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In this paper, based on the observations from Langmuir probe (LAP) onboard the
China Seismo-Electromagnetic Satellite (CSES), the annual/semi-annual variations
of electron density (Ne) measured at 02:00 and 14:00 local time (LT) in the topside
ionosphere have been analyzed. Results indicated that the Ne exhibits an
amplification-linear-saturation with the increase of P10.7 in the daytime, while
roughly linear in the nighttime. The annual/semi-annual variations of CSES Ne at
around 500 km are found by morphological analysis and Morlet wavelet analysis,
with dominant period of 187 days and 374 days. The annual components of
longitude-averaged Ne dominate at most magnetic latitudes (Mlats) with
maxima around the June solstices in the northern hemisphere and the
December solstice in the southern hemisphere (except for the northern
hemisphere in the nighttime), while the semi-annual variation dominates at the
magnetic equator and low magnetic latitudes with two maxima at equinoxes. The
Ne dominant period is characterized by a transition from semi-annual variation at
the equator and low magnetic latitudes regions to annual variation at the middle
magnetic latitudes region. The annual/semi-annual variations of Ne observed by
CSES satellite show a consistent performance with previous studies, and have
complemented the ionospheric characteristics at 500 km altitude, especially in
the nighttime.

KEYWORDS

(China Seismo-Electromagnetic Satellite) CSES, morlet wavelet analysis, annual/semi-
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1 Introduction

The Earth’s ionosphere is mainly produced via the photoionization of the upper
atmosphere by energetic solar radiation and cosmic rays. It is an important part of the
connection between near Earth environment and outer space, and has a significant impact on
communications, broadcasting, navigation and positioning (Su et al., 1999; Su et al., 2010;
Liu et al,, 2011; Sardar et al., 2012). The ionosphere exhibits complex variations because of
the influence from various factors such as the solar activity, geomagnetic activity, and local
time (LT) etc. (Bilitza et al., 1990; Liu et al., 2009; Su et al., 2010; Slominska et al., 2013;
Bhuyan et al,, 2014; Su et al., 2016). Among them, the annual/semi-annual variations of
ionospheric plasma density are one of the key scientific issues in ionospheric climatology,
which have been widely studied in recent decades.
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Early studies focused mainly on the annual/semi-annual
variations characterization of peak electron density at the
ionospheric F2 layer (NmF2), with the help of ground-based
observation equipment. Yonezawa (1971) analyzed the seasonal,
non-seasonal and semi-annual components of NmF2 from 9 pairs of
stations at the middle and low latitudes. He found that at noon, non-
seasonal component is generally the most important in the
equatorial and low latitudes zone, while the semi-annual
component always dominates at 15° magnetic latitude (Mlat). At
the middle Mlat (£15° -
again the dominant one during low solar activity, but replaced by the

+40° Mlat), non-seasonal component is

semi-annual component as solar activity increases. At midnight,
semi-annual component is the most important in the equatorial
zone, and still dominate in low Mlat region for medium and higher
solar activity. Ma et al. (2003) used ionospheric data (CD-ROM of
Ionospheric Digital Database) observed from 30 stations located in
3 longitude sectors during 1974-1986 to analyze the semi-annual
variation of NmF2. Their results indicated that the semi-annual
variation of NmF2 appears almost at all geographic latitudes in the
daytime (08:00-19:00 LT). For the nighttime (01:00-07:00 LT and
20:00-24:00 LT), NmF2 has semi-annual variation only in the region
of geomagnetic equator within the two crests of ionospheric
equatorial ionization anomaly (EIA). In the high latitude region,
there is obvious semi-annual variation of NmF2 only in solar
maxima years. As we can see, based on ground-based
observations, annual/semi-annual variations of Ne have distinct
latitudinal dependency both during daytime and nighttime. Liu
et al. (2009) studied the seasonal variation of Ne profiles
retrieved from the ionospheric radio occultation during daytime
(13:00 LT) in the 200-560 km altitude range based on FORMOSAT-
3/COSMIC (F3/C). They found at low altitudes a pronounced semi-
annual component in the equatorial region and a strong annual
variation in the near-pole region. At higher altitudes the semi-annual
variation still predominates in equatorial region but gives way to
annual variation in other regions. Such altitude dependence of Ne
annual variation is consistent with observations from the middle and
upper (MU) radar (Balan et al., 2000). Constellation Observing
System for Meteorology, Ionosphere and Climate (COSMIC) data
was analyzed to study the climatological variations of NmF2 in
daytime (09:00-15:00 LT) during 2007-2010 (Burns et al., 2012).
They found that at low latitudes (25" Mlat) the temporal variations
are dominated by the semi-annual variation while annual variation
dominated at high latitudes (75°Mlat). Using COSMIC occultation
data during 2008-2011 in the daytime (12:00-14:00 LT), Ma (Ma
etal, 2014) realized that annual and semi-annual variations of global
NmF2 are strong in the middle and high latitudes, and weak in the
low latitudes and equatorial region.

