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El Niño–Southern Oscillation (ENSO) events influence elements of the terrestrial
water cycle such as precipitation and temperature, which in turn have a significant
impact on drought. This work assessed the impact of El Niño and LaNiña on droughts
from 1970 to 2020 in the Weihe River basin (WRB) in China. This study used a
standardized precipitation index (SPI) to characterize meteorological drought. The
regional drought response to extreme events in El Niño/La Niña was analyzed using
principal component analysis (PCA), Wilcoxon and Mann–Whitney tests, and other
methods. The results showed that, based onPCA, theWRB is divided into two regions,
with the northwest region (67%) comprising more area than the southeast region
(33%). El Niño/La Niña significantly impacted drought in the WRB. Droughts mainly
occurred in the El Niño year and the year following La Niña. El Niño had the highest
number of drought years (44%), followed by the year following La Niña (43%). The
number of droughts was lowest in the year following El Niño (22%). At 1-, 3-, and 6-
month timescales, significant droughts mainly occurred from July to December in El
Niño years and the summer following La Niña. On a 12-month timescale, significant
droughts mainly occurred from January to April in El Niño years, while no droughts
occurred in La Niña years. The longer the timescale of the SPI, the more months of
significant drought in El Niño years; however, the intensity of drought in the basin was
reduced. In the year following La Niña, summer droughts intensified on a 6-month
timescale compared to a 3-month timescale. El Niño and LaNiña had greater impacts
on the drought index in the northwest region of the WRB. In the northwest region,
60% of the months showed significant drought, compared to only 2% of the months
in the southeast region. The drought intensity was higher in the northwest region. The
results of this study provide a reference for drought management and early warning
systems in the WRB and support solutions to water shortage.
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1 Introduction

In the context of global warming, droughts are likely to becomemore severe and frequent (Dai,
2013; Singh et al., 2022). Drought is a recurrent natural phenomenon caused by chronic water
deficits compared to normal conditions (Jim´enez-donaire et al., 2019; Sen et al., 2020). Although
droughts have devastating effects on agriculture, ecology, and society, they are the least understood
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and costliest natural disasters worldwide (Markonis et al., 2021; Xu et al.,
2021; Peng et al., 2020). Since the 1970s, frequent drought events have
seriously impacted the quality of life of people, as well as industry,
agriculture, and national economic development (Ma and Ren, 2007;
Trenberth et al., 2014; Zhang Q. et al., 2018). China is located in the East
Asian monsoon region, which is densely populated, economically
developed, and a sensitive and high-risk area for climate change.
Approximately 20 million hectares/year of farmland is affected by
drought, accounting for 60% of the area affected by all types of
meteorological disasters, resulting in a reduction in food production
from millions of tons to over 30 million tons (Zhang et al., 2008; Zhou
et al., 2018). However, drought is a serious threat to food security and
ecological safety, as well as to human survival and development (Su et al.,
2018; Dai et al., 2022).

The El Niño–Southern Oscillation (ENSO) is the strongest
interannual variability in the global climate system produced by
sea–air interactions (Bjerknes, 1969). ENSO warm (El Niño) and
cold (La Niña) phase events occur approximately every 2–7 years,
usually starting to develop during the Northern Hemisphere
summer and peaking at the end of the year or early in the
following year (Yan, 2022). El Niño refers to the warmer surface
water temperature in the equatorial eastern Pacific, while La Niña is
the colder surface water temperature in the eastern equatorial Pacific
(Luo, 2020). ENSO-driven precipitation anomalies have important
implications for SST anomalies, surface wind fields, and oceanic
thermocline changes (Kug et al., 2009; Okumura, 2019). Meanwhile,
ENSO-driven tropical precipitation anomalies significantly affect
global climate (Kim and Kug, 2018; Yeh et al., 2018). In the context
of global warming, the average global surface temperature is
approximately 1.0°C warmer than in the past, seriously affecting
the global climate system (IPCC, 2018; IPCC, 2021; IPCC, 2022).
The ENSO-driven positive precipitation anomalies in the equatorial
Pacific both show a significant strengthening and eastward shift,
leading to an eastward shift of the main variability modes of the
Walker circulation and the ENSO-driven atmospheric
teleconnections in the North Pacific and North America (Zhou
et al., 2014; Kug et al., 2010; Bayr et al., 2014; Perry et al., 2017).

