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Understanding the future drought condition is critical to copingwith the challenge of
climate change. This study evaluated the simulation capability of 30 Global Climate
Models (GCMs) provided by the Coupled Model InterComparison Project Phase 6
(CMIP6) in simulating precipitation (P), potential evapotranspiration (PET) and
temperature (T) in arid Central Asia (ACA), and estimated the dry-wet climatic
characteristics and trends under four SSP-RCPs (Shared Socio-economic Path-
Representative Concentration Path scenarios, SSP126, SSP245, SSP370, and
SSP585). Results show that the 30 CMIP6 GCMs have robust simulation ability for
precipitation, potential evapotranspiration, and temperature (p < 0.01) over arid
Central Asia. The delta-corrected multi-model ensemble mean (Delta-MME)
outperforms GWR-corrected one (GWR-MME) and single models. In the future,
the precipitation, potential evapotranspiration, and temperature will increase at
different rates under the four SSP-RCPs. Uzbekistan, Kazakhstan, Kyrgyzstan and
Tajikistan are the regions with faster precipitation and temperature rise, and the
northern of arid Central Asia are the main area with the rapid growth of potential
evapotranspiration. Arid Central Asia will face more severe drought, especially under
high emission scenarios. In the near-term the drought will reduce at a certain extent,
but the trend of drought will still be prominent in the mid and long term. Overall,
drought in arid Central Asia will show an overall characteristic of decreasing drought
number but increasing drought frequency, drought duration, and drought intensity.
Drought risk is likely to be higher in Xinjiang of China, Turkmenistan and Uzbekistan.
The research can provide a scientific basis for the decision-making of water
resources planning and management and socio-economic development of arid
Central Asia.
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1 Introduction

In the context of global warming, climate change is attracting the attention of scholars around
the world (Zhao et al., 2021; Rakovec et al., 2022; Wu et al., 2022). The Intergovernmental Panel on
Climate Change (IPCC, 2021) stated in its sixth Assessment Report that global surface temperature
(GST) was 0.99°C (0.84–1.10°C) higher in 2001–2020 than in 1850–1900, and yet GST was 1.09°C
(0.95–1.20°C) higher in 2011–2020 than in 1850–1900. The global average temperature rise will
intensify the hydrological cycle, and precipitation will increase at an unevenly distributed rate across
the globe. The increase in temperature will be accompanied by the increase in evaporation.When the
increasing trend of precipitation is lower than that of evaporation, the drought risk will increase and
lead to the change in dry and wet climate in the world. Since themid-20th century, drought has been
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increasing in frequency and severity in many regions of East Asia, South
Asia, Africa, southern Europe, western South America, eastern Australia
and northern Australia, with serious impacts on agricultural production,
human activities and ecological environment (Wang et al., 2021; Lee et al.,
2022). Thus, it is of great practical significance to grasp the trend and
characteristic of future dry-wet climate to cope with global warming.

Global climate simulation and prediction is an important part of
climate change research. The Coupled Simulation Working Group of
theWorld Climate Research Program (WCRP) organized the Coupled
Model Intercomparison Project Phase 6 (CMIP6), which differs from
previous ones in that CMIP6 has a large number of participating
models, a rich set of numerical experiments and a large amount of
simulation datasets. The Scenario Model Intercomparison Project
(ScenarioMIP) is an important sub-project proposed by CMIP6
(Zhou, 2020). Climate change predictions become more relevant
and meaningful when simulations with reference data are
considered (Oruc, 2022). However, there can be substantial
uncertainties in model simulations. The emergent constraint
method mainly uses multi-model integration to identify the
relationship between past and future climate change to reduce the
uncertainty of prediction. The common method is to use multi-model
ensemble mean (MME) as the consensus among multiple models to
eliminate the uncertainty caused by heterogeneous internal variability
among models. MME can be affected by outliers with extremely high
or low values. Therefore, the bias correction methods are often applied
to calibrate model results to produce better fitted climate predictions
(Hu et al., 2021; Jaiswal et al., 2022).

