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Instruction: Due to the declining production rate of conventional natural gas
reservoir and the rising demand for natural gas resources, conventional natural gas
resources cannot satisfy the needs of economic development. Unconventional
gas resource is considered to be the most promising energy supplement,
therefore it is an inevitable trend to explore and develop unconventional oil
and gas resources such as low permeability reservoirs. At present, the
carbonate gas reservoirs in the high permeability area of Sichuan Basin have
been almost fully developed, while the remaining gas reservoirs in the low
permeability area are not well developed. However, the key factors for
effectively enhancing gas recovery rate in different types of low permeability
reservoirs are not the same. Even gas reservoirs with the same macroscopic
geological characteristics will show different development characteristics through
the production processes.

Method: In order to analyze the factors affecting the effective production rate of
low-permeability gas reservoirs, it is necessary to conduct research from the
microscopic perspective, to reveal the effective production conditions of natural
gas in low-permeability reservoirs. In this study, low-permeability carbonate
samples of Sinian Dengying Formation from Sichuan Basin were taken. Micro-
CT scanning technology was used to obtain core images for the carbonate rocks,
and the digital carbonate core models at microscopic scale were reconstructed.
Based on the reconstructed carbonate digital core models, LBM method was
applied to obtain the absolute permeability of the core models.

Results: The results imply that the porosity, pore area fraction, throat area fraction,
mean throat length, shape factor, coordination number and tortuosity are the
factors affecting the absolute permeability of carbonate rocks.

Discussion: Subsequently, the relationship between different pore structure
parameters and absolute permeability was obtained by multi-parameter fitting
method, which provided a new research method for directly predicting the
absolute permeability of carbonate rocks by using pore structure parameters.
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1 Introduction

Natural gas is a viable solution to replace coal as cleaner
hydrocarbon resources (Hu et al., 2022), especially under the
circumstance that reaching carbon neutrality goals turns out to
be significant. However, as with the decrease of conventional
natural gas production rate and the increasing demand for
natural gas resources, conventional natural gas resources
cannot meet the needs of economic development (Zou et al.,
2018). Therefore, unconventional natural gas resources are
considered as the most promising energy supplement. Among
the unconventional natural gas reservoirs, carbonate gas
reservoir has huge natural gas reserves and is the main
reservoir type to realize increasing natural gas storage and
production in the future (Jia et al., 2021; Li, 2022). However,
the complex pore structure of carbonate reservoir (Yang et al.,
2020), the coupling effect of pore structure on fluid flow in micro-
scale length (Al-Khulaifi et al., 2018) and low permeability of
pore space have greatly reduced the natural gas production rate.
Therefore, it is essential to conduct research from the
microscopic pore-throat characteristics and transport
mechanism to determine the major pore structure parameters
affecting the permeability of carbonate rock, and to provide a
theoretical basis for determining the effective production
conditions of natural gas in carbonate reservoirs (Zhao et al.,
2021).

The complex pore structure of carbonate rocks leads to low
permeability of pore space, which has a great influence on
natural gas production rate. In recent years, researchers have
studied the microscopic pore structure of rocks by using
constant rate mercury injection (Pan et al., 2022; Yang et al.,
2022), micro-CT scanning (Zhang et al., 2010; Li et al., 2022)
and Scanning Electron Microscopy (SEM) (Pan et al., 2022).
However, it is necessary to comprehensively consider the
influence of fluid flow process in the structural analysis of
carbonate rock, and establish fluid flow model in the
complex pore structure of carbonate rock, so as to achieve
effective prediction of permeability. The digital carbonate
rocks constructed by CT scanning technology can provide a

simulation model for flow simulation technology (Blunt et al.,
2013; Raeini et al., 2014; Zhu et al., 2017). Micro-CT scanning is
one of the most accurate methods to build digital rocks (Iglauer
et al., 2011; Blunt et al., 2013), by using microscopic imaging
equipment to scan core samples with micron- and nano-meter
resolutions to build digital rocks directly, which makes digital
rock reconstruction convenient (Zhu et al., 2019). Carbonate
are complex in its pore structure (Mahesar et al., 2020), and its
secondary pores such as fractures and caves are developed.
There are even primary pores of micron or even nanometer
scale in the carbonate reservoir. Therefore, digital cores are the
important basis of pore scale flow simulation (Yang et al., 2021)
and an effective experimental tool for characterization of pore
structure and study of fluid transport mechanism in carbonate
cores.

