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The Tarim basin is a large composite and superimposed sedimentary basin that has
undergone complex multi-period and polycyclic tectonic movements.
Understanding the proto-type basin and tectono-paleogeographic evolution of
this complex superimposed basin is important for understanding the basin-
mountain coupling and dynamical mechanisms of the Paleo-Asian and Tethys
tectonic systems as well as hydrocarbon exploration and development. Based on
previous works, together with the recent exploration, and geological evidences,
three global plate tectonic pattern maps, four Tarim proto-type basin maps (in
present-day geographic coordinates) and four regional tectono-paleogeography
maps (in paleogeographic coordinates) during the Late Paleozoic are provided in this
paper. Based on these maps, the proto-type basin and tectono-paleogeographic
features of the Tarim basin during the Late Paleozoic are illustrated. The Devonian to
Permian is an important period of terranes/island-arcs accretion and oceanic closure
along the periphery of the Tarim block, and a critical period when the polarity of
Tarim basin (orientation of basin long-axis) rotated at the maximum angle clockwise.
During the Late Paleozoic, the periphery of the Tarim block was first collisional
orogeny on its northern margin, followed by continuous collisional accretion of
island arcs on its southern margin: on the Northern margin, the North and South
Tianshan Oceans closed from East to West; on the South-Western margin, the
Tianshuihai Island Arc gradually collided and accreted. These tectonic events
reduced the extent of the seawater channel of the passive continental margin in
theWestern part of the basin until its complete closure at the end of the Permian. The
Tarim basin was thus completely transformed into an inland basin. This is a process of
regression and uplift. The Southwest of the Tarim basin changed from a passive to an
active continental margin, through back-arc downwarping and eventually complete
closure to foreland setting. The intra-basin lithofacies range from shelf-littoral to
platform-tidal flat to alluvial plain-lacustrine facies. The tectonic-sedimentary
evolution of the Tarim basin is strongly controlled by peripheral geotectonic setting.
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1 Introduction

As the largest interior basin in the world, Tarim basin is an
outstanding natural laboratory to study proto-type basin and
tectono-paleogeography. A clear determination of the proto-type
basin of Tarim basin and its peripheral tectono-paleogeography can
be useful to understand tectonic evolution of Paleo-Asian and Tethyan
tectonic systems, to evaluate its resource potentials, and even to
deduce the paleoclimate.

For these reasons, many studies have been performed to
understand the dynamic evolution of basins and their relationship
to paleogeography (Allen and Allen, 1990; Jia et al., 2004; Woodcock,
2004; Lin et al., 2012b; Ingersoll, 2012; Liu J. D. et al., 2014; Ingersoll,
2019). Numerous studies on tectono-paleogeography have also been
performed in different areas and periods of the Tarim basin with
different focuses: some focus on the development process of the
Craton (Wang et al., 2017; Wang et al., 2019), some on the spatial
and temporal spreading of the sedimentary faciesʼ belts (Carroll et al.,
1995; Zhang J. et al., 2007; Zhang J. et al., 2008; Wu et al., 2013; Li S. Z.
et al., 2014; He et al., 2015) and some on the division of the
stratigraphic sequence (Lin et al., 2009; 2012a; Zhao et al., 2009;
Zhao et al., 2011). These studies have all made progress to varying
degrees, and have provided guidance for hydrocarbon source rock
evaluation and hydrocarbon exploration. However, due to the limited
data or low accuracy, the maps compiled by different scholars in
different periods have certain differences, mainly in the study area,
sedimentary boundary, and microfacies distribution (Zheng et al.,
2022). Moreover, with the progress of oil and gas exploration and
development, there may still be some problems with these previous
studies: 1) The previous paleo-plate tectonic patterns do not highlight
the position of Tarim block. 2) The previous proto-type basin is only
limited in the Tarim basin, lacking of overall analysis, and basin-
mountain coupling processes. 3) The previous tectono-
paleogeographic maps are still compiled in “fixed theory” (Feng
et al., 2004; Hou et al., 2014). Therefore, it is necessary to carry
out a new round of research on proto-type basin and tectono-
paleogeography.

Based on numerous previous research results, the Tarim proto-
type basins for each period of the Late Paleozoic were recovered using
the latest field sections, drilling logs and seismic sections in this paper.
In addition, the tectono-paleogeographic maps in each period were
also given in conjunction with the investigation of peripheral plates of
the Tarim basin to show the role of surrounding tectonic setting in
controlling the basin interior. It is hoped that these maps will provide a
basis for the interaction between the Tarim basin and the Paleo-Asian
and Tethys tectonic systems, and provide fundamental supports for
assessment of hydrocarbon exploration prospect in the Tarim basin.

2 Geological setting and plate tectonic
configuration

The Tarim basin, a large-scale superimposed basin (Jia et al., 1997;
He et al., 2007; Gao et al., 2017), is located in Central Asia, in the
Xinjiang Province in China. It covers an area of 560 × 103 km2 and is
the largest inland basin in China. It can be divided by seven first-order
tectonic units: the Kuqa Depression, the Tabei Uplift, the Northern
Depression, the Central Uplift, the Southwest Depression, the
Southeast Faulted Uplift, and the Southeast Depression (He et al.,

2016). These seven first-order tectonic units are subdivided into
17 Secondary structural units (Figure 1A).