ENSO significantly affects human social activities through its
tropical precipitation anomalies, which impact agriculture, the
economy, ecosystems, and extreme events. These phenomena
include wildfires in Southern California due to La Niña in
2017 and drought in SA due to El Niño in 2018–2019 (Yeh
et al., 2018). The La Niña event is a key influence on the
occurrence of prolonged droughts in northern China during
spring and summer (Zhang L. et al., 2018). The persistent
drought in northern China in 2010 is also closely related to the
La Niña event (Shen et al., 2012). The La Niña event is one of the
main drivers of the frequent cold weather in the eastern part of the
country during the first winter of 2021 (Zheng et al., 2021; Zheng
et al., 2022). The El Niño event was an important reason for the
intensification of autumn drought in southern China after 1990
(Zhang et al., 2014). The severe meteorological drought in southern
China in the autumn of 2019 is inextricably linked to the El Niño
event (Ma et al., 2020).

Many studies have evaluated ENSO’s impact on the climate.
However, as the complex diversity of ENSO increases, the climate
impact of tropical sea–air variability becomes unstable and its
impact on drought in China becomes increasingly complex. The

Weihe River basin (WRB) is located in the Loess Plateau, which has
one of the largest rates of soil erosion on Earth (Zhou et al., 2022).
The annual sediment discharge in the Loess Plateau is about
1.28 billion tons (Zhang et al., 2010). In addition, the WRB is an
arid and semi-arid region, with precipitation primarily in summer,
resulting in an uneven spatiotemporal distribution of water
resources (Feng et al., 2022). More recently, the streamflow of
the WRB has decreased significantly to 60% below the climate
change (Guo et al., 2014). This decrease has led to increased
shortages of water resources, which restrict the water ecological
environment protection and economic and social development of
the WRB (Yue et al., 2021). No studies have reported on the impact
of El Niño/La Niña on drought in the WRB based on the
classification of meteorological stations. Therefore, this study
applied classification methods (e.g., principal component
analysis) to cluster meteorological stations to better study the
impacts of El Niño/La Niña on drought in the WRB.

The objective of this study was to reveal the impact of El Niño/La
Niña onmeteorological droughts in theWRB, an arid and semi-arid area
in the northwest of China. This study classified 16 meteorological
observation stations based on principal component analysis (PCA) to
determine the partition. The characteristics of drought variation in El
Niño/La Niña years and the following years were then analyzed and the
influence of El Niño and La Niña on meteorological drought was
investigated. The results revealed the mechanism of the influence of
ENSO events on meteorological droughts to enhance understanding of
the formation of meteorological droughts, which has important
implications for the climate prediction of futuremeteorological droughts.

2 Study area

The WRB (104°00′E–110°20′E, 33°50′N–37°18′N) is the largest
tributary of the Yellow River and covers a drainage area of 1.35 ×
105 km2. The river originates from Gansu Province and flows into the
Yellow River at Tongguan Port, with a length of approximately 818 km
(Hu et al., 2022) (Figure 1). The elevation of theWRB gradually decreases
from west to east from 3926 to 325m. The annual precipitation and air
temperature of the WRB range from 500 to 800 mm and 7.8–13.5°C,
respectively (Chang et al., 2015; Zhang T. et al., 2022). The precipitation
within the basin is spatially uneven and exhibits a declining trend from
southeast to northwest. TheWRB is the main grain-yielding area and an
important industry and commerce area in Northwestern China. The
establishment of the Guanzhong–Tianshui economic zone will greatly
promote the economic development of the whole western region (Chang
et al., 2015). The geographical location is unique. The upstream area is
located in the hilly area, while the middle reaches span the Loess Plateau.
Soil erosion is serious, and the ecological environment is fragile (Li C.
et al., 2019). Frequent droughts in the basin have increasingly serious
economic, social, and ecological impacts (Ma et al., 2022).

3 Data and methodology

3.1 Data

This study used monthly precipitation and temperature data from
16 meteorological observing stations in the WRB from 1970 to 2020.
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These observed meteorological data were downloaded from the
National Meteorological Information Center of China (https://data.
cma.cn/). The monthly precipitation data were used to calculate the
standardized precipitation index (SPI). According to the El Niño/La
Niña Event Discriminatory Method developed by the Chinese
Meteorological Administration, an El Niño (La Niña) event was
defined as a 3-month sliding NINO3.4 index average of ≥0.5°C
(≤−0.5°C) lasting for at least 5 months (Zhang et al., 2021). El Niño
and La Niña historical events were obtained from the National Climate
Center of China Meteorological Administration (http://cmdp.ncccma.
net/download/ENSO/Monitor/ENSO_history_events.pdf). Nine peak
years of El Niño events of moderate intensity or higher (1972, 1983,
1987, 1992, 1994, 1997, 2002, 2009, and 2015) and eight peak years of La
Niña events of moderate intensity or higher (1971, 1973, 1975,1988,
2000, 2008, 2010, and 2020) and the following year since 1970 were
selected for analysis (El Niño/La Niña years) to explore the impact of El
Niño/La Niña on drought in the WRB.