Arid Central Asia (ACA) has been widely concerned as a
significant response area to global warming. Studies have shown
that since the late 1940s, the temperature of global dryland has
increased by 1.2°C, the potential evapotranspiration has risen sharply
at a rate of 5.2 mm per decade, but the overall change in precipitation
is not obvious (Li et al., 2019). In dryland Asia, the annual average
temperature increased by 1.7°C from 1901 to 2018 and the annual
total precipitation increased slightly from 388 to 435 mm, at a rate of
0.14°C/10a and 4.0 mm/10a, respectively (Miao et al., 2020). ACA is
extremely sensitive to global warming. A general warm and dry trend
for the region occurred between 1901 and 2002, particularly in the
western part of Uzbekistan and Turkmenistan, central Kazakhstan,
southern Xinjiang of China, and central Mongolia (Wang et al.,
2010). The research on global climate change in the next 100 years
based on the dryness index (AI) found that under the influence of
climate change, the area of global wet zone will decrease, and the area
of global drying trend will gradually increase in the future (Asadi
Zarch et al., 2017). The previous study based on GCMs under
RCP4.5 reveals that the projected temperature shows an
ascending trend at a rate of 0.37°C/10a and the projected
precipitation shows a general increasing trend at a rate of
4.63 mm/10a (Luo et al., 2019). The future drought under three
shared socioeconomic paths (SSP126, SSP245, and SSP585) will
became more severe with the increase in emissions from the
future climate projections of CMIP6 (Miao et al., 2020; Li et al.,
2021). Under the two SSPs (SSP245 and SSP585), both precipitation
and evapotranspiration will increase during the whole of the 21st
century. However, the increase in evapotranspiration is projected to
exceed the increase in precipitation since 2030, which will result in
enhanced drought conditions (Hua et al., 2022). The drought
frequency will decrease in the near future and increase in the
middle and later periods in future 100 years in five Central Asian

countries based on the CMIP5 data and the Standardized
Precipitation Evapotranspiration Index (SPEI) (Ta et al., 2022).

Given the large uncertainties in variability and geographical
distribution of a single climatic factor, there is an urgent need to
work with more climatic factors and a new generation of experimental
climate model data at this stage. Considering improvements in
CMIP6, the latest GCMs has more reliable prediction of drought
characteristics in ACA. Currently, there have been a number of studies
concerned with the change in climate and drought of ACA in recent
years, the raw and uncorrected CMIP6 model data are often used
directly even with the multi-model ensemble, which may cause a large
deviation in simulation results. This study firstly compared the
performance of two bias correction methods in simulating multiple
climatic factors. Then employing the winner to conduct the
subsequent research, which could reduce the deviation amplitude
to a certain degree, despite the same rough trend with other
studies. Besides, up to 30 models are used in this study to examine
the simulation performance, which could enrich the evidence of
CMIP6 model in regional application for future improvements. To
achieve the purposes above, this paper is organized as follows: 1)
evaluate the performance of 30 CMIP6 GCMs and bias-corrected
MME in ACA; 2) investigate the spatial-temporal variations and
characteristics of precipitation, potential evapotranspiration and
temperature under four SSP-RCPs (SSP126, SSP245, SSP370, and
SSP585) during 2015–2100; 3) construct the 1-month and 12-
month SPEI time series, and analyzed the dry-wet climatic
characteristics and drought trend in 2015–2100.

2 Materials and methods

2.1 Study area

ACA includes Xinjiang of China/XJ CHN and five Central Asian
countries, i.e., Kazakhstan/KAZ, Kyrgyzstan/KGZ, Uzbekistan/UZB,
Turkmenistan/TKM and Tajikistan/TJK (as six subregions). It covers
the area ranging from 34°N to 55°N and from 45°E to 96°E (Figure 1).
The region is the largest arid area in the world across continental
temperate zone and warm temperate zone in the northern hemisphere.
It is characterized by the mountain-basin structure with oases
scattered in deserts. Lots of famous mountains, basins and deserts
are located, such as the Tianshan Mountains, Pamir Plateau,
Taklimakan Desert, and Turan Plain, and so on. River systems are
widely developed, including the Aral Sea, Balkhash Lake, Amu Darya
River, Syr Darya River, Tarim River, Irtysh River and others. The
geographical location of ACA makes it less affected by ocean.
Controlled by the westerly circulation, water vapor mainly comes
from the Atlantic and Arctic oceans (Hu et al., 2021). The average
temperature is 5.4°C, the annual precipitation is 282 mm, and the
potential evapotranspiration is close to 1,000 mm over the last
100 years in ACA (Dilinuer and Li, 2018; He et al., 2021).