From these researches, annual/semi-annual variations of Ne are
clear observed in the daytime; while only appear at a specific region
or under certain solar activity levels in the nighttime. At the same
time, more and more in situ observations were used to study annual/
semi-annual variations in the topside ionosphere. Bailey et al. (2000)
studied the annual variation of Ne at low latitudes (0-+25" Mlat)
using the Hinotori satellite at 600 km altitude. They found that the
semi-annual variation of Ne has maxima around the equinoxes and
minima around the solstices both during daytime (09:00-17:00 LT)
and nighttime (23:00-04:00 LT), which is also called semi-annual
anomaly. Zhang and He (He et al,, 2010; Zhang et al., 2014) studied
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the annual variation characteristics of Ne using the Detection of
Electro-Magnetic Emissions Transmitted from Earthquake Regions
(DEMETER) satellite data and found that Ne has strong annual
variation during low solar activity at 660 km altitude, with semi-
annual anomalies at middle and low latitudes both during daytime
(10:30 LT) and nighttime (22:30 LT). The Ne annual/semi-annual
variations are also examined by using data from the incoherent
scatter radar (ISR) measurements. For example, Kawamura et al.
(2002) studied the annual variation of the midlatitude ionosphere Ne
observed at 200-600 km altitudes both during daytime (10:00-16:
00 LT) and nighttime (22:00-05:00 LT) under low solar activity
years, by using the MU radar (135" E, 35° N) observations. During
the daytime, the annual variation with seasonal anomaly (larger Ne
in winter compared to summer) is predominant at altitudes below
the peak height of F2 layer (hmF2) while semi-annual variation is
predominant at altitudes above hmF2. During the nighttime, the
semi-annual variation disappear.

To sum up, the variations of Ne/NmF2 have been studied at 08:
00-19:00 LT, 09:00-15:00 LT, 09:00-17:00 LT, 10:30 LT, 10:00-16:
00 LT, 12:00-14:00 LT and 13:00 LT during the daytime and at 20:
00-24:00 LT, 23:00-04:00 LT, 22:30 LT, 22:00-05:00 LT and 01:
00-07:00 LT during the nighttime, respectively. It can be seen that the
daytime ionosphere has been widely studied, especially in 10:00-14:
00 LT, and the annual/semi-annual variations of Ne in the daytime are
basically consistent in these studies. However, the nighttime
ionosphere shows much more complex variations, and dedicated
studies focused on the annual variation of nighttime ionosphere are
pending. Besides, most of the studies are using the NmF2, while the in
situ Ne observations at about 500 km altitude have not been well
addressed.

With the launch of more and more satellites for ionospheric
exploration, more abundant observations can be accumulated,
providing opportunities to further study the ionosphere at
different spatial and temporal scales under a variety of different
conditions. The China Seismo-Electromagnetic Satellite (CSES),
which is also called ZhangHeng-1 (ZH-1), was successfully
launched on 2 February 2018. The satellite operates at ~507 km,
and the LT of descending and ascending nodes are 14:00 and 02:
00 respectively. In this paper, we will study the annual/semi-annual
variations of Ne with season and latitude under fixed orbit LT
conditions based on CSES which
complements the study of Ne at around 500 km. The second
section is data description. The result is shown in the third

satellite  observations,

section. Their characteristics and causes are discussed in Section
4, and Section 5 summarizes the results.