Based on micro-CT scanning reconstruction of digital rock,
pore scale simulation method can be used to accurately simulate
fluid flow process in rock samples (Raeini et al., 2014; Yang et al.,
2021), so as to obtain accurate permeability. At the pore scale, the
methods for simulating fluid flow in porous media mainly include,
Pore Network Modelling (PNM) (Fatt, 1956; Valvatne & Blunt,
2004), Lattice Boltzmann Method (LBM) (Shan and Chen, 1993;
McClure et al., 2021) and Direct Numerical Simulation (DNS)
(Shams et al., 2018; Namaee-Ghasemi et al., 2021). Among them,
the LBM has been widely used for fluid flow in porous media. Shan
and Chen (Shan and Chen, 1993) first established a Lattice-
Boltzmann method that can simulate multi-phase and multi-
component flow processes. Pan et al. (2004) used the Lattice-
Boltzmann method to simulate the two-phase flow problem at the
pore scale. McClure et al. (2021) proposed a Lattice-Boltzmann
method for Porous Media (LBPM) combined with Special Core
Analysis Laboratory (SCAL). By combining with experimental
data, the LBPM method improves the efficiency of transport
simulation and the accuracy of prediction of permeability of
cores. However, for carbonate cores, it still takes vast of
computing resources to carry out pore-scale LBM simulations.
The obtained simulation results are often not directly related to the
pore structure parameters, so the correlation between pore-
structure and permeability cannot be obtained. Therefore, it is

TABLE 1 Petro-physical parameters of carbonate samples tested.

Sample Length (mm) Diameter (mm) Φg (%) Kg (md)

S1 59.38 25.02 12.48 5.07

S2 47.90 24.96 11.81 1.13

S3 56.64 25.02 3.97 0.02

S4 38.44 25.02 7.09 0.19

S5 51.60 24.94 4.97 0.10

S6 52.86 25.00 2.47 0.02

Notes: Φg refers to the carbonate porosity measured by gas. Kg refers to the absolute permeability measured by gas.
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necessary to put forward an efficient method to predict the
permeability of carbonate cores from the perspective of pore
structure parameters and permeability fitting.

In this study, low-permeability carbonate samples from Sichuan
Basin were taken. CT scanning technology was used to obtain core
images, and the digital carbonate rock containing real pore structure

FIGURE 1
2D slice image of core sample.

FIGURE 2
Core image processing process. (A) The sub-volume of image data (B) Core image after filtering to reduce noise and improve clarity (C) Core mage
of pore phase and skeleton phase after threshold segmentation.
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was reconstructed. Based on the reconstructed carbonate digital rock
model, an LBMmethod is used to calculate the absolute permeability
of the core model. By means of multi-parameter fitting method, the
fitting relation between pore structure parameters and permeability
was obtained, and the method of efficiently predicting permeability
of carbonate core by using pore structure parameters was realized.
This study is helpful to improve the understanding of microscopic
seepage characteristics of low permeability carbonate reservoir and
is of great significance to the development of low permeability
carbonate natural gas reservoir.

2 Samples and methods

2.1 Carbonate samples

The carbonate samples were taken from a low permeability
block which is located in Sinian Dengying Formation in Sichuan
Basin, China. The reservoir in this block is dominated by pores and
fractures are not developed, which is a typical carbonate pore
reservoir. Six samples were selected, and their petrophysical
parameters are shown in Table 1.

2.2 X-ray computed tomography
experiment

Micro-CT scanning is one of the most accurate methods to
obtain pore structure characteristics of core by scanning the cross
section of core directly using a Micro imaging device at micron
resolution. Due to the low permeability and dense pore development
of selected core samples, we used a 10xMicoXCT-400 camera lens to
obtain accurate images, with a resolution of 1.88 um per scan. Due to
the limitations of the instrument’s own power, the core sample could
not be penetrated by X-rays at this resolution, so we drilled a
miniature cylinder sample from several different carbonate
samples, all of which were 9 mm in diameter and 25 mm in
length. From the two-dimensional grayscale images of all
samples, we select several carbonate samples, all of which are
pore carbonate rocks (as are shown in Figure 1).