3.2 Principal component analysis

Differences in the spatial distribution of precipitation in the
WRB are influenced by the location of the sea and land, the western
Pacific subtropical high-pressure system, and the Mongolian high-
pressure system (He et al., 2012). The complexity of the monthly
precipitation series in the WRB showed significant spatial
differences, with the eastern part higher than the western part
and the southern part higher than the northern part (Yang et al.;
Liu et al., 2022). Therefore, before analyzing the impact of El Niño
and La Niña on drought, the 16 meteorological stations were divided
into two typical principal component site categories through PCA of
the monthly precipitation series. PCA was first developed by Karl
Pearson in 1901 (Vicente-Serrano, 2005; Badakhshan et al., 2021).

PCA is a multivariate statistical method used to reduce statistical
indicators (Rutledge, 2018; Gao et al., 2020). Generally, the
comprehensive indicators generated by the transformation are
called principal components, and each principal component is a
linear combination of the original variables (Arslan, 2009). The
number of components was selected according to the criteria of an
eigenvalue >1, and the components were rotated (varimax) to
redistribute the final explained variance and to obtain more
physically stable and robust patterns (Richman, 1986). The
spatial classification of monthly precipitation patterns in the
WRB was performed using the factorial loading values of each
component obtained to group the observatories by the maximum
loading rule. Each observatory was assigned to the component with
the highest loading value.

3.3 Standardized precipitation index

The standardized precipitation index (SPI) was used as a
meteorological drought index. The value was determined by
normalizing the long-term precipitation record for the desired
period for a given station after it was fitted to a probability
density function, as described by McKee (Prajapati et al., 2021).
The SPI only considers the deficit of precipitation. This study
divided drought into four categories according to the SPI value:
mild (−1 < SPI ≤ −0.5), moderate (−1.5 < SPI ≤ −1), severe (−2 <
SPI ≤ −1.5), and extreme (SPI ≤ −2). This also calculated the SPI at
different timescales (1, 3, 6, and 12 months). An SPI of ≤ −0.5 was
defined as a dry event, and the number and intensity of droughts are
calculated. The number of droughts was defined as the number of
months and years of drought disasters. The drought intensity was
the SPI monthly scale value for mild drought and above. The
intensity of decadal drought in the study area was calculated as

FIGURE 1
Geographical location of the Weihe River basin and distribution of each meteorological station.
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the average of the aforementioned SPI values. Finally, the drought
index was calculated using the observed precipitation series from the
16 meteorological stations, the regional series of homogeneous
regions obtained by PCA, and the series for the entire WRB.

3.4 Standardized precipitation
evapotranspiration index

The standardized precipitation evapotranspiration index (SPEI)
proposed by Vicente-Serrano et al. (2010) is a drought index that
considers both precipitation and evapotranspiration. Potential
evapotranspiration (PET) is calculated according to
Thornthwaite’s method (Thornthwaite, 1948). By calculating the
difference between monthly precipitation and potential
evapotranspiration, the water deficit accumulation sequence is
established. Then, the log-logistic probability distribution
function is used to standardize the cumulative probability
density, and the SPEI index is obtained. The SPEI dry events and
drought categories are consistent with the SPI.

4 Results

4.1 Classification in the Weihe River basin
based on monthly series

Figure 2 shows the PCA results of the monthly precipitation
series based on 16 meteorological stations. We obtained two
components with eigenvalues >1. Figure 3 indicates the spatial
representativeness of these components. The spatial distribution
pattern of factor loads was consistent, and the principal components
do not overlap. Components 1 and 2 represent the northwestern and
southeast regions, respectively.

Figure 4 shows the monthly precipitation classification of the
WRB when applying the maximum loading rule. The northwestern
region is large, including 10 meteorological stations (Minxian,
Linyao, Huajialing, Huanxian, Pingliang, Xifengzhen, Guyuan,
Xiji, Luochuan, and Wuqi). The southeast region is small,
including six meteorological stations (Changwu, Wugong,
Huashan, Foping, Shangzhou, and Zhen’an).

Once the homogeneous areas were identified, a regional
precipitation series for each area was formed using the weighted
averages of monthly precipitation records at each observatory.
Similarly, a regional series for the WRB overall was created using
the same procedure. The weight factor was the ratio of the surface
area represented by each observatory to the total area of that region
based on Thiessen’s polygonmethod (Huang and Li, 1996; Jones and
Hulme, 1996). The spatial representativeness of the regional
precipitation series was consistent with the classified patterns.
The correlation analysis between the two regional series and the
precipitation series of the different observatories indicated that the
regional series represented the evolution of the monthly
precipitation of the homogeneous areas obtained from the PCA
classification (Figure 5).