2.1 Tectonics and stratigraphy

Tectonically, the periphery of the Tarim basin underwent oceanic
opening, subduction, oceanic closure, island arcs accretion, and
collision processes during the Phanerozoic (Tapponnier et al., 2001;
Xiao and Santosh, 2014). The processes reflect several phases of
tectonism, magmatism, and metamorphism. Therefore, the tectonic
environment around Tarim basin is quite complex (Figure 1A). The
Tarim basin is separated from the Kazakhstan-Junggar block by the
Tianshan Orogenic Belt to the North (Gao et al., 2013). The Tianshan
Orogenic Belt is part of the Central Asian Orogenic Belt and is divided
by two Paleozoic sutures (Windley et al., 1990; Allen et al., 1991; Ma
et al., 2014) into three parts: the Northern Tianshan, Central Tianshan
and Southern Tianshan. The Central Tianshan is also commonly
referred to as the Yili-Central Tianshan Terrane together with the Yili
block in the West (Allen et al., 1993). To the Southwest of the Tarim
basin is the West Kunlun Orogenic Belt, which includes the North
Kunlun, the Central, and South Kunlun, and the Tianshuihai Terrane
(Zhang C. L. et al., 2019); to the Southeast are the Altyn-Qilian Island
Arc, the Qaidam block, and Bayankala block. To the South are the
North Qiangtang block, South Qiangtang block, Lhasa block and
Himalayan Orogeny (Sobel and Dumitru, 1997; Pan et al., 2002).

Stratigraphically, the Tarim basin contains a pre-Sinian cratonic
crystallized basement, above which a complete sedimentary sequence
of the Sinian and Palaeozoic accumulated (Liu et al., 2016). During the
Sinian and Paleozoic, marine calcareous, and terrigenous deposits
were dominant until the Carboniferous (Laborde et al., 2019). A
carbonate platform surrounded by passive continental margins and
a deep shelf developed widely in the Cambrian and Ordovician,
respectively. The Lower Silurian to Middle Devonian was
dominated by sandstones of littoral deposits. A strong uplift event
occurred in the late Middle Devonian, forming a regional
unconformity (Figure 2) between the Middle and Upper Devonian.
Shallow marine clastic rocks and limestone with biogenic limestone as
interbeds occurred in the Carboniferous units (Li et al., 2015). The
Permian sediments transition from bottom to top mainly frommarine
carbonates and sandstones to lacustrine or fluvial clastic rocks
(Deledaer, 1996), with intervening volcanic rocks. After the
Permian, marine deposition ceased in the Tarim basin with a
change from calcareous to terrigenous deposits characterizing most
of the Mesozoic sediments.

2.2 Plate tectonic configuration

The basis for recovering the proto-type basin and tectono-
paleogeography is to understand the plate tectonic framework.
Plate tectonic framework involves large-scale basin-mountain
coupling and controls the formation and evolution of ocean-
continent configuration, orogenic belts, and basins. Therefore, it
can be used to reveal the process of ocean closure and orogenic
uplift (Huang et al., 2023).

At present, most of the global plate tectonic evolution maps are
reconstructed by Gplate software based on the global paleomagnetic
database (Müller et al., 2018). However, large foreign plates are the
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priority core plates, and the three plates in China (Tarim block, North
China block and South China block) are not paid enough attention.

The three plates in China should be constrained by high-confidence
paleomagnetic data (Huang et al., 2008; 2018) and tectonic comparison in
geological affiliation. The positions of the three plates in China can be
appropriately adjusted on the same latitude, but they cannot be adjusted

arbitrarily, and the spatial constraints between plates should be
considered. The new global tectonic configuration in the Late
Paleozoic is reconstructed by GPlate software based on the high-
confidence paleomagnetic data (Huang et al., 2023).

In Devonian, the Tarim block, the North China Plate and the
South China Plate were separated from the Gondwana continent and

FIGURE 1
Schematic structural maps of the Tarim basin and adjacent areas, and location of the study area. (A) Schematic structural map of the Tarim basin and
adjacent areas (modified after He et al., 2016); Structural units of Tarim basin: 1-Kuqa Depression; 2-Kalpin Faulted Uplift; 3-Tabei Uplift; 4-Kongque River
Slope; 5-Awati Depression; 6-Shuntuoguole Uplift; 7-Manjiaer Depression; 8-Bachu Uplift; 9-Tazhong Uplift; 10-Guchengxu Uplift; 11-Kashi Depression; 12-
Maigaiti Slope; 13-Tangguzibas Depression; 14-Tanan Uplift; 15-Shache Bulge; 16-Yecheng Depression; 17-Southeast Depression. (B) Location of
20 basin-scale seismic sections used to calculate shortening. These shortening data are integrated on four representative lines (AA’, BB’, CC’, and DD’) (cf.
Laborde et al., 2019). The seismic section NS08 and the balanced cross-section recovered from it are shown in Figure 5.

Frontiers in Earth Science frontiersin.org03

Xia et al. 10.3389/feart.2023.1097101

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1097101


the Laurentia-Baltica-Siberia continent. The Tarim block was at
around 15°N and formed a “ TN

S ” pattern with the North China
Plate and South China Plate. The Tarim block was generally in a
“Western compression, eastern extension” tectonic setting: the Paleo-
Asian Ocean (Paleo-Tianshan Ocean) westward subducted under the
Siberian-Kazakh continent, the Paleo-Asian Ocean domain was
contracting, and the Southern Kunlun/Southern Altyn Ocean to
the east was expanding (Figure 3A).

In Carboniferous, Gondwana, and Laurasia merged to form the
main body of Pangaea, laying the foundation for the basic pattern of
global plate tectonics (Figure 3B). The Tarim block drifted northwards
to about 25°N and the Paleo-ocean (North and South Tianshan Ocean)
on the northern edge of the Tarim block entered a period of major
closure (Han et al., 2006;Wang et al., 2007; Charvet et al., 2011; Han and
Zhao, 2018; Alexeiev et al., 2019). In the Late Carboniferous, Tarim
block collided with Kazakh-Yili (Gao et al., 2009; Su et al., 2010; Han
et al., 2011; Liu D. et al., 2014; Zhang et al., 2014a; Wang et al., 2022). By
rotating clockwise, Tarim block gradually collided with Kazakhstan
from east to west, forming the Kazakh Horseshoe Orocline (Abrajevitch
et al., 2007; Görz andHielscher, 2010; Li J. et al., 2014; Yi et al., 2015). At
this time, the Tarim block ended its history of independent drift and
became the southern edge of the Eurasian continent (Zhao et al., 2003;
Xiao et al., 2008; Wilhem et al., 2012; Xiao et al., 2013). Tarim block
regulated its position in relation to the other blocks in the Laurasia by
rotating clockwise (Li et al., 2015).