In the process of CT image acquisition, due to external
interference, the collected image has some shortcomings, such
as dark or bright, not obvious contrast, image blur, etc., which
will bring large errors to the image analysis. Therefore, it is
necessary to preprocess the image to improve its quality without
destroying the information contained in the image. The general

FIGURE 3
Reconstructed 3D digital core.

Frontiers in Earth Science frontiersin.org04

Yang et al. 10.3389/feart.2023.1091431

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1091431


steps of image processing are shown in Figure 2. In order to
improve image processing efficiency, we extracted a sub-volume
of image data with voxel size of 600 × 600 × 600 from the middle
of the original grayscale digital rock (Figure 2A). Then it is
filtered to reduce the noise of the image and improve the
clarity of the image (Figure 2B). In the subsequent watershed
segmentation, we divided the image into pore and skeleton
phases by adjusting the segmentation threshold (Figure 2C).
Finally, carbonate digital core is constructed by 3D digital
reconstruction (Figure 3).

2.3 Lattice Boltzmann method

In this study, we applied the D3Q19 discrete velocity model
(Benzi et al., 1992) to simulate the permeability of 3D digital rock.
Lattice Bhatnagar-Gross-Krook (LBGK) collision approximation
(Bhatnagar et al., 1954) is most widely used because of its
simplicity. The basic evolution equation (Chen et al., 1992; Guo
et al., 2000) can be described as:

fα r + eαδt, t + δt( ) − fα r, t( ) � −1
τ

fα − feq
α( ) (1)

where fα is the velocity distribution function that discrete directions
are α (α = 0,1, 2, . . .18); r is the spatial position of the node; eα is the
vector expression of discrete directions α; δt is the time step; t is the
time; τ is the dimensionless relaxation time; feq

α is the equilibrium
distribution function. Slack time τ represents the average time
interval between two collisions, its value is related to fluid
viscosity υ, and is determined as:

τ � υ

c2sδt
+ 0.5 (2)

The equilibrium distribution function is the distribution
function of fluid particles when the system reaches equilibrium.
The equilibrium distribution function (Filippova and Hänel, 1998)
of the D3Q19 model is expressed as:

feq
α � wαρ 1 + eα · u

c2s
+ eα · u2

2c4s
− u2

2c2s
[ ] (3)

FIGURE 4
Pore networks of different digital rocks.
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where ρ is the fluid macroscopic density, u is macroscopic
velocity, cs= 1/

�
3

√
is the lattice sound velocity; wα is the

weight coefficient (Premnath and Abraham, 2007) in α

direction with:

wα �
1/3 α � 0
1/18 α � 1, 2, ..., 6
1/36 α � 7, 8, ..., 18

⎧⎪⎨⎪⎩ (4)

The macroscopic pressure and velocity of the fluid at each node
in the model can be expressed as:

ρ � ∑
α

fα (5)

u � 1
ρ
∑
α

fαeα (6)

When simulating the inherent permeability of digital rock, the
wall is usually treated as a no-slip boundary condition. Bouncing
boundary condition is a common format for dealing with no-slip
boundary. When the fluid particles reach the solid boundary from
the pore space, they will return to the pore space along the original
path. Thus, the normal velocity of the fluid on the solid boundary

FIGURE 5
The pore structure parameter distribution of sample S1.
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can be 0. The evolution equation after the collision between fluid and
solid boundary can be described as:

fα′ rb, t( ) � fα rp, t( ) (7)

where rb is the wall node of solid; rp is the spatial node of pore near
the solid wall; α′ and α are two opposite directions.