2 Data description
2.1 Data source

CSES is a sun-synchronous orbit satellite with an inclination of
97.4°, which aims to obtain global data of the electromagnetic field,
plasma and energetic particles in the ionosphere and to study the
ionospheric perturbations which could be possibly associated with
seismic activity. Eight instruments are carried on the satellite,
including Search-Coil Magnetometer (SCM), Electric Field
Detector (EFD), High Precision Magnetometer (HPM), GNSS
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FIGURE 1

Time series of solar activity index P10.7 and Ne in the daytime(A), nighttime(B), the red line represents P10.7, and the blue line represents Ne.

Occultation Receiver (GOR), Plasma Analyzer Package (PAP),
Langmuir Probe (LAP), High Energetic Particle Package (HEPP)
and Detector (HEPD), and Tri-Band Beacon (TBB) (Shen et al,
2018). In this paper, we mainly use the Ne data from the LAP. The
operation modes of the LAP include survey mode and burst mode.
The survey mode is used mainly to detect global Ne and electron
temperature (Te), while the burst mode primarily allows detection of
key areas, over China and within seismic belt (Liu et al., 2019). The
CSES satellite have two fixed LT, 02:00LT and 14:00 LT, which can
provide more detailed and comprehensive observations at the two
identified local time sectors. Although there is a difference in
absolute values of Ne observed by LAP onboard CSES with other
ones (Yan et al., 2020; Pignalberi et al., 2022), the CSES Ne has been
confirmed that there is a highly consistent relative variations with
ones from the ISR at Millstone Hill, the Swarm satellite in similar
orbital altitude, and the DEMETER satellite with a similar payload
(Diego et al., 2019; Wang et al,, 2019; Yan et al,, 2020; Liu J. et al,,
2021). In this paper we mainly focus on the periodic variations of Ne,
which will not be affected by the absolute value of observation.

Data from May 2018 to April 2022 are used in this paper, in
which the data from 22 June 2018 to 12 July 2018 aren’t available due
to satellite commission test. It is worth pointing out that when one
boom of EFD shades the LAP, there is a regular spike in the daytime
Ne (Yan et al.,, 2022), and the spike interference has been removed in
this study. In addition, in order to remove the effects of space
weather activity and geomagnetic activity on the ionospheric
variation, only the observations at Kp<3 are selected.

2.2 Normalization of solar activity effects

Solar activity has important effects on the Ne of ionosphere (Liu
et al., 2007a; Chen et al., 2008; Liu et al., 2011). We used the solar
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activity index P10.7 to check the solar activity effects, which is
defined as P10.7 = w, where F10.7 is the solar 10.7-cm
flux index, and F10.7A is the 81-day average of F10.7 centered on the
day of interest (Lei et al., 2005; Bilitza et al., 2007; Liu L. B. et al,,
2021). Figure 1 shows the time series of P10.7 and Ne in the range
of +10° Mlat during May 2018 and April 2022, with panel (A) and
(B) representing the data in the daytime (14:00 LT) and nighttime
(02:00 LT), respectively.

From Figure 1, we found that the solar activity is quite low from
May 2018 to September 2020, with P10.7 remaining around 70 sfu.
After that it starts to gradually rise from the end of 2020, reaching
160 sfu in April 2022, which causes a significant increase in Ne.
Therefore, in order to get more clear annual variation of Ne, P10.7 is
used to normalize the Ne to reduce the influence of solar activity.

The distributions of daily mean Ne covering all Mlats and the
corresponding P10.7 were represented in red scatter in Figure 2.
The Ne in the daytime exhibits an amplification-linear-saturation
effect with increasing of P10.7, which is consistent with previous
researches (Chen et al., 2008; Chen et al., 2009; Bhuyan et al,,
2014), while the relationship between Ne in the nighttime and
P10.7 is roughly linear. Due to the distribution differences of Ne
between daytime and nighttime, the P10.7 were divided into
different bins, and the bin size of 5 sfu can ensure the fitted
parameters of daytime data more exact, while 10 sfu size is enough
for nighttime data. Then the mean value of P10.7 and Ne in each
bin was calculated to study the correlation between them. The Ne
in daytime was fitted to three segments according to mean value in
each bin, and nighttime Ne to only one segment; where their fit
lines are in black and error bars are marked with different colors.
Finally, for the daytime, each Ne observation is normalized
of the yl
(Figure 2A) because most of Ne is in this segment, which

according to the fitting parameters segment

represents the data effected by the vast majority of normal solar
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The distribution of Ne with P10.7 at daytime (A) and nighttime (B).
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FIGURE 3