During the Early-Middle Permian, the Western and middle
segments of the Paleo-Asian Ocean had been closed, leaving only
its Eastern segment unclosed. Tarim block joined the main body of
Pangaea (Zhao et al., 2018). As a result of the crustal uplift caused by
the late Hercynian tectonic movement, the seawater in the remnant
bay of the Southwestern Tianshan area was gradually retreating
Westward. The sedimentary environment within the basin also
changed from marine to terrestrial (Chen et al., 2006; Luo et al.,
2012; Zou et al., 2014). At the same time, the Tarim block produced
intense volcanic activity, with large igneous provinces developing from
251 to 272 Ma. In the Late Permian (c. 270 Ma), Pangaea reached its
largest scale, and was surrounded by the Panthalassa (Figure 3C). A
series of orogenic belts, including the Central Asian Orogenic Belt and
the Uralian Orogenic Belt, on the Laurasia and its periphery, resulting

in the final assembly of Pangaea (Li and Jiang, 2013). At the end of the
Permian, the Paleo-Asian Ocean closed completely (Eizenhöfer et al.,
2014; 2015a; 2015b), the Paleo-Tethys Ocean subducted northwards
and the Neo-Tethys Ocean began to spread. Tarim block was located
to the north of the Paleo-Tethys Ocean and had been collaged with the
Eurasian plate to the North. After the assemblage of Pangaea, the
positions between the plates were adjusted by strike-slip faults. The
Tarim block was adjusted by a large left-lateral strike-slip fault.

3 Methology and database

The proto-type basin analysis based on the thought of “mobile
tectono-paleogeography”, which includes basin resetting, restoration,
and reshaping (Hou et al., 2019; He et al., 2020), is the core of this
study. Basin resetting is to restore the geotectonic position of the
proto-type basin in its development period. Basin restoration is to
restore the initial status of the proto-type basin, including its scope and
sedimentary facies distribution. Basin reshaping is to restore the
superposition and modification processes, mainly the restoration of
the amount of elongation/shortening of the basin.

Specifically, there are four steps in creating proto-type basin maps
with tectonic background.

Firstly, replenishing the erosion thickness and restoring the intact
isopach maps of the Tarim basin, which is mainly based on the
residual strata thickness (Figure 4) from Bureau of Geophysical
Prospecting, China, according to the characteristics of the
sedimentary thickness trends in the different basins. The thickness
trend method can find the boundary of the proto-type basin with the
help of the trend of the isopach in the isopach map, and it can also be
analyzed by the trend surface of a certain thickness layer in the seismic
profile (Zhang X. B. et al., 2007; Yu et al., 2016).

Secondly, extending the intact isopach maps outwards based on
the amount of shortening (Table 1) counted by 81 balanced cross-
sections (Lou et al., 2016; Laborde et al., 2019) to restore the pre-
deformation deposition extent and proto-type basin boundary.

Thirdly, restoring the distribution of lithofacies (intra-basin and
marginal facies) according to lithofacies-paleographic maps and
isopach maps. When the lithofacies-paleographic maps contradict

FIGURE 2
Silurian-Triassic tectonic-sedimentary evolution in the Tarim basin.
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the isopach maps, take the former as more credible due to the
compilation of lithofacies-paleographic maps based on analysis of
wells and outcrops in the whole basin.

Finally, completing the peripheral tectonic background of the
Tarim basin according to the previous literatures and then
obtaining the Tarim proto-type basin maps in the fourth chapter.

The maps compiled in this paper include two aspects: 1) The
Tarim proto-type basin maps with peripheral tectonic setting under
the current geographical coordinates in Late Paleozoic in the fourth
chapter; 2) Tectono-paleogeographic maps of Tarim block and its
peripheral areas under paleogeographic coordinates in Late Paleozoic
in the fifth chapter.

FIGURE 3
Reconstructing of global plates distribution in Devonian Period (A), Carboniferous Period (B), and Permian (C).
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The data used in this study include: the residual strata thickness of
Tarim basin from Devonian to Permian (Bureau of Geophysical
Prospecting, China), lithofacies distribution maps of Tarim basin in
different periods of Late Paleozoic, 81 seismic sections and their
balanced cross-sections, and some information on drillings and
outcrops. These basic data are mainly provided by the Tarim
Oilfield Company.

3.1 The residual thickness of the Tarim basin

Bureau of Geophysical Prospecting INC. has completed a set of
residual thickness maps (Figure 4) based on the fine interpretation of
basic seismic horizons in the Tarim basin, combined with information
from drilling and geological outcrops. These residual thickness maps
are the basis for recovering the original thickness distribution of the
basin prior to deformation.

Based on the residual strata thickness in Figure 4, according to the
characteristics of different type basins, restore the intact isopach
map. For a marginal basin, the isopach should be open, outward,
and asymmetric. While for an intracratonic basin, the isopach should
be concentric and closed. If encountering a platform or a surficial sea,
then the isopach should be symmetrical but with openings connected
to the shelf or marginal sea. For other kinds, their isopachmaps should
also be restored in accordance with their characteristics and locations
in the Tarim block.

3.2 The amount of shortening of the basin

It is key work to calculate the shortening amount according to the
balanced cross-sections in reconstruction of proto-type basin. The
balanced cross-sections can provide information on the elongation/
shortening of the strata (Lin et al., 2015; Wang et al., 2020a; Wang
et al., 2020b). The restoration process for balanced cross-sections, where
the mass conservation principle is the basic criterion, is usually inverse,
i.e., starting from a current interpreted structural cross section to its pre-
deformed morphology (Dahlstrom, 1969; Zhang and Chen, 1998). The
stratum length balance restoration method and the area balance
restoration method (Jiang et al., 2018) are used in this study. And the
restoration process is carried out in 3D-MOVE software, including three
steps: compaction correction, fault displacement restoration and layer
leveling. The stratigraphic lengths and the amount of shortening in each
period can be obtain after restoring the balanced cross-sections.