4.2 Drought evolution in different regions

Figure 6 shows the evolution of the SPI at the 6-month timescale
in the two regions from 1970 to 2020. The number of occurrences of
different drought classes was spatially inconsistent and decreased
with higher classes. As shown in Table 1, more droughts were
recorded in the northwest (193) and southeast (186) regions. In the
northwest region, the drought was the most severe in the 1990s and
the number of extreme droughts was the highest during this time,
with no extreme droughts occurring in the 2000s and 2020s. In the
southeast region, the drought intensity was highest in the 1990s,
with the highest number of extreme droughts. No extreme droughts
occurred in the 1970s, 1980s, and 2020s. In 2020, there was no

FIGURE 2
Results of principal component analysis.

FIGURE 3
Spatial distribution of the principal components.
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drought in the northwest region, but moderate and severe drought
occurred in the southeast region. The response time to drought in
different regions was inconsistent because there was little or no rain
for some time, and the precipitation is significantly less than in other
periods, resulting in droughts not occurring at the same time (Zhang
L. et al., 2022). In the 1990s, the WRB was most severely drought-

stricken, and the frequency of drought in the northwest region was
higher than in the southeast region.

4.3 Response of drought to El Niño/La Niña
in the Weihe River basin

This study defined an El Niño/La Niña peak year of moderate
intensity or higher as the event year; i.e., an El Niño/La Niña year, to
explore the impact of ENSO on drought in the WRB. Figure 7 shows
the multi-year mean SPI values at different timescales of El Niño/La
Niña and the year following these events in theWRB. The SPI values
were obtained from the regional precipitation series for the WRB.
Figure 7 indicates the general drought response and significant
differences (p<0.05) at different timescales when El Niño/La Niña
occurred. As shown in Figure 7A, at a timescale of 1 month, a
negative average SPI value was observed in July during El Niño
years. The July of El Niño years showed significant differences
compared to the rest of the years, the normal years, and the La
Niña years. During El Niño years, negative average SPI values were
recorded for July and November at the 3-month timescale;
moreover, >78% of SPI values from August to November were
negative. Significant drought (SPI/SPEI ≤ −0.5 and p < 0.05) only
occurred in September compared to other years and normal years.
At the 6-month timescale, negative average SPI values occurred
from July in the El Niño year to February of the following year.
Moreover, >78% of SPI values from August to December and
February of the following year were negative. These figures were
significant in November and December between El Niño and the rest
of the years. The multi-year average SPI values from March to
December of the following year were positive, and there were
significant humid conditions from August to October and
December compared to La Niña. However, at longer timescales
(12 months), the number of significant drought months increased,
and El Niño years showed significant droughts in January, April, and

FIGURE 4
Spatial distribution of the meteorological stations.

FIGURE 5
Correlation between the two regional series and monthly
precipitation series in the different observatories.
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September and June of the following year compared to normal years
and other years. The average SPI values fromAugust to December in
the year following El Niño were positive, with no significant
differences in December compared to La Niña years. The longer
the timescale of SPI, the more months of significant drought in El
Niño years and the year following El Niño, while the intensity of
drought weakened.

On different timescales in the WRB, El Niño and La Niña
showed different effects on the SPI index. As shown in
Figure 7B, at a timescale of 1 month, the average SPI values in
February, November, and December of the following year were
positive. These months differed significantly from other years,
normal years, and El Niño years and were significantly humid.
Significant droughts were observed in June and July of the following
year. At the 3-month timescale, the multi-year average SPI values of
La Niña fromMay to September of the following year were negative,
and 71% of the SPI values from May to August were negative,
indicating significant droughts in July and August compared to
normal years and El Niño years. At the 6-month timescale, >71% of
the SPI values from July to November in El Niño years were negative.
Significant differences were observed between La Niña and other
years and between normal years and El Niño years in July and

August. At the 12-month timescale, no significant difference was
observed between La Niña and other years and normal years.
Significant differences were observed between La Niña and El
Niño years only in August and October. On different timescales,
La Niña had a stronger drought the following year than El Niño the
following year. At the 3-, 6-, and 12-month timescales, as the
timescale increased, La Niña intensified the drought in the
following year, with the worst summer droughts. At the 12-
month timescale, La Niña had less impact on drought than El
Niño. The response of SPI12 (SPI at the 12-month timescale) to
El Niño in the WRB was significant, with 25% of months
experiencing significant drought. The remaining timescales show
fewer months of significant drought. The responses of SPI3 (SPI at
the 3-month timescale) and SPI6 (SPI at the 6-month timescale) to
La Niña were significant, and both showed significant droughts in
July and August of the next year. Short-term drought events were
strongly associated with La Niña.