2.2 Data

2.2.1 Observation data
2.2.1.1 GPCC

The precipitation dataset is obtained from Global Precipitation
Climatology Centre (GPCC) provided by NOAA ESRL, which is a
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monthly total precipitation (precip) dataset with time range of
1891–2020 and resolution of 0.5°× 0.5° (Schneider et al., 2017). The
GPCC product is reconstructed from gauge observations from about
6,000 to over 50,000 stations, which has been proved to have good
applicability in ACA (Dilinuer et al., 2021; Song et al., 2022). The data
of 1961–2014 are selected as historical period observations for
evaluating the performance of CMIP6 model data in simulating
precipitation, and calculating the historical SPEI series.

2.2.1.2 CRU
The latest v4.05 datasets from the Climatic Research Unit (CRU)

at the University of East Anglia are used, including the monthly
temperature (tmp) and potential evapotranspiration (pet) from
1901 to 2020, with the resolution of 0.5°× 0.5° (Harris et al., 2020).
The data of 1961–2014 are selected as historical period observations
for the capability assessment of CMIP6 in simulating temperature and
potential evapotranspiration and calculating the historical SPEI series.

2.2.1.3 DEM
The SRTM data are used as elevation data, which is jointly

measured by the National Aeronautics and Space Administration
(NASA) and the National Imagery and Mapping Agency (NIMA),
with an initial resolution of 90 m. In this study, it is resampled to
0.5°×0.5° consistent with other variables, to calculate the potential
evapotranspiration of CMIP6.

2.2.2 CMIP6 data
The model data used in this study are CMIP6 GCMs (https://esgf-

node.llnl.gov/search/cmip6/). Taking variables, time and scenarios
into consideration 30 models are selected (Table 1). Variables
include monthly precipitation, average temperature, maximum
temperature, minimum temperature, relative humidity, wind speed,
and downward short-wave radiation. The “historical” (1850–2014)
simulations conducted as part of the core DECK experiments are used
in the historical phase (1961–2014) of this study, and the four SSP-
RCPs (2015–2100) data under Tier-1 trial in ScenarioMIP are used in

the future phase (2015–2100). To take full account of future relative
historical changes, we also pay special attention to changes in the last
75 years of this century, which are divided into three periods, the near-
term (NT, 2026–2050), the mid-term (MT, 2051–2075), and the long-
term (LT, 2076–2100). A more detailed picture of the changes is
obtained by comparing it with the historical reference period
(1986–2010).

To ensure the integrity and consistency of data, the model data
used in this study are all monthly data under “r1i1p1f1,” which means
the realization number 1 (r1), initialization method indicator 1 (i1),
perturbed physics number 1 (p1) and forcing number 1 (Long et al.,
2021; Al-Yaari et al., 2022). The SSP126 (+2.6Wm−2, low forcing
scenario), SSP245 (+4.5Wm−2, medium forcing scenario), SSP370
(+7.0Wm−2, medium to high forcing scenario) and SSP585
(+8.5Wm−2, high forcing scenario) are selected, representing
sustainability, middle of the road, regional rivalry and fossil fuel
development path, respectively. Due to the differences in the
resolution of the 30 climate models, the CMIP6 data are
preprocessed to 0.5°× 0.5° by the bilinear interpolation to facilitate
the calculation of PET and the performance evaluation of models.

2.3 Methods

2.3.1 Bias correction
2.3.1.1 Delta

The basic principle of the method is to superimpose the variability
characteristics of observed climate elements onto the model climate
element sequence. Taking precipitation as an example, the model
simulation data are compared with the observed data grid by grid, the
absolute rate of change in precipitation is calculated for each grid, and
then applied to the model simulation data (Jose and Dwarakish, 2022;
Oruc, 2022).

P � Pm ×
Po

Pm
( )

month

(1)

FIGURE 1
Spatial location, administrative region and elevation of arid Central Asia.
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In the equation, P is bias-corrected precipitation, PO is the
mean of observed precipitation, Pm is the mean precipitation
over the GCM historical run. Due to the topography in ACA
complex, a total of 2565 grid values are extracted for correction
(Figure 1).

2.3.1.2 Geographically Weighted Regression (GWR)
Build a regression model between the dependent variables

(observed data) and the explanatory variables (model data and
multiple topographic factors) for each grid through the spatial
non-stationarity (Lu et al., 2019; Sun et al., 2022).