Global distribution of Ne in the daytime. From top to bottom represent different years of the same season, and from left to right correspond to
different seasons: Jun. solstice (May-August), Sep. equinox (September-October), Dec. solstice (November to February of the following year), and Mar.
equinox (March-April). The black solid line marks the magnetic equator. Ne is colored according to the colorbar on the right. The month information for
each subplot is marked at the top.

activity variation over 4years. And considering that the Ne  the Ne measured by CSES, and a, b are the slope and intercept of
distribution of low P10.7 is abundant, a constant solar activity  the y1 fit (a = 0.4327, b = —11.95), respectively. The R marked in
level at 100 sfu (P10.7) is chosen. That is, the formula Ney,, =  the bottom right corner stands for 'root mean square error’. For the
Nemms%:i’ is used to normalize Ne, where P is a constant nighttime, Ne was normalized to the y fit by the same method,
representing the normalized solar activity (P = 100), Ne,,.,s is  among which P = 100, a = 0.8322, b = —47.99 (Figure 2B).
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FIGURE 4
Same as Figure 3 but for Ne during nighttime.

Therefore, the Ne used in this paper is not the actual
observations, but the Ne values normalized according to the
fitting relationship between Ne and P10.7 in the daytime and
nighttime, respectively.

3 Results
3.1 Global distribution of Ne

The annual variation of Ne on the global scale was investigated by
constructing global distribution maps. The map was divided into cells
with ALat =2.5" and ALong = 5°. The mean value of Ne in each cell was
calculated using all the available data as a function of the position over
a given time. To represent the global characteristics of Ne more clearly,
the logarithm of Ne is used, and the global distribution of log10(Ne) in
the daytime and nighttime are shown in Figures 3, 4. A uniform range
of Ne value is used to better compare variation. From top to bottom
are the results of the same season in different years, and from left to
right the different seasons: Jun. solstice (May-August), Sep. equinox
(September-October), Dec. solstice (November and December to
January and February of the following year), and Mar. equinox
(March-April). The black solid line marks the magnetic equator.

It can be seen that the EIA structure is pronounced and varies
significantly with the seasons (Figure 3). The high Ne area at the
equinoxes is symmetrical about the magnetic equator. For solstice
seasons, the high Ne value at the summer (winter) solstice is located in
the geomagnetic northern (southern) hemisphere, showing the
of the
hemispheres. The intensity of Ne at the equinoxes is the strongest
(stronger in the Mar. equinox than that in the Sep. equinox), and

asymmetric  characteristics northern and southern

weaker in Jun. solstice and weakest in Dec. solstice.
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The global distribution of nighttime Ne (Figure 4) differs from that
of the daytime (Figure 3). The nighttime Ne has significant
characteristics for each season, a distinct 3/4-wave structure are
exhibited at two equinoxes and symmetric about the magnetic
equator; the Weddell Sea Anomaly (WSA, Ryu et al, 2016)
phenomenon in the southern hemisphere is obvious in the Dec. solstice.

From Figures 3, 4, the global distribution map of Ne in both the
daytime and nighttime has obvious annual and seasonal variation;
there is an asymmetry between the northern and southern
hemispheres almost at all solstices.

3.2 Annual/semi-annual variations
characteristics at different Mlats

In order to further check the annual variation feature of Ne, its
detailed information is analyzed at different Mlat regions. The daily
longitude-averaged values of Ne are computed at different Mlats and
shown in Figures 5, 6. The annual trends of Ne from 55° N to 55° S
Mlat are shown with the Mlat interval separated by 5°, including
daytime and nighttime data during four consecutive years from May
2018 to April 2022. The red line and blue line represent data in the
northern hemisphere (NH) and the southern hemisphere (SH),
respectively. For example, the Ne at 0° Mlat is represented by the
average of all longitudes observed within 2.5° N to 2.5° S Mlat.