At a timescale of 1 month, the WRB experienced significant
drought (SPI) in July of El Niño years, November of the year
following El Niño, and June of the year following La Niña.
Significant droughts (SPEI) occurred in June of the year
following La Niña. At the 3-month timescale, significant

FIGURE 6
Evolution of SPI series at a 6-month timescale obtained from the two regional precipitation series. (A) Northwest Region. (B) Southwest Region.

TABLE 1 Numbers of drought occurrences in different regions.

Mild drought Moderate drought Severe drought Extreme drought

Northwest Region 85 62 34 12

Southeast Region 89 55 29 13
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droughts (SPI and SPEI) occurred in September of El Niño years and
July of the year following La Niña. The SPEI showed significant
droughts in September of El Niño years and July of the year
following La Niña. At the 6-month timescale, significant
droughts (SPI) occurred in November and December of El Niño
years and July and August of the year following La Niña. No
significant droughts occurred by SPEI. At the 12-month
timescale, the trends of SPI and SPEI values were the same, with
no significant droughts in La Niña years and the year following La
Niña (Figure 7; Supplementary Figure S1).

As shown in Figure 8, the highest percentages of years with
drought were 44% in El Niño years, 43% in the year following La
Niña, and 38% in the year following La Niña years. The smallest
percentages were observed in the year following El Niño (22%).
Different categories of drought occurred differently according to the
event. Extreme and severe droughts occurred only in El Niño years
and the following year, while mild droughts occur most frequently in
different events.

Figure 9 shows the percentage of the WRB that were significantly
dry during El Niño and LaNiña years. During El Niño years, analysis of
the differences between El Niño years and the rest of the years (normal
and La Niña years) (Figure 9A) showed that parts of the WRB were
affected by significant drought. More than 13% of the total surface was
affected between September of the El Niño year and February of the
following year. Moreover, during December of the El Niño year,
significant dry conditions occurred in a high percentage of the area
(45%). Analysis of the significant dry conditions between El Niño and
the normal years (Figure 9B) showed that the area of drought decreased
in December and increased in January and February of the following
year. The consistent surface areas between July of the El Niño year and
February of the following year were 13%–51% (Figure 9C).

The proportions of significant drought areas in the year following
LaNiña were higher than those during LaNiña years, which was related
to decreased precipitation in the following year. During La Niña years,
significant dry conditions were recorded in 5% to 32% of the WRB
between July and February of the following year, based on differences

FIGURE 7
Mean SPI values at different timescales from the SPI series in the Weihe River basin. (A) El Niño and (B) La Niña years (boxed) and the year after these
events. Green columns, significant differences in SPI values between El Niño/La Niña and the remaining years; blue columns, no significant difference;
square, significant differences in SPI values between El Niño and La Niña years; circles, significant differences in SPI values between El Niño/La Niña years
and normal years; arrows, months with consistent anomalies among events [>70% of events have the same sign as the mean SPI (Vicente-Serrano,
2005)].
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between LaNiña and the rest of the years. The analysis of the differences
between La Niña and normal years in these months showed obvious
increases in significant drought areas. However, the La Niña signal was
very consistent, with>54%of the area having a negativemean SPI value.
Droughtsmainly occurred at the end of ElNiño years and the beginning
of the following year, and in the year following La Niña.

4.4 Spatial differences in the influence of El
Niño/La Niña on drought conditions in the
Weihe River basin

Here, the spatial differences presented by the SPI averages at
the various timescales during the El Niño and La Niña years are

described from the regional series of the two homogeneous
regions obtained from PCA. Figure 10 shows the average SPI
values according to the different timescales during El Niño and
La Niña for the northwestern region. Figure 10A demonstrates
that >78% of SPI values from July to September were negative on
a 1-month timescale in El Niño years. El Niño years showed
significant differences only in July compared to the rest of the
years, normal years, and La Niña years. At the 3-month
timescale, >78% of SPI values from August to November were
negative. El Niño years showed significant droughts from August
to October compared to the rest of the years, with significant
differences only in September compared to normal years. The
drought pattern intensified on a 6-month timescale, with
September to December showing significant droughts

FIGURE 8
Percentages of drought years in El Niño/La Niña and the following year.