Since the fluid flow is driven by pressure, periodic pressure
boundary conditions are set at the left and right boundaries, and set
the fixed pressure gradient to 0.0005. It should be noted that all the
above variables in this chapter are dimensionless lattice units. In the

flow simulation, if the difference of the macroscopic velocity of the
fluid is less than 10−6 within two steps, it means that the system has
reached the equilibrium state, and the simulation is terminated. At
this time, the macro flow can be calculated by the area fraction of the
flow rate at each node on the outlet end face:

U � ∑
y

∑
z

u (8)

where U is dimensionless flow at outlet. Finally, the dimensionless
permeability of low permeability digital rock can be calculated by
Darcy’s Law (Darcy, 1968):

FIGURE 6
The pore structure parameter distribution of sample S2.
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−dP
dx

� υ

Ak′U (9)

where k′ is dimensionless permeability. The actual permeability of
digital rock can be calculated from dimensionless permeability and
image resolution:

k � k′ · R2 (10)
where k is the permeability of digital rock, μm2; R is the image
resolution, μm.

3 Results and discussions

3.1 Pore structure characterization

To characterize the pore structures of the different core samples,
the digital rocks were reconstructed based on the associated CT
images after a series of image processes, i.e., denoising, binary
segmentation, and so on. The pore networks were extracted
subsequently for the quantitative characterization of the
structure, as shown in Figure 4.

FIGURE 7
The pore structure parameter distribution of sample S3.
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As shown in Figure 5, the pore radius of sample S1 is larger
than most of all samples, with more pores and better connectivity,
indicating high porosity and moderate permeability. A peak value
of the pore radius distribution occurred at 5.5 μm, accounting for
21.6% of the total pores, while the throats with the radius of 4 μm
(peak) accounting for 17.8%. The radius of most pores (86.9%)
are less than 10 μm and the average pore radius is 6.5 μm.
Moreover, the averages of throat length, shape factor,
coordination number, and tortuosity are 15.3 μm, 0.042,
3.42 and 2.48, respectively.

As shown in Figure 6, the pore radius of sample S2 is largest,
with best connectivity, but the pore number of sample S2 is less than
other samples. Therefore, the sample S2 is of high porosity and
moderate permeability. A peak value of the pore radius distribution
occurred at 5 μm, accounting for 19.5% of the total pores, while the
throats with the radius of 3.6 μm (peak) accounting for 17.7%. The
radius of most pores (85.2%) are less than 10 μm and the average
pore radius is 6.85 μm. Moreover, the averages of throat length,
shape factor, coordination number, and tortuosity are 22.3 μm,
0.042, 2.83 and 2.31, respectively.

FIGURE 8
The pore structure parameter distribution of sample S4.
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As shown in Figure 7, Sample S3 have more pores than others,
but its pore radius is relatively small and throat length is short. The
orientation of the pore and throat channels is at a large angle to the
flow direction. Its tortuosity is larger and reduces its permeability,
indicating high porosity and low permeability. A peak value of the
pore radius distribution occurred at 3.29 μm, accounting for 28.1%
of the total pores, while the throats with the radius of 1 μm (peak)
accounting for 29%. The radius of most pores (93.2%) are less than
7 μm and the average pore radius is 3.95 μm.Moreover, the averages

of throat length, shape factor, coordination number, and tortuosity
are 7.2 μm, 0.046, 4.26 and 3.01, respectively.

As shown in Figure 8, the pore radius of sample S4 is smaller
than others, with few pores and poor connectivity, indicating its
moderate porosity and low permeability. A peak value of the pore
radius distribution occurred at 5.4 μm, accounting for 22.8% of the
total pores, while the throats with the radius of 2 μm (peak)
accounting for 23.2%. The radius of most pores (95.7%) are less
than 10 μm and the average pore radius is 5.21 μm. Moreover, the

FIGURE 9
The pore structure parameter distribution of sample S5.
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averages of throat length, shape factor, coordination number, and
tortuosity are 13.4 μm, 0.045, 2.64 and 3.03, respectively.

As shown in Figure 9, sample S5 has a smallest number pore
throat radius, with poor connectivity and great non-
homogeneity, indicating low porosity and low permeability. A
peak value of the pore radius distribution occurred at 5.8 μm,
accounting for 15.8% of the total pores, while the throats with the
radius of 4.1 μm (peak) accounting for 11.3%. The radius of most
pores (96.6%) are less than 10 μm and the average pore radius is

5.48 μm. Moreover, the averages of throat length, shape factor,
coordination number, and tortuosity are 12.5 μm, 0.045, 3.48 and
2.64 respectively.