From Figure 5, within the range of +10° Mlat, semi-annual
variation of Ne for the daytime is quite prominent. There are
maximum at around equinoxes and minimum at around solstices,
with consistent variation in both the NH and SH, which is also called
semi-annual anomaly. With the increasing of Mlats, the stable semi-
annual variation gradually changed to annual variation within +15°
to +25° Mlat, and the consistent annual variation of Ne in both the NH
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FIGURE 6

Same as Figure 5 but for Ne during nighttime.

and SH gradually turned into the opposite, but with the same value
range. A stable annual variation of Ne at around +30° to +40° Mlat are
shown, and the trend of annual variation in the NH and SH is exactly
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opposite, with maximum at Dec. solstice and minimum at the Jun.
solstice in the SH, and the opposite in NH. The annual variation of Ne
starts to weaken since +45° Mlat. It should be noted that the value of
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FIGURE 7

The Spectral analysis results using Morlet wavelet analysis for Ne during +5° Mlat at daytime SH(A), NH(B) and at nighttime in SH(C), NH(D),
respectively. The left columns show the Wavelet Power Spectrum results, while the right columns show the results of Global Wavelet Spectrum (GWS),

and the dashed red lines are the 95% confidence levels.

Ne is drastically decreasing with increasing Mlats, so the ordinates
take different values range to express the annual variation clearly at
different Mlats.

The Ne variation in the nighttime is shown in Figure 6, where data
in both NH and SH exhibit semi-annual variation near the equator
just the same as daytime. With the increasing of Mlats, the semi-
annual variation in NH and SH begin to differ. In the SH, the semi-
annual variation changes into annual variation near 10° S Mlat,
forming a stable annual variation characteristic at 15" S to 25" S
Mlat, with maximum at Dec. solstice and minimal at Jun. solstice. The
annual variation characteristics become irregular with increasing
latitude in 30" S to 45° S Mlat, and a stable annual variation
characteristic is formed again in 50° S to 55° S Mlat. Data in the
NH shows semi-annual variation at 0°~15° N Mlat, then a clear annual
variation feature is found in the range of 20° N to 35° N Mlat; while the
annual variation feature is not obvious from 40° N Mlat and then
disappear at 45" N to 55" N Mlat.

To sum up, both daytime and nighttime Ne have annual and
semi-annual variations, and the annual/semi-annual variations of
Ne in the daytime are clearer and more defined than ones in the
nighttime. The peak and valley characteristics are different at
different Mlats in the NH and SH.

3.3 The period of annual/semi-annual
variations

To further check the periodic information of Ne at different
Mlats, Morlet wavelet analysis is carried out on the time series of Ne
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data, such as the Ne data at +5° Mlat, as shown in Figure 7, where the
left columns are the Wavelet Power Spectrum results, and the right
columns represent results of the Global Wavelet Spectrum (GWS),
the dashed red lines are the 95% confidence levels in GWS. The (A),
(B), (C), (D) correspond to the results of daytime Ne in SH and NH,
as well as nighttime Ne in SH and NH. Taking Figure 7A as an
example, the Y-axes are the periods of Ne, the X-axis in left column
represent the time-span ranging from May 2018 to April 2022, and
X-axis in right column correspond to Power. Results show that the
dominant period are mainly at about 187 days and 374 days,
representing the semi-annual and annual variations of the
ionosphere Ne, with the semi-annual period being slightly
stronger than the annual period. Apparently the annual/semi-
annual period results for +5° Mlats all pass the 95% significance level.

The results of all the time series in Figures 5, 6 have been
calculated by Morlet wavelet analysis, and their most dominant
period of Ne are displayed in Table 1, which from top to bottom are
daytime data in the NH and SH, as well as nighttime data in the NH
and SH separately. Results in Table 1 are all above the 95%
confidence level. Ne in both the daytime and nighttime have
distinct annual/semi-annual periods at all Mlats. One of the
common periods is 187 days, which is very close to the semi-
annual period of 187.7 days observed by Guo et al. (2015) in the
Global Total Electron Content (TEC) measurements. The Ne
dominant period is characterized by a transition from semi-
annual variation at the equator and low Mlat to annual variation
at middle Mlat. From Table 1, we find that the transition
concentrated in the range of +5° - +£15° Mlat in both the daytime
and nighttime.
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TABLE 1 Chromatography conditions.