FIGURE 9
Percentage of the Weihe River basin, during El Niño/La Niña (boxed), and the following year, with significant drought areas in the 6-month SPI
between (A) El Niño/La Niña and the remaining years and (B) El Niño/La Niña and normal years. (C) Percentage of the Weihe River basin with consistently
negative anomalies among events during El Niño and La Niña years.
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compared to the rest of the years. The year following El Niño
showed significant humidity from August to October and
December. Significant droughts were recorded from January to
April of El Niño years and from January to April of the following
year at the timescale of 12 months but only compared to the
normal years.

The temporal patterns were reversed during La Niña, with fewer
months showing significant differences. As shown in Figure 10B, at a
timescale of 1 month, February and June of the following year in La
Niña differed significantly from the rest of the years, the normal
years, and the El Niño years, with February significantly wetter and
June significantly drier. At the 3-month timescale, >71% of SPI
values for the year following La Niña were negative from May to
August, with June to August (summer) showing significant
droughts. At the 6-month timescale, between August of La Niña
years and April of the following year, the average SPI values were
positive. The following year, the mean SPI values were negative from
May to December, with significant differences from July to October

compared to El Niño and only in July and August compared to the
rest of the years and the normal years. On a 12-month timescale, La
Niña year shows significant droughts in May compared to normal
years and significant differences from August to October of the
following year compared to El Niño years.

Figure 11 shows the mean SPI values at different timescales
during El Niño and La Niña in the southeast region. The mean SPI
values were higher than those in the northwest region at different
timescales and the number of months with significant differences
was less than that in the northwest region. As shown in Figure 11A,
at a timescale of 1 month, only July in El Niño showed significant
droughts, and >78% of the SPI values were negative. At the 3-
month timescale, >78% of the SPI values were positive fromMarch
to June in El Niño years, with the following August to September
showing significant dampness compared to La Niña years. At
timescales of 6 and 12 months, no significant anomalies were
recorded in relation to El Niño and La Niña years, although
significant differences were observed between the year following

FIGURE 10
Mean SPI values at different timescales from SPI series in the northwest region. (A) El Niño and (B) La Niña years (boxed) and the year after these
events. Same as Figure 7.

Frontiers in Earth Science frontiersin.org09

Fan et al. 10.3389/feart.2023.1093632

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1093632


El Niño and the La Niña year only for a few months of the
following year.

As shown in Figure 11B, at the 1-month timescale, February,
November, and December of the following year in La Niña differed
significantly from the normal years and El Niño years. At the 3-month
timescale, February of the following year differed significantly from the
rest of the years and the normal years, showing significant wetness. No
significant anomalies were recorded in relation to El Niño and La Niña
events at the 6- and 12-month timescales.

El Niño and La Niña had greater impacts on the drought index
in the northwest of the WRB, with more months of significant
drought and greater intensity levels in the northwest compared to
the southeast. The negative anomalies were stronger in El Niño years
than in La Niña years, with different months of significant drought
in different regions. The northwest SPI12 showed significant
responses to El Niño, with 38% of months experiencing
significant drought, while the SPI6 responded significantly to La
Niña, with 17% of months experiencing significant drought. The

southeast experienced significant droughts in July of El Niño years
only on the 1-month timescale.

At the 1-month timescale, the northwest region experienced
significant droughts (SPI and SPEI) in July of El Niño years and
June of the year following La Niña. At the 3-month timescale,
significant droughts (SPI) occurred from August to October in El
Niño years and from June to August in the year following La
Niña. The SPEI showed significant droughts in September of the
El Niño year and July and August of the year following La Niña.
At the 6-month timescale, significant droughts (SPI and SPEI)
occurred in September and November of El Niño years and
October of the year following La Niña. At the 1-, 3-, and 6-
month timescales, the longer the SPI and SPEI timescale, the later
the significant droughts occurred. At the 12-month timescale, SPI
and SPEI showed significant droughts in April in El Niño years
(Figure 10; Supplementary Figure S2). At the 1-month timescale,
the southeast region experienced significant drought (SPI) in July
of El Niño years and November of the year following El Niño. No

FIGURE 11
Mean SPI values at different timescales from SPI series in the southeast region. (A) El Niño and (B) La Niña years (boxed) and the year after these
events. Same as Figure 7.
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significant droughts occurred by SPEI. At the 3-, 6-, and 12-
month timescales, no significant droughts (SPI and SPEI)
occurred in the southeastern region (Figure 11; Supplementary
Figure S3).

The areas with significant changes in negative averages differed
during the various months of El Niño and La Niña. The mean SPI
values obtained from SPI series from different meteorological
stations on a 6-month timescale showed that most of the WRB
was affected by drought between July of El Niño years and February
of the following year and from May to December in the year
following La Niña. Figure 12 and Figure 13 show areas with
significant differences between the corresponding El Niño/La
Niña and the rest of the years (inside the black line), areas with
significant differences between El Niño/La Niña and normal years
(inside the black dashed line), and the meteorological stations with
consistency among events.