Yj � β0 uj, vj( ) +∑p

k�1βk uj, vj( )Xkj + εj (2)

where, Yj represents the observed precipitation at the jth point; Xkj

represents the kth variable (model simulated precipitation and
multiple topographic factors). The topographic factors include
slope (SLP), slope direction (ASP), curvature (CVT) and
elevation (DEM).

2.3.2 SPEI calculation
The Standardized Precipitation Evapotranspiration Index (SPEI)

is used to represent the probability of difference between precipitation

TABLE 1 CMIP6 GCMs used in this study.

Code Model name Research institution (Country) Atmospheric resolution P Other variables

A ACCESS-CM2 CSIRO-ARCCSS (Australia) 1.875°×1.25° √ \

B ACCESS-ESM1-5 CSIRO (Australia) 1.875°×1.241° √ \

C AWI-CM-1-1-MR AWI (Germany) 0.938°×0.938° √ √

D BCC-CSM2-MR BCC (China) 1.125°×1.125° √ √

E CanESM5 Can (Canada) 2.81°×2.81° √ √

F CAS-ESM2-0 CAS (China) 1.406°×1.406° √ √

G CESM2-WACCM NCAR (USB) 1.25°×0.938° √ \

H CMCC-CM2-SR5 CMCC (Italy) 1.25°×0.938° √ \

I CMCC-ESM2 CMCC (Italy) 1.25°×0.9375° √ √

J EC-Earth3 EC-Earth-Consortium (Sweden) 0.703°×0.703° √ √

K EC-Earth3-AerChem EC-Earth-Consortium (Sweden) 0.703°×0.703° √ \

L EC-Earth3-CC EC-Earth-Consortium (Sweden) 0.703°×0.703° √ √

M EC-Earth3-Veg EC-Earth-Consortium (Sweden) 0.703°×0.703° √ √

N EC-Earth3-Veg-LR EC-Earth-Consortium (Sweden) 1.125°×1.125° √ √

O FGOALS-f3-L CAS (China) 1.25°×1° √ \

P FIO-ESM-2–0 FIO-QLNM (China) 1.25°×0.94° √ \

Q GFDL-ESM4 NOAA GFDL (United States) 1.25°×1° √ \

R IITM-ESM CCCR-IITM (India) 1.875°×1.915° √ \

S INM-CM4-8 INM (Russia) 2°×1.5° √ √

T INM-CM5-0 INM (Russia) 2°×1.5° √ √

U IPSL-CM6A-LR IPSL (France) 2.5°×1.259° √ √

V KIOST-ESM KIOST (South Korea) 1.875°×1.875° √ \

W MIROC6 MIROC (Japan) 1.406°×1.406° √ √

X MPI-ESM1-2-HR MPI-M (Germany) 0.938°×0.938° √ √

Y MPI-ESM1-2-LR MPI-M (Germany) 1.875°×1.875° √ √

Z MRI-ESM2-0 MRI (Japan) 1.125°×1.125° √ √

a NESM3 NES (China) 1.875°×1.875° √ \

b NorESM2-LM NCC (Norway) 2.5°×1.875° √ \

c NorESM2-MM NCC (Norway) 1.25°×0.938° √ \

d TaiESM1 AS-RCEC (Taiwan) 1.25°×0.938° √ \

“√” indicates the participation model, “P” means precipitation, “Other variables” include average temperature, maximum temperature, minimum temperature, relative humidity, wind speed, and

downward short-wave radiation.
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and evapotranspiration in a certain time range. The index not only
considers the sensitivity of evapotranspiration to temperature, but also
has the advantages of being suitable for multi-scale and multi-space
comparison and high accuracy, which makes it an ideal index for
drought research under the background of global warming (Musei
et al., 2021; Morsy et al., 2022). In general, three calculation methods
are used for potential evapotranspiration, including Thornthwaite,
Penman-Monteith (P-M) and Hargreaves. The P-M method,
recommended by the Food and Agriculture Organization of the
United Nations (FAO), is a physically based method taking
radiometric and aerodynamic variables into account. It is an
accurate and reliable approximation of PET (Wang et al., 2016). In
this study, the P-Mmethod is used to calculate PET (Chen et al., 2015;
Yin et al., 2021).