Figure 1B shows the positions of 20 basin-scale sections used in
this study for the statistics of basin shortening data. Among them,
10 balanced cross-sections are restored by us. Here, the NS08 section is
taken as an example to show the shortening process of the basin
(Figure 5).

Because the deformation mainly exists along the margin of
Tarim basin, the total shortening of each section is distributed to its
two ends according to the ratio of deformation at both ends
(Figure 6). These shortening data are integrated on four
representative lines (AA’, BB’, CC’, and DD’) (Figure 1B;
Table 1). The extension or shortening amount measured in this
paper is from Devonian, Carboniferous, and Permian to Cenozoic.
Data since the Cenozoic are referenced from Laborde et al. (2019).

The foreland (mountain front) zone is the main deformed part of
the proto-type Tarim basin, with the largest proportion of Cenozoic
shortening accounting for 70–90%. Overall, the distribution of
shortening in the marginal segments of the Tarim basin shows a
certain regularity: the shortening decreases from west to east, which is
probably due to the increasing distance from the Pamir tectonic
syntax.

4 Reconstruction of Tarim proto-type
basin in the Late Paleozoic

4.1 Late devonian: A back-arc extensional
basin in the southwestern Tarim basin

In the Early-Middle Devonian, Tarim basin basically inherited its
Silurian sedimentary framework (Li et al., 2015). By the end of the
Middle Devonian, the Early Hercynian Movement made the Tarim
basin strongly uplifted and subjected to denudation and planation,
forming a regional angular unconformity (Liu et al., 2008) (Figure 2)
between the Middle and Upper Devonian. The tectonic framework of
the Tarim basin undergone important changes as a result of the Early
Hercynian movement (Huang, 1986; He et al., 2005; Li et al., 2015; Wu
et al., 2016), which made the basin present a tectonic environment of
“compression in the northeast and southeast, extension in the
southwest” (Figure 7A). The northeast and southeast of Tarim basin
uplifted strongly, forming the denudation areas in these regions
(Figure 7A). The compression from these two directions caused the
basin to tilt uplift from East to West, showing a pattern of “Eastern
uplift, Western depression” (Lin et al., 2012b), and seawater mainly
invaded the basin from the West (Hu et al., 2010; Ma et al., 2019). The

FIGURE 4
Residual strata thickness of Tarim Basin in Devonian Period (A), Carboniferous Period (B), and Permian (C).
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Southwest of Tarim basin changed from passive continental margin to
back-arc extensional environment (Figure 7A).

There were several inherited paleo-uplifts in the basin, including
Shaya Uplift in the North, Tadong Uplift in the East and Tanan Uplift
in the South (Chen, 2000). The basin formed an open-sea basin with

Westward opening and a tectonic depressive bay basin centered on the
Awati Depression (Ma et al., 2019) (Figure 7A).

It is controlled by the paleo-geomorphic background that the shelf-
shore facies (Liu et al., 2016) were mainly developed in the basin from
West to East (Figure 7A). Tarim basin was surrounded by shallow

FIGURE 5
Geological interpretation of seismic section NS08 (A) and its recovered balanced cross-section (B). The location of seismic section NS08 is shown in
Figure 1.
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continental shelf, theWestern part of which was relatively open with huge
thickness turbidite clastic rocks (Lin et al., 2011). From west to east, the
sedimentary environment showed a changing trend from shelf-shore to
backshore-delta around the paleo-uplift (Figure 7A). Shelf facies mainly
developed gray-green mudstone intercalated with thin siltstone, shore
facies mainly developed tabular cross bedding and low angle cross
bedding quartz sandstone (Zhang H. et al., 2009). Delta facies
developed in well TB2 and estuarine facies developed in well TZ4 (Xu,
2009; Jia et al., 2017) (Figure 7A). Marginal facies such as deltas
(Figure 7A) indicated the boundaries of proto-type basin and the
major provenance areas. The quartz sandstone of the lower sandstone
section of the Donghetang Formation was deposited in the Bachu-
Maigaiti area. The Kalpin paleo-uplift in the North and the Madong
paleo-uplift in the South provided sufficient clastic materials, forming a
shelf-shore sedimentary system, and the sand body sedimentation
gradually migrated Eastward (Su, 2019). The H1 well area received
provenance from the southern paleo-uplift in the basin (Figure 7A),
and developed gravelly shore facies (Zhu et al., 2016). The Kuqa area
received the provenance from the Tabei paleo-uplift and the Xingdi area
(Su, 2019).

It is the tectonic background around the basin that controlled the
above phenomena in the basin. On the periphery of the basin, the
eastern segment of the South Tianshan Ocean began to shrink and the
western segment was still expanding (Figure 7A). The Central-South
Kunlun Island Arc, which was collaged to the southwestern margin of
the Tarim basin at the end of the Early Paleozoic (Matte et al., 1996;
Zhang Y. et al., 2019), was a low underwater uplift (Figure 7A). The

Southern Kunlun Ocean lied between the continental margin of the
Southwest margin of Tarim basin and the Tianshuihai Island Arc,
which began to move to the southwest of the Tarim basin. The Altyn-
Qilian Island Arc, which was collaged to the Southeast edge of Tarim
basin at the end of the Early Palaeozoic (Xu et al., 2011), had become a
part of the Southeast Uplift. The Southern Altyn Ocean, which existed
between the Altyn—Qilian Island Arc and Qaidam block, subducted
northward, causing the Southeastern Tarim basin to continuously
uplift (Figure 7A).

4.2 Late carboniferous: Transition from a
back-arc extensional basin to a back-arc
downwarping basin in the southwestern
Tarim basin

From the beginning of Carboniferous, the Tarim block generally
subsided and undergone extensive marine transgression (Zhuang
et al., 2002; Ma et al., 2019). There were marked differences in the
paleogeography and the width of the sedimentary facies expressed due
to their location (Figure 7B).