As shown in Figure 12, the areas of significant drought were
higher in the northwest than in the southeast region from August of
El Niño years to February of the following year. From September to
November in El Niño years, a high percentage of the northwest
region showed significant drought between El Niño and the rest of
the years and the normal years. From December of El Niño to
February of the following year, the areas of significant drought
decreased. December of El Niño years showed larger areas of
significant drought compared to the rest of the years, but a
smaller area compared to El Niño and normal years. January and
February of the year following showed opposite trends of those for
December. Event consistency was recorded at 50% of the
meteorological stations in December and at a few meteorological
stations in the remaining months.

The southeast region was not affected by significant droughts
during the year following La Niña (between La Niña and the rest of
the years and between La Niña and normal years). As shown in
Figure 13, no droughts occurred in the southeast region in May and

June. Significant drought conditions were recorded in the northwest
region from July to November of the year following La Niña,
indicating significant drought conditions between La Niña and
normal years. La Niña resulted in smaller areas of significant
drought compared to the rest of the years. Many meteorological
stations showed consistency in recorded events compared to El Niño
years.

5 Discussion

Themain objective of this study was to study the effects of ENSO
on meteorological drought in the WRB through the classification of
meteorological stations. We compared the effects of El Niño and La
Niña on drought. Zhao et al. (2018) reported that ENSO is
significantly related to meteorological and hydrological droughts
in the WRB. Gore et al. (2020) found that El Niño (La Niña)
conditions weaken (strengthen) the Walker circulation, causing
drier (wetter) conditions over parts of southern Africa. These
studies on the impact of ENSO on drought mostly focused on
the whole region. Sun et al. (2015) analyzed the drought zoning,
drought characteristics, and drought frequency in northeast China
based on PCA. Wang et al. (2017) studied the drought trends and
characteristics of periodic variation at multiple timescales in
different regions. The present study refined the analysis of the
influence of El Niño/La Niña on drought by dividing the WRB.
The results showed that the northwest and southeast regions
respond differently to ENSO. These results improve the
understanding of the mechanism by which ENSO affects
droughts and inform the development of a drought warning system.

As shown in Supplementary Figure S4A, in El Niño years, the
average annual precipitation in the northwest region of has 66.4 mm
and 51.2 mm less than the following year and the normal year. La
Niña year received more precipitation (519.8 mm) than in the

FIGURE 12
Spatial distribution of SPI6 averages from July of El Niño years (open circles) to March of the following year (pluses). Area within the black solid line,
significant difference between the El Niño years and the remaining years, showing significant drought; area within the black dashed line, significant
difference between El Niño and normal years, showing significant drought; solid circles, observatories with consistent anomalies among El Niño events.
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following year (466.7 mm) and in the normal year (512.0 mm), but
more precipitation in the normal year than in the following year.
The El Niño annual precipitation (616.0 mm) in the southeast
region is less than that in the following year and normal year,
but the precipitation in the following year (696.6 mm) is more than
that in the normal year (637.9 mm), which is consistent with the
situation in the northwest region. The precipitation in La Niña year
is 41.7 mm and 52.9 mm more than that in the following year and
normal year. The normal annual precipitation was 5.8 mm lower
than the year following La Niña.

As shown in Supplementary Figure S4B, the highest temperature
in the northwestern region was 7.7°C in El Niño years, followed by
7.6°C in the following year, and the lowest in normal years.
Temperatures in La Niña years (7.6°C) were lower than in El
Niño years. The temperatures in La Niña years were higher than
the following year and normal years, while the temperatures in the
following year (7.3°C) were lower than normal (7.6°C). Temperature
was generally higher in the southeast region than in the northwest
region. El Niño and La Niña years were both warmer than the
following year. Temperatures in El Niño and the following year were
higher than those in normal years, while temperatures in La Niña
year and the following year were lower than those in normal years.

Comparison of El Niño years with normal years revealed that
91% of regions in the WRB showed decreasing trends in
precipitation and 95% of the regions showed increasing trends in
temperature (Supplementary Figure S4C). Compared with the next
year, the precipitation in the year following El Niño was higher than
that in El Niño, and 94% of the regions showed decreasing trends in
temperatures. Comparing La Niña years with normal years, 55% of
the regions showed an increasing trend in precipitation, while 72%
of the regions showed a decreasing trend in temperature. Comparing
La Niña year with the following year, 98% of the regions showed a
decreasing trend in precipitation in the following year. The
temperature in the year following in La Niña was lower than that
in La Niña. El Niño had a decreasing effect on precipitation while La

Niña had an increasing effect on precipitation, consistent with the
results of the precipitation in the WRB under the influence of ENSO
reported by Zhao et al. (2018). The temperatures rose in El Niño
years, consistent with Su‘s analysis of high-temperature weather in
the north under the influence of ENSO (Su et al., 2022).