PET � 0.408Δ Rn − G( ) + γ 900
Tmean+273u2 es − ea( )

Δ + γ 1 + 0.34u2( ) (3)

where PET is the potential evapotranspiration (mm), Rn is the net
surface radiation (MJ·m-1·d-1),G is the soil heat flux (MJ·m-2·d-1),Tmean

is the air temperature at 2 m height (°C), U2 is the wind speed at 2 m
height (m·s-1), es is the saturation vapor pressure (kPa), ea is actual
vapor pressure (kPa), △ is the slope vapor pressure curve (kPa·°C·1),
and γ is the psychrometric constant (kPa·°C−1).

The calculation of SPEI is to establish the accumulation of water
gains and losses at different time scales by calculating the difference
between potential evapotranspiration and rainfall per unit time, and
finally normalize the data series. In this study, 1-month timescale and
12-month timescale SPEI are used for analysis. The former fluctuates
strongly, which can characterize the inter-monthly variation in dry
and wet, and can be used for the identification of finer drought events.
The latter is relatively stable, which is often used to analyze the inter-
annual variation characteristics of dry and wet. When the temporal
change is analyzed, the SPEI is the mean of the whole region.

2.3.3 Trend and significance detection
Theil-Sen Median (TSM) is a robust non-parametric statistical

trend calculation method. The fundamental principle is to assess the
trend and degree of sequence by calculating themedian of slope of data
combination (Chatterjee and Olkin, 2006; Rosner and Glynn, 2007).
The slope is given by:

β � mean
xj − xi
j − i

( ),∀j> i (4)

In the formula, β is the Theil-Sen median slope, xj and xi represent
time series data. β greater (lower) than 0 indicates an upward
(downward) trend in time series.

The Mann-Kendall (M-K) trend test is a non-parametric way to
detect the trend of a sample time series. As its low sensitive to outliers,
not requiring the sample series to conform to a specific distribution
and allowing for missing values, the M-K method is widely used for
trend significance test in climatological studies (Hamed, 2009). The
statistic is expressed by Z value. The significance test level is 0.05 in this
study.

2.3.4 Run theory
In this study, drought events are identified using the three-

threshold run theory to determine the beginning, duration and end
of drought events. The three-threshold method is better to identify

drought events than the traditional single-threshold method.
Referring to previous studies (Wu et al., 2019; Song et al., 2021b),
the optimal thresholds are set as R1=−0.3, R2=−0.5, and R3=0, and the
steps for identifying drought events in this study are developed. The
details are as follows.

(1) Preliminary identification of drought events: when the drought
index is lower than R1=−0.3, the occurrence of drought is
preliminarily determined, and drought events in the total time
series are screened;

(2) Elimination of non-drought events: if the drought event lasts only
1 month and the drought index value is lower than R2=−0.5, the
event is retained; Otherwise, it is eliminated;

(3) Merger of drought events: when the time interval of adjacent
drought events is only 1 month and the drought index of that
month is less than R3=0, they will be combined as one
drought event. Otherwise, they are treated as two separate
drought events.

When the three thresholds are exceeded, a drought event (DN) is
considered occurred. Drought duration (DD) is the continuance from
the beginning to the end of drought events in the time series. Drought
intensity (DI) is the negative number of the sum of negative runs in
drought events. Drought frequency (DF) is defined as the ratio of
drought duration to the total length of time series in this study, which
can intuitively reflect the change in drought risk to a certain extent
(Figure 2).

3 Results

3.1 Simulation capability assessment

3.1.1 Single-model
The applicability of 30 CMIP6 GCMs in ACA was evaluated using

standard deviation (SD), root mean square error (RMSE) and Pearson
correlation coefficient (r). It shows that the simulation ability of the
models for each variable is different, and the performance of
simulation ability of each model is also different even under the
same variable (Table 2). There is a large difference in the precipitation
(P) simulation performance between all climate models, but a small

FIGURE 2
Drought events and characteristic parameters identified by the
three-threshold run theory. Drought event (N1, N2, and N3), drought
duration (DD), drought intensity (DI).
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difference in the potential evapotranspiration (PET) and temperature
(T) simulation. Overall, the 30 climate models have a good simulation
ability in simulating P, PET and T, and all the models pass the
0.01 significance test.

3.1.2 Multi-model ensemble and bias correction
The availability of the time span (1961–2100), scenarios (SSP126,

SSP245, SSP370, and SSP585) and the coverage of study area, a certain
number of models for each variable were selected to establish an

ensemble mean. The number of models for P, PET, and T is 13, 7 and
7, respectively.