10.3389/feart.2023.1098483

Ne at daytime in NH 187/374 314/187 314/187 314 374 357 374 374 374 374 374 374
Ne at daytime in SH 187/374 187/374 374/187 374 374 374 374 374 374 374 374 374
Ne at nighttime in NH 187/374 187/374 187 374/187 374 374 374 374 374 529 529 529
Ne at nighttime in SH 187/374 374/187 374/187 374 374 374 374 374 374 374 374 374

4 Discussions

In this paper, the annual/semi-annual periods are clearly
observed: the semi-annual periods are mostly dominant in the
equatorial and low Mlats (0°-+5° Mlat) and the annual variation
periods dominated in the middle Mlat (+15°-+55" Mlat), which is
clearer in the daytime than nighttime. Although a similar period of
Ne in the nighttime is found, the morphology of variation is
significantly different from that in the daytime.

The period of daytime Ne is simple and clear. The EIA is the
main structure at equatorial and low Mlats in all seasons with the
semi-annual variation near the equator (Figure 3), and the
transition between +5°-+15° Mlat and the annual variation at
middle Mlat are clear in both the NH and SH (Figure 5), which
is consistent with the previous researches (Burns et al., 2012).
However, the period of nighttime Ne is complicated. There is a
consistent semi-annual variation near the equator, while for the
mid-latitude region, the annual/semi-annual variations are less
apparent in terms of the time series morphology of the NH, which
is inferred to be related to some abnormal structure, such as the
midlatitude summer nighttime anomaly (MSNA, Thampi et al,
2011), and the midlatitude ionospheric trough (MIT, Matyjasiak
et al., 2016). These structures don’t appear in annual/semi-annual
period, but in more random ones, thus smoothing the trend of
annual/semi-annual variations. For the SH, the annual variation
characteristics of Ne are more influenced by the WSA (mainly
concentrated in the Dec. solstice, as shown in Figure 4). These
seasonal characteristic structures in the nighttime have a direct
impact on the Ne, so that there is a more pronounced annual/semi-
annual variations of Ne in the SH compared to the NH. In addition,
although the morphology of annual/semi-annual variations is not
obvious, the Morlet wavelet analysis results confirmed that the
most dominant periods of Ne remain 187 days and 374 days
(Table 1) at all Mlats.

Using International GNSS Service (IGS) data, annual/semi-
annual variations of TEC were studied by Yu et al. (2006), and
results showed that the magnitude of the annual variation of TEC
during daytime (14:00 LT) is larger at mid and high latitudes than
equatorial and low latitudes. And the magnitude of the semi-
annual variation of TEC is larger at equatorial region and slightly
smaller at mid-latitudes. Shi et al. (2015) concluded that the semi-
annual variation is obvious outside the near-polar region in the
NH and the south American region in the SH during daytime (08:
00-19:00 LT), and the semi-annual variation is only obvious at low
latitudes during nighttime (19:00-8:00 LT). Natali et al. (2011)
studied vertical TEC data derived from global GPS and found that
at noon it is possible to see patterns of the seasonal variation, semi-
annual anomaly, while at night there is no evidence of seasonal or
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annual anomaly for any region, but it is possible to see the semi-
annual anomaly at low latitudes with a sudden decrease towards
midlatitudes; Yu et al. (2004b) used NmF2 data in the daytime (14:
00 LT) during six high solar activity years and found the annual
variation are most pronounced at +40°-+60° Mlat. The semi-
annual variation is generally weak in the near-pole region and
strong in the far-pole region of both hemispheres. Using data from
DEMETER and Defense Meteorological
(DMSP), annual variation of Ne and total ion density (Ni) are
studied by Zhang et al. (2014); He et al. (2010); Liu et al. (2007b).
They found that the Ne has strong annual variation, with semi-

Satellite Program

annual anomalies at middle and low latitudes in both daytime (10:
30 LT) and nighttime (22:30 LT), while annual components of
longitude-averaged Ni dominate at most latitudes in the daytime
(09:30 LT) and nighttime (21:30 LT). Balan et al. (2000) used MU
radar data found that at nighttime (22:00-05:00 LT) the annual
variation component dominates at all heights, while the seasonal
anomaly and semi-annual variation disappear.

From above researches using the data of TEC, NmF2 and in situ
Ne, Ni, the annual/semi-annual variations of Ne in daytime are
clearly evidenced. For nighttime, although some studies have
found annual/semi-annual variations, some researches revealed
that the annual and semi-annual variation of Ne are absent at
this paper, both
morphological analysis and Morlet wavelet analysis were used

midlatitudes in both hemispheres. In
to confirm that the semi-annual periods are mostly dominant in
the equatorial and low Mlat (0°~+5° Mlat) and the annual variation
periods are mostly dominant in the middle Mlat (+15°-+55° Mlat).
These results in this study partially confirm the conclusions of
previous studies.

The ionospheric photochemical generation rate, indicators of
geomagnetic, tide, content of neutral components and
thermospheric circulation and composition are the main reasons
of annual/semi-annual variations (Zou et al, 2000; Yu et al,
2004b; Scott et al., 2015; Shi et al., 2015; Ghimire et al.,, 2022).
Qian et al. (2013) found that variable eddy diffusion may play an
important role in the observed variation of NmF2 at low latitudes and
changes in turbulent mixing drives the annual/semi-annual variations
in both the neutral and ionized components of the coupled system. Yu
et al. (2004a) gave a clear semi-annual variation pattern of the
ionospheric electric field in the middle and low latitudes and
equatorial regions. At low and middle latitudes, the electric field
has a strong control on the structure and motion of the ionospheric
plasma, so the semi-annual variation of the electric field should have a
significant effect on the observed semi-annual variation of the
ionospheric NmF2 at low and middle latitudes and at equatorial
regions. The ionosphere is mainly generated through photoionization
of the upper atmosphere by solar EUV and X-ray radiation. It is
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strongly influenced by photoionization during daytime. While the
photoionization process in the F region during nighttime is negligible,
and is controlled by both the recombination processes and the
ionospheric dynamics (Chen et al, 2008; Le et al, 2017).
Therefore, for the daytime, the variation of Ne has a very direct
relationship with the sunlight illumination, so it shows seasonal and
annual periodicity changes consistent with the variation of the solar
illumination, and the variation of Ne in different latitudes varies with
the location from the Sun. At nighttime, although the changes of
sunlight are also affected, recombination processes and the
ionospheric dynamics play a more important role, coupled with
the appearance of different night anomalous structures, so the
changes of Ne are more complex, and thus annual/semi-annual
variations intensity is weaker.

There are two other phenomena worth to be noted. Firstly, as
can be seen in Figure 6, Ne is significantly lower in the range of 45° N
to 60° N Mlat in the nighttime than in the other latitudinal ranges.
According to the research (Yan et al., 2022), there is a sudden drop in
Ne from mid-March to mid-September each year when the satellite
flies out from shadow into the sunlight side with a yearly growth of
its amplitude. And the position of the shadow varying at geo-
latitudes from 40° N to 65° N, which coincides with the lowering
of Ne as we can see in Figure 6 (shown by the red line in the fourth
row). Secondly, a 529 days period occurs above 45° N Mlat in the
nighttime, which may be related to more complex regions of the NH
such as MSNA and MIT.

5 Conclusion

Using in situ Ne data observed by the LAP onboard CSES
satellite from May 2018 to April 2022, we studied the annual/
semi-annual variations of Ne both at 14:00 LT and 02:00 LT. The
results are summarized as follows:

1. Daily mean Ne exhibits an amplification-linear-saturation
effect with the increasing of P10.7 in the daytime, while a
linear increase is observed at nighttime.

. It is clear that Ne at around 500 km exhibits annual/semi-
annual variations in both the daytime and nighttime, which is
much clearer in daytime.

. The annual/semi-annual variations of Ne in the daytime show
latitudinal dependence, with opposite annual variation
characteristics between the northern and southern

hemispheres.

Although the annual variation of Ne in the nighttime is not
particularly pronounced like ones of the daytime, especially in
the northern hemisphere, the stable annual/semi-annual
variations of Ne in the nighttime are still observed both from
morphological analysis and from Morlet wavelet analysis.

. The Ne dominant period is characterized by a transition from
semi-annual variation at the equator and low Mlat to annual
variation at middle Mlat. The transition region concentrated in

the range of +5° to 15" Mlat in both daytime and nighttime.
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