Wang et al. (2022) observed a northerly wind anomaly during El
Niño, resulting in a weak northward transport of water vapor from
the South China Sea and the Bay of Bengal, and less precipitation in
northern China. Wu et al. (2017) reported unusually high
precipitation due to an anticyclonic circulation in the northwest
Pacific Ocean and an anomalous double-blocking circulation in the
year following El Niño. This finding can be explained by the drought
in the WRB mainly occurring in El Niño years, in which the next
year was generally wet. The influence of El Niño on precipitation in
northern China may be related to the strength of summer
monsoons. When El Niño is strong, the monsoons affecting
northern China are weak in summer and autumn, resulting in
low annual precipitation in El Niño years and high precipitation
in summer and autumn in La Niña years (Jia and Zhang, 2020).
Therefore, SPI12 responded significantly to El Niño, and droughts in
short timescales were closely related to La Niña (Wang et al., 2021).

We calculated SPEI at different timescales (1, 3, 6, and
12 months) in the WRB and the northwest and southeast
regions. The mean SPEI values at different timescales in El Niño/
La Niña years and the next year are shown in Supplementary Figures
S1–S3. At 1-, 3-, and 6-month timescales, the impact of El Niño/La
Niña years on SPEI was consistent with the following year. Few
months differed significantly between El Niño/La Niña and normal
years and the rest of the year. SPEI cannot show differences between
the effects of El Niño and La Niña on drought, or the differences in
the El Niño/La Niña effects on drought from the following year. On
the 12-month timescale, the effects of El Niño/La Niña and its next
year on SPEI differed. Drought mainly occurred in El Niño years,
while no drought occurred in La Niña years and the following year.
The response of SPEI to El Niño and La Niña is not as strong as for

FIGURE 13
Spatial distribution of SPI6 averages for different months from May to December for the year after La Niña (pluses). Same as Figure 12.
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SPI, which is consistent with the findings of Wang et al. (2021).
According to Zhao et al. (2017), Walker circulation significantly
impacts precipitation in China. Weakened circulation leads to
decreased precipitation in northern China and may cause
drought. Bayr et al. (2014) found that ENSO affects precipitation
in northern China by influencing the intensity ofWalker circulation.
In summary, ENSO affects the SPI index of the WRB by influencing
precipitation and, thus, drought in the WRB, consistent with the
findings of Li et al (2019).

During the La Niña period, due to the cold water anomaly in the
equatorial eastern Pacific, the equatorial easterly wind increased and
the Hadley circulation weakened (Kong et al., 2021). The western
Pacific subtropical high weakened and moved northward (Xue and
Zhao, 2017). The rain belt also moved northward (Zhang et al.,
2023). El Niño can cause atmospheric Gill-type responses through
anomalous Walker circulation, making the western Pacific
subtropical high stronger and move westward and southward
(Qian et al., 2018). The northwest area of the WRB is far from
the ocean and the transfer of water vapor gradually decreases from
the southeast to the northwest. The precipitation in the northwest is
lower than that in the southeast (Yang et al., 2023). In general, the
northwest region had a significantly higher number of months with
significant drought compared to the southeast region. This finding is
consistent with the report by Huang et al. (2015) of a higher
probability of drought in the northwest compared to the southeast.

6 Conclusion

We assessed the impact of El Niño and La Niña on drought from
1970 to 2020 in the WRB in China using standardized precipitation
indices at different timescales. The conclusions are as follows.

(1) In the 1990s, the most severe drought occurred in the WRB,
with more droughts occurring in the northwest region than in
the southeast. El Niño/La Niña have different levels of impact on
drought in the WRB, with the highest number of drought years
occurring in El Niño years, followed by the following year of La
Niña.

(2) The number of months with significant drought increased but
the drought intensity weakened in the WRB as the timescale of
SPI increases. At the timescales of 3 and 6 months, the summer
drought in the following year of La Niña was the most severe. At
the 12-month timescale, La Niña had a lower impact on drought
than El Niño.

(3) The effects of drought in El Niño and La Niña were spatially
inconsistent. On different timescales, significant high-intensity
droughts were recorded in the northwest region. Significant
droughts existed in southeast region in July of El Niño years at
the 1-month timescale (SPI).
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