The simulation capability of selected models in reproducing P,
PET, and T can be clearly seen in standardized Taylor diagram
(Figure 3). The multi-model ensemble mean (MME) is the
arithmetical mean of each variable of CMIP6 GCMs. The spatial
r between the P-MME, PET-MME, T-MME and the observed one
are 0.62, 0.91, and 0.98, respectively. Considering the uncertainty
of the MME, this study used two bias correction methods, delta and

TABLE 2 Simulation capability of 30 CMIP6 GCMs in precipitation (P), potential evapotranspiration (PET) and temperature (T).

CMIP6 P PET T

Model SD RMSE r SD RMSE r SD RMSE r

OBS 1 0 1 1 0 1 1 0 1

ACCESS-CM2 1.527 1.249 0.580 \ \ \ \ \ \

ACCESS-ESM1-5 1.626 1.754 0.175 \ \ \ \ \ \

AWI-CM-1-1-MR 1.388 1.021 0.679 1.817 1.038 0.887 1.004 0.206 0.979

BCC-CSM2-MR 1.102 1.107 0.449 1.467 0.731 0.892 1.052 0.233 0.976

CanESM5 2.221 2.643 −0.24 1.365 1.184 0.535 0.808 0.310 0.963

CAS-ESM2-0 2.564 2.563 0.196 0.890 0.546 0.840 1.091 0.234 0.979

CESM2-WACCM 2.989 3.302 −0.16 \ \ \ \ \ \

CMCC-CM2-SR5 1.134 1.107 0.474 \ \ \ \ \ \

CMCC-ESM2 1.264 1.170 0.486 1.226 0.542 0.901 1.047 0.235 0.975

EC-Earth3 1.311 1.005 0.651 1.686 0.914 0.892 1.053 0.216 0.980

EC-Earth3-AerChem 3.156 3.570 −0.28 \ \ \ \ \ \

EC-Earth3-CC 1.321 1.009 0.654 1.742 0.957 0.895 3.242 3.094 0.299

EC-Earth3-Veg 1.281 0.964 0.668 1.708 0.932 0.893 1.057 0.214 0.980

EC-Earth3-Veg-LR 1.134 0.949 0.611 1.623 0.873 0.885 1.051 0.209 0.980

FGOALS-f3-L 3.361 3.682 −0.19 \ \ \ \ \ \

FIO-ESM-2–0 2.704 3.090 −0.23 \ \ \ \ \ \

GFDL-ESM4 1.311 0.926 0.710 \ \ \ \ \ \

IITM-ESM 2.086 2.545 −0.27 \ \ \ \ \ \

INM-CM4-8 1.129 1.185 0.385 1.311 0.653 0.875 1.019 0.204 0.980

INM-CM5-0 1.211 1.202 0.422 1.286 0.638 0.874 0.982 0.193 0.981

IPSL-CM6A-LR 1.845 1.395 0.666 1.434 0.701 0.894 1.037 0.235 0.974

KIOST-ESM 2.096 2.664 −0.41 \ \ \ \ \ \

MIROC6 1.268 1.235 0.427 1.819 1.054 0.8790 1.168 0.275 0.980

MPI-ESM1-2-HR 1.545 1.104 0.702 1.621 0.8467 0.898 0.991 0.207 0.978

MPI-ESM1-2-LR 1.388 1.116 0.606 1.634 0.911 0.870 0.932 0.218 0.977

MRI-ESM2-0 1.857 1.390 0.677 2.276 1.456 0.892 0.943 0.221 0.976

NESM3 2.832 3.194 −0.21 \ \ \ \ \ \

NorESM2-LM 2.274 2.704 −0.25 \ \ \ \ \ \

NorESM2-MM 2.555 2.887 −0.16 \ \ \ \ \ \

TaiESM1 2.685 3.132 −0.29 \ \ \ \ \ \
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GWR, to correct the MME of each variable. The spatial r between
the GWR-corrected MME of P and the observed is 0.81, and
meanwhile the RMSE and SD are 0.60 and 0.87, respectively.
Those for PET are 0.71, 1.62, 0.99 and those for T are 0.98,
0.29, 0.75, respectively. The SD decreases after the GWR
correction. Similarly, the spatial r, RMSE and SD by the delta-
corrected MME of P is 0.98, 0.19, and 1.07, respectively. Those for
PET are 0.99, 0.05, 1.84 and those for T are 0.99, 0.16, 0.99,
respectively. The simulation ability results shows that the delta-
corrected MME outperforms the GWