced neural networks could be used to cope
with the interference caused by complex imaging conditions.
SAR images can be combined with geostationary satellite images,
providing additional information for identifying ocean phenomena
in geostationary satellite images. In addition, similar to the authors
of (Drees et al., 2020), using a multimodal approach to fuse
datasets other than SAR images with SAR images for further
processing and recognition may become a major trend for future
development.

5.3 Direction of ocean element forecasting

The following describes future research directions for ocean
element forecasting from the perspectives of data, methods, and
applications.
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1. In terms of data, the performance of AI is inextricably linked
to data features, and improving data validity is the basis for
improving prediction accuracy. It can be combined with physical
features, feature mining of data from the perspective of ocean
physics, or data optimization through mathematical methods,
statistics, or machine learning.

2. In terms of methods, different sea areas may be suitable for
different methods. Combining AI withmarine numerical models,
statistical models, and big data to form a data collection
forecasting system to complement each other’s shortcomings will
effectively improve the forecasting effect.

3. In terms of application, real-time observation of marine
environmental data often faces characteristics such as missing
data, significant errors, massive data, and complex calculations.
Hence, it is necessary to consider various conditions of
practical applications and improve the model’s compatibility and
robustness to more complex conditions.

6 Summary

With the emergence of AI and the age of “big data,” humans have
the high-tech objective of using vast quantities of data. Big data on
the ocean supports people in improving the ocean ecosystem and
enhances the quality of life in society. We examine the evolution
of ocean observation and its relevance in the development of
ocean observation. Intelligent remote sensing technology, intelligent
sensor networking technology, and intelligent underwater robots
were created by combining the present observation technology
with an AI algorithm. Among them, the data supplied by remote
sensing technologies serve as the foundation for ocean forecasting
and identification and are frequently used by scientists. In addition,
reconstructed observation data are included in the ocean’s big
data set. Numerous objective causes will unavoidably cause a
considerable quantity of ocean observational data to be incomplete
or unavailable, necessitating the challenge of data reconstruction.
The AI system is able to effectively recreate observation data and
correct any inaccuracies or missing data issues.

Oceanic physical processes, such as internal waves, heatwaves,
and eddies, have vital impacts on the Earth’s climate,marine ecology,
and human activities. Consequently, it is crucial that humans
use ocean data for the identification of ocean phenomena. This
research highlights the use of artificial intelligence algorithms for
detecting and recognizing internal waves, heatwaves, the El Niño
phenomena, and sea ice, aswell as for forecasting ocean components.
We categorize them as physics-driven numerical models, model-
driven statistical models, classical machine learning models, data-
driven deep learning models, and physical models mixed with AI
models. Each model type focuses differently on ocean forecasting.
Currently, CNN, LSTM, and ConvLSTM are frequently used data-
driven deep learning models in marine element forecasting, such
as sea breeze, SSH, SST, etc. Due of the poor interpretability
and absence of physical restrictions of AI in general, these deep
learning approaches cannot yet replace classic numerical modeling
techniques. Combining physical models with AI has thus yielded
some outcomes. Using the rules of physics in conjunction with data-
driven models improves the ability to address scientific challenges.

Finally, we address briefly how to increase the performance of AI
systems, mostly through optimizing data sets and parameters.
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