The range of the proto-type basin changed significantly
(Figure 7B). The boundary of the proto-type basin in the East
starting from the Westernmost part of the Kongque River Slopes,
passing through the Manjiaer Depression to the south and reaching
the Guchengxu Uplift. At the junction of the south side of Guchengxu
Uplift and the Southeastern Fault-Uplift, the boundary turned

FIGURE 6
Distribution of shortening at the basin margin calculated from each seismic section.

TABLE 1 Shortening amount of Tarim Basin between Devonian, Carboniferous, Permian Periods and present (/km).

Distribution of the shortening amount Cenozoic Devonian Carboniferous Permian

Period Period Period Period

North margin of AA’ 36.00 39.88 38.68 37.50

South margin of AA’ 32.00 41.30 41.00 36.68

North margin of BB’ 21.00 31.03 30.51 25.80

South margin of BB’ 35.00 40.43 40.05 36.00

North margin of CC’ 22.00 38.87 36.30 17.80

South margin of CC’ 0.90 9.02 8.88 7.60

North margin of DD’ ~0 12.00 7.30 ~0

South margin of DD’ 0.30 16.05 8.00 6.70
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southwest and basically extended parallel to the Southeastern Fault-
Uplift to the southern Tarim basin.

In terms of the Uplift-Depression Framework, the entire Tarim
basin still maintained the overall geomorphology of high in the East
and low in theWest (Xie et al., 1997; Zhang G. et al., 2007) (Figure 7B),
specifically manifested as ring uplifts in the North, East, and southeast
(Li et al., 2015), and depressions in the central and Western regions
(Figure 7B). The Northeast of the basin was the main denudation area.
The middle part was an intracraton depression (Zhang G. et al., 2007),
with stable sedimentation.

Within the Tarim proto-type basin, the large areas (such as Kuqa
Depression, Shaya Uplift, and Kalpin Uplift) West of the Kongque River
Slopes in the Northern part of the basin were submerged due to the
transgression from Southwest to Northeast (Xie et al., 1997) (Figure 7B).
The area with larger relative water depth was in the west of Kuqa
Depression. The water depth of Shaya Uplift to the South was
relatively shallow. In general, the basin developed interactive marine
and terrestrial deposits andmarine carbonate rocks deposits (Carroll et al.,
1995) (Figure 7B). The Carboniferous System was generally 500–1000 m
thick, and its loss in Eastern and Southeastern Tarim basin was caused by
uplift and denudation in the late stage (He et al., 2005; Wu et al., 2020).

From East to West, tidal flat facies, restricted platform facies,
open platform facies, and shallow marine shelf facies developed in

sequence (Ye et al., 1997; Pu et al., 2014) (Figure 7B). The tidal flat
facies developed in the Eastern part of the basin were in the form of
NE-SW trending strips, the width of which was greater within the
Guchengxu Uplift and the Manjiaer Depression (Figure 7B). The
tidal flat facies mainly developed mudstone and limestone during
the sedimentary period of Xiaohaizi Formation (Gu et al., 2003).
For example, the Xiaohaizi Formation of well TZ33 drilled
limestone with a single layer thickness of more than 5 m and
mudstone with a relatively thin layer thickness. The restricted
platform facies had the largest distribution range, occupying
most of the central Tarim basin (Figure 7B). The lithology of
restricted platform facies was mainly gray thin-layer mudstone
and medium-thick layered limestone, with argillaceous limestone
developed locally. On the outside of the restricted platform, there
was the band-shaped high-energy facies (Xu, 2009) with unstable
width between the restricted platform and the open platform
(Figure 7B). The high-energy facies band in the platform had an
S-shaped trend, which might be related to the two finger-shaped
residual bays left in the west and southwest of the Tarim basin
(Figure 7B). In the high-energy zone, the platform margin reef was
mainly developed along the S-shaped platform margin (Guo et al.,
2018), and its lithology was mainly bioclastic limestone. The
outside of the high-energy zone was open platform facies, which

FIGURE 7
Proto-type basin of Tarim and adjacent areas in late Devonian (A), late Carboniferous (B), late Middle Permian (C) and late Permian (D).
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was mainly composed of continuously deposited thick layers of
limestone (dolomite), but generally mud rocks were not developed
(Qi et al., 2020). There was a mixed sedimentation zone (Figure 7B)
in Southwest of the Tarim basin, which was similar to the foreland
basin on the Eastern side of the Andes.

The Tianshuihai Island Arc began to collage and approach, but
it had not completely closed the Tarim basin (Figure 7B). The
South Kunlun Ocean shrinked further and was close to almost
closure. The Southwestern Tarim basin changed from a back-arc
extensional basin to a compressive downwarping basin. Currently,
the Southwestern margin of the Tarim basin was the active
continental margin (Li et al., 2015) (Figure 8). The residual
ocean of the South Altyn lied between the Qaidam and Tarim
block. The subduction zones in the north and south of Qaidam
block were both subducted towards it (Figure 7B).

4.3 Late Middle Permian: Transition from
back-arc flexural basin to foreland basin

Since Permian, large-scale regression occurred in the western
Tarim basin (Liu et al., 1994; Liu X. et al., 2014), and the eastern
Tarim basin became the uplift erosion area. During the Middle
Permian, the Paleo-Tethys Ocean south of the Kangxiwar Fault
continued to subduct to the Tarim block (Hofmann et al., 2011;
Yang et al., 2011; Liu K. et al., 2014; Zhang Y. et al., 2019) (Figure 7C),
which further developed the southwest back-arc flexural basin.
Increased orogenic activity in the northern Tarim block uplifted
the eastern and northern parts of the basin, accompanied by large-
scale intermediate-acid volcanic magmatism (Liu et al., 2016)
(Figure 7C).

The range of the proto-type basin changed greatly (Figure 7C).
From the north side of the Kalpin Fault-Uplift to the east, including
most of the Kuqa Depression and the eastern Shaya Uplift were
uplifted and exposed to erosion. East of the central part of the
Manjiaer Depression, the central part of the Guchengxu Uplift and

most areas east of Southeastern Fault-Uplift were uplifted and eroded
(Qi et al., 2020). Overall, the Tarim basin was surrounded by a semi-
enclosed uplift in the northwest, north, east, and southeast, along
with an island arc belt developed in the southwest, as a residual
epeiric sea that might open only in the west (Zhu et al., 2007)
(Figure 7C).

The central and eastern Tarim basin in the Middle Permian was a
westward sloping intra-cratonic depression basin (Chen X. et al.,
2013). The paleo-geomorphological features were generally shallow
in the southeast and deep in the northwest, with the greater water
depth in the NE-E direction.

A set of residual shallow sea and tidal flat deposits were
developed in the western basin (Ye et al., 1997) (Figure 7C).
The residual shallow sea was mainly developed in the southwest
of the basin, extending eastward into two branches (Figure 7C).
The northern branch extended northeast to the eastern part of the
Madong Thrust Belt, and the southern branch extended eastward
to the western part of the Southeastern Fault-Uplift. Alluvial fans of
varying sizes developed within the mud flat deposits. Typical wells
drilled in mixed flat deposits, such as well SN5, were dominated by
mudstones and silty mudstones, interbedded with thin to medium
bedded fine sandstones and gravel-bearing fine sandstones (Qi
et al., 2020). Banded mixed-flat deposits were developed
between residual shallow sea and mud flat. At the same time,
beach sandbars were more developed in the mixed flat,
especially in the frontal area of the braided river (Figure 7C).
The emergence of the thousand-meter continental molasse (He
et al., 2005) in the Duwa Formation in southwestern Tarim basin
indicated that a back-arc foreland basin was formed in
southwestern Tarim basin (Zou et al., 2014; He, 2022).

Besides sedimentary rocks, plenty of magmatic rocks were
developed in the western part of Tabei Uplift, Bachu Uplift,
Tazhong Uplift, Southwest Depression, Awati Depression and
western Manjiaer Depression, and their rock types mainly included
basic basalt, diabase, gabbro and alkaline syenites (Liu et al., 1994;
Chen et al., 2006).

FIGURE 8
Carboniferous-Permian proto-type basin configuration in Tarim basin (modified according to He et al., 1992; Gong, 2010; Zhou et al., 2014).
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4.4 Late permian: A closed terrestrial intra-
cratonic basin in whole

At the end of Permian, the Southern Tianshan area was
completely orogenic uplift with the shrinkage of the residual sea
in the southwest Tianshan area (Carroll et al., 1995). Alay area
uplifted and transformed into an orogenic belt (Figure 7D). At the
same time, Tarim basin was fully integrated into the Paleo-Eurasia
continent (Zhao et al., 1990), and only the Paleo-Tethys Ocean
existed on its South side. The continuous Northward subduction of
the Paleo-Tethys Ocean (Xiao et al., 2003; Schwab et al., 2004;
Robinson et al., 2007; Zhang Y. et al., 2019; Zhang et al., 2020)
resulted in the complete collage and collision of the Tianshuihai
Island Arc with the Tarim block (Li H. et al., 2014), which eventually
closed the opening of the Western Tarim block (Figure 7D).
Therefore, the main characteristics of the paleogeographic pattern
of Tarim block and its surrounding areas in the Late Permian were
that the sea water had completely retreated, and Tarim basin became
a closed terrestrial intra-cratonic basin in whole (He et al., 2013; Ma
et al., 2019) (Figure 7D).

Compared with the Late Carboniferous and Middle Permian, the
proto-type basin at the end of the Permian was narrowed in the
southwest (Figures 7C, D). In the Southern part of the basin, the proto-
basin marginal uplift extended Westward. The proto-type basin in the
east is basically bounded by the large uplift area.

The continuous uplift in the southeastern Tarim basin resulted in
great changes in the uplift-depression framework of the Late Permian.
Specifically, the paleogeomorphology changed from the former
marine facies and residual marine facies of “high in the east and
low in the west” into the closed lacustrine facies (Qi et al., 2020).
Geomorphologic features also showed the typical lake-basin landscape
of “high at the edge and low in the middle”. The area with the greatest
water depth was distributed in NW-SE direction.

At the end of Permian, lacustrine facies—lacustrine delta
facies—coastal plain facies deposits were mainly developed in
the Tarim basin (Zhu et al., 2007) (Figure 7D). There were
narrow lacustrine deposits only in the southwest of the basin
(He et al., 2013). There were deltas/fan deltas deposits on the
inner edge of the basin, and the rest of the basin was alluvial
plain. Three provenance systems were mainly developed in the
North, East, and Southwest of the basin (Chen S. et al., 2013). The
delta in the Northern part of the basin was a large delta system
composed of overlapping delta lobe bodies. The delta front could be
pushed southward to the Southern part of Awati Depression and
the central part of Shuntuoguole lower uplift. In the Eastern part of
the basin, a nearly EW-trending delta system was developed
(Figure 7D), and the deltaic front could move westward to the
central region of the Katake Uplift. Typical well drilled in this delta
deposit was SN4 well. In addition, a relatively large deltaic front
beach bar sand body (Figure 7D) was also developed outside the
delta front (central area of Tanggubasi Depression). There were
three semi-deep lake areas in Southwestern Tarim basin, which
might be potential source-rock development areas.

In summary, the Tarim basin was in the regional tectonic
background of plate convergence during the Carboniferous-
Permian, a transitional stage from plate spreading regime to plate
collision regime. The Northern Tarim basin became a foreland basin
(Carroll et al., 1995) due to the closure of the Southern Tianshan
Ocean. In contrast, the Southwestern Tarim basin entered a period of

transition from a back-arc extensional basin to a foreland basin
through a downwarp basin, and was by no means an open passive
continental margin (Figure 8), as supported by the mixed coastal-
clastic shore facies deposited here. Only the extensive sea shelf existed
as a seawater channel in the western part of the Tarim basin. The
Carboniferous-Permian basin genesis of the Southwestern Tarim
basin was relatively similar to the Cenozoic Western Pacific trench,
arc and basin system.