As shown in Figure 10, sample S6 has a smaller number of pores
and a smaller pore throat radius, with poorest connectivity and
greatest non-homogeneity, indicating low porosity and ultra-low
permeability. A peak value of the pore radius distribution occurred
at 3.5 μm, accounting for 26.9% of the total pores, while the throats
with the radius of 1.1 μm (peak) accounting for 23.7%. The radius of

FIGURE 10
The pore structure parameter distribution of sample S6.
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most pores (91.4%) are less than 8 μm and the average pore radius is
3.99 μm. Moreover, the averages of throat length, shape factor,
coordination number, and tortuosity are 10.5 μm, 0.048, 2.97 and
2.65, respectively.

3.2 Analysis for influencing factors on
permeability

The LBM method was used to simulate the permeability of the
digital core of Sinian Dengying Formation, and the pore network
model was extracted from the same digital core to obtain the pore
structure parameters of this digital core, as shown in Table 2.We also
use partial least squares regression (PLS) analysis of the parameters
to study the influence factors of each parameter on the permeability
of the Sinian Dengying Formation.

Since the parameters of pore/throat radius and number have a
certain autocorrelation, the product of the two parameters is taken as
a parameter to consider their effects on seepage:

Sp � R2
p ·Np/A (11)

St � R2
t ·Nt/A (12)

where Sp and St represent the area fraction of pores and throat in a single
cross section respectively; A represents the area of the cross section.

Seven parameters, including porosity, pore area fraction, throat
area fraction, average throat length, shape factor, coordination
number and tortuosity, were taken as independent variables, and
simulated permeability was taken as dependent variables and
transformed into a matrix for multi-parameter linear fitting, and
the fitting equation was given as:

k � 4.49φ + 9.14Sp + 12.37St + 0.031Lt − 7.49G + 0.13Z − 0.33τ − 0.23

(13)
The fitting diagram and the degree of influence of parameters is

shown in Figure 3 and Figure 4. It can be seen that the data points areTA
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Relationship between fitting value and simulation value.
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distributed on both sides of the line y = x, and the correlation
coefficient reaches 0.786 (as given in Figure 11). According to the
influence degree of seven parameters on permeability (as are shown
in Figure 12), the permeability of the Sinian Dengying Formation is
mainly affected by the size and quantity of pore and throat
developed, porosity and tortuosity of the core also have an
impact on permeability, but relatively small, while the influence
of other parameters on permeability can be ignored. This is due to
the fact that the Sinian Dengying Formation reservoir has well
developed pores and relatively good connectivity, so the influence of
pore radius and connectivity on permeability will increase and the
influence of porosity will be weakened.

After removing several parameters that have a low weight on the
influence of permeability, the parameters of permeability and porosity,
pore/throat radius, number of pore/throat and tortuosity are fitted
linearly again. The fitting equation and diagram are as follows.

k � −4.59φ + 1
τ
· 25.85Sp + 42.57St( ) − 0.32 (14)

From the fitting diagram (as given in Figure 13), the correlation
coefficient is 0.8, and the fitting is better than the previous fitting
equation, so this equation can be used to characterize the
relationship between the permeability of the core of the Sinian
Dengying Formation and its pore structure parameters.

4 Conclusion

This study investigates the impact of various pore structure
parameters on core permeability. To that end, we performed micro-
CT imaging for different carbonate rocks and obtained pore
structure parameters based on pore network modelling. Then we
carried simulations using the lattice Boltzmann method and a
quantitative evaluation method was used to quantitate the
influence of different pore structure parameters on rock
permeability. The results imply that the porosity, pore area
fraction, throat area fraction, mean throat length, shape factor,
coordination number and tortuosity are the factors affecting the
absolute permeability of carbonate rocks. Subsequently, the
relationship between different pore structure parameters and
absolute permeability was obtained by multi-parameter fitting
method, which provided a new research method for directly
predicting the absolute permeability of carbonate rocks by using
pore structure parameters.
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