5 Reconstruction of tectono-
paleogeography around the Tarim basin

Tectono-paleogeography is an important part of the research in
multicycle superimposed sedimentary basins. Evolution of
sedimentary basins is closely related to surrounding tectonic setting
(Zhang et al., 2016; Wu et al., 2020). In reverse, the study of tectono-
paleogeography can provide feedback for the proto-type basin analysis
above to see if there are any improprieties. Sorting out the late
Paleozoic tectono-paleogeography evolution of Tarim basin can
offer an intuitive picture of how Tarim basin and its surrounding
areas evolved and the tectonic factors driving these evolutions.

The tectono-paleogeographic maps in paleo-latitudinal
coordinates have a range between the global plate tectonic maps
and the proto-type basin maps and are integrations of the two.

Firstly, the proto-type basin maps are rotated in accordance with
the paleolatitude and long axis direction of the Tarim block in the
global plate maps. Then, the range of the span of about 30° latitude
and 40° longitude is selected in this paper. According to the
paleogeographic spatial pattern of the Tarim block and its
surrounding plates, the proto-type basin maps are extended
outwards to the periphery of the basin under the paleolatitude
geographical coordinates. Finally, the paleogeographic
information of the peripheral plates is supplemented to compile
the tectono-paleogeographic maps of the Tarim block for each
period.

5.1 Devonian tectono-paleogeography

In Devonian, the Tarim block was independently dissociated
between the Gondwana continent and Siberia-Kazakhstan
continent (Figure 9A). Siberia and Kazakhstan were separated by
the ocean and were not yet united as a continent (Windley et al., 2007).
The southeastern edge of Siberia and the eastern edge of Kazakhstan
were shallow-sea continental shelf (Golonka et al., 2006; Zhang G.
et al., 2019) (Figure 9A). Siberia and Kazakhstan were approaching
Tarim block due to subduction of the Paleo-Asian Ocean, while
Junggar Island Arcs were between the Siberia- Kazakhstan and
Tarim blocks (Xiao et al., 2009; Carmichael et al., 2019). The
North and South Tianshan Oceans were both subducted
bidirectionally (Charvet et al., 2011; Ge et al., 2012; Guo et al.,
2013; Han and Zhao, 2018).

The Western side of the North Tianshan Ocean subducted
beneath the Harlik Island Arc (part of the Chinese North Tianshan
Arc system) (Carmichael et al., 2019; Zhang et al., 2021), while the
Eastern side subducted eastwards beneath the Yili-Central Tianshan
Island Arc (Ren et al., 2017). In addition, the Southern Tianshan
Ocean also subducted westwards (Figure 9A), resulting in the both
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sides of the Yili-Central Tianshan Island Arc were clipped under the
subduction zone and continued to develop (Han and Zhao, 2018;
Huang et al., 2020).

The South Tianshan Ocean tended to close in the north, but it
was still expanding in the South. It was shaped like a “bell-mouth”
with the opening facing South (Figure 9A). In the eastern part of the
Tarim block, the Central-South Kunlun and Altyn Island Arcs
collided with the Tarim block as early as the end of the
Ordovician due to the Late Caledonian Movement (He et al.,
2011; Zhang et al., 2015; Dong et al., 2018). The Central-South
Kunlun Island Arc was already submerged, with a wide passive
margin to its southeast, across the South Kunlun Ocean from the
Tianshuihai Island Arc (Dong et al., 2021) (Figure 9A). The South
Altyn ocean subducted to the west, contracting the oceanic domain
and causing continued uplift to the southeast of the Tarim block. The
Tianshuihai Island Arc and Qaidam block were in a “Western
extension, Eastern compression” tectonic environment, with the
north-western side of the Paleo-Tethys Ocean subducting beneath
the Tianshuihai Island Arc and Qaidam block (Figure 9A). In terms
of land-sea framework, the Southern and Southeastern edges of
Qaidam block and the Southwestern edge of North China plate
were shallow-sea continental shelf (Figure 9A), and there was an
ocean between Qaidam block and North China plate (Golonka et al.,
2006; Li et al., 2018).

5.2 Carboniferous tectono-paleogeography

The tectono-paleogeographic map (Figure 9B) of the Tarim
block at the end of Carboniferous showed that with the clockwise
rotation of Mongolia, the middle part of the Paleo-Asian Ocean in
southern Mongolia contracted, and the Southern edge of Mongolia
was shallow marine environment (Hou et al., 2014; Liu et al., 2017).
The Ural Ocean closed and formed orogenic belt (He et al., 2013).
The Kazakh and Siberian plates collided, with the Siberian Sea
remaining between them (Figure 9B). The southern part of
Kazakhstan was shallow-sea continental shelf, and the gulf
extended to the central part of Kazakhstan (Wan and Zhu, 2007),
with lake basins developed on the continent (Ma et al., 2020).
Affected by the closure of the North and South Tianshan Ocean
(Charvet et al., 2011; Alexeiev et al., 2019) and the collision between
Tarim block and Yili-Central Tianshan Island Arc (Han et al., 2011;
Liu D. et al., 2014; Zhao et al., 2018; Wang et al., 2020), the oceanic
crust of the Junggar arc system disappeared and the new continental
crust was formed, but shallow sea remained overlying (Figure 9B). In
Southwestern Tarim block, the demise of the South Kunlun Ocean
caused the Tianshuihai Island Arc to begin colliding with the Tarim
block. The Northern, Eastern, and Southern parts of Tarim block
were raised in a half-ring shape, forming a sea basin that opened to
the West. As the Southwest Tianshan did not completely close (Liu
et al., 1994; He et al., 2005), the remaining remnant bay connected
with the shallow sea in the Southern Kazakhstan through the
Western opening of Tarim block (Figure 9B). To the South of the
Tianshuihai Island Arc, the Paleo-Tethys Ocean subducted towards
Tarim block (Zhang et al., 2022), resulting in the Southern Tarim
block being an active continental margin (Figure 9B). Between
Qaidam and Tarim block was the South Altyn Remnant Ocean,
and the subduction belts existed on both the north and south sides of
the Qaidam block (Figure 9B).

5.3 Late Middle Permian tectono-
paleogeography

The Middle Permian tectono-paleogeographic map (Figure 9C)
of the Tarim block showed that the Kazakhstan inherited its late
Carboniferous pattern (Van der Voo et al., 2006). On the one hand,
the southward subduction of the Okhotsk Ocean closed the middle
part of the Paleo-Asian Ocean in the south of the Mongolia plate to
form the residual sea (Figure 9C); on the other hand, due to the
convergence and compression, the Junggar and Tianshan Orogenic
Belts were integrated into the magnificent Central Asian Orogenic
Belt (Figure 9C). The Tarim block continued its clockwise
rotational adjustment. The remnant bay in the Southwest
Tianshan region disappeared (Carroll et al., 1995) and the
Fergana and Yili area developed into terrestrial basins (Clarke,
1984; Moisan et al., 2011). The Paleo-Tethys Ocean continued to
subduct northwards (Cocks and Torsvik, 2013; Xiao et al., 2013),
resulting in continuous collision between the Tianshuihai Island
Arc and the Tarim block (Zhang Z. et al., 2009). The west opening
of Tarim block was further closed, and only a narrow channel
(Figure 9C) was left as the channel for the withdrawal of seawater.
The North and South sides of Qaidam-North Qilian block were
both remnant sea, and the Bayankala Island Arc in the South was
approaching to the north. North China plate also joined the Pangea
supercontinent and was surrounded by shallow-sea continental
shelf (Zhao et al., 2018). Central North China and Western
Mongolia were lacustrine facies (Figure 9C), and there were
shallow marine facies between North China and Mongolia plate
(Jolivet, 2015; Niu et al., 2021). The North Qiangtang block was in a
shallow marine environment (Hou et al., 2014; Zhang G. et al.,
2019) between the Eastern Paleo-Tethys Ocean and Mianlüe
Ocean.

5.4 Late Permian tectono-paleogeography

As shown in Figure 9D, the Central Asian Orogenic Belt
continued to increase in size as the withdrawal of seawater and
uplift orogeny in southern Kazakhstan at the end of the Permian
(Korobkin and Buslov, 2011; Ma et al., 2020). A remnant marine
environment lied between the Iranian plate and the Fergana basin
(Figure 9D). The range of uplift of the Mongolia plate also increased,
with only a bay remaining to its east. At the same time, the Alay uplift
orogeny (Gao et al., 2019) completely withdrew the seawater from
the Tarim basin, which was thus transformed into terrestrial deposits
(Carroll et al., 1995; Chen et al., 2006; He et al., 2013; Zou et al., 2014;
Li et al., 2021). There were lacustrine deposits in the southwest of the
Tarim basin (Figure 9D), and the peripheral foreland basin was
generally developed. North China plate collided with Mongolia plate
(Zhao et al., 1990) and the Qaidam-Qilian block had also been
collaged with the Tarim block (Jolivet, 2015) (Figure 9D). Blocks
such as Qiangtang in the south pushed northwards (Song et al., 2015;
Xu et al., 2015; Hu et al., 2022; Ju et al., 2022), and the Paleo-Tethys
Ocean continued to subduct beneath the Eurasian continent to the
North (Pullen et al., 2008; Xiao et al., 2013; Yan et al., 2016; Li et al.,
2020).

In conclusion, the Tarim block maintained clockwise rotation in
the Late Paleozoic (Figures 9A–D), and the rotation angle of the Tarim
block in the Late Paleozoic is much more than the other periods.
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6 Conclusion

1) The evolution of the proto-type Tarim basin is strongly controlled by
the geotectonic setting of the periphery. The transition from shelf-
littoral to platform-tidal flat to alluvial plain-lacustrine facies in the
basin reflected a process of regression and uplift. This process was
controlled by the shift in the peripheral tectonic setting of the basin:
the North Tianshan Ocean and South Tianshan Ocean closed from
east to west; the Tianshuihai Island Arc gradually collaged to the
southwest of the Tarim block, reducing the extent of the opening of the
passivemargin of thewestern Tarim basin and closing it completely by
the end of the Permian, resulting in the complete transformation of the
Tarim Basin from a westward-opening marine basin to a terrestrial
intra-cratonic basin.

2) The Southwestern Tarim basin was by nomeans an open, extensive
passive margin during the Carboniferous-Permian, but rather
transformed from a passive continental margin to an active
continental margin through back-arc downwarp and eventually
complete closure to uplift.

3) The Tarim block was located between 15°–25° N in the global plate
tectonic framework in the Late Paleozoic. The Tarim block ended its
independent drift to become the southern edge of the Eurasian
continent at the end of the Carboniferous. The Tarim block
witnessed and participated in the assemblage of the Pangea
supercontinent. Meanwhile, its polarity (orientation of basin long-
axis) underwent a significant clockwise rotation—from NNE to NE,

which is associated with the closure of the Paleo-Asian Ocean from
West to East to form the Central Asian Orogenic Belt.

4) As a result of the global Hercynian Orogeny Movement, the Tarim
block and its surrounding tectonic setting underwent a major
transformation: the Paleo-Asian Ocean and Paleo-Tethys Ocean
closed in succession (the South Tianshan ocean completely closed at
the end of the Carboniferous, the South KunlunOcean and SouthAltyn
Ocean closed at the end of the Permian), followed by arc-continent
collision and continental collision. The Tarim basin transitioned from a
back-arc extensional basin to a back-arc foreland basin.
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FIGURE 9
Tectono-paleogeography of Tarim and adjacent areas in late Devonian (A), late Carboniferous (B), late Middle Permian (C) and late Permian (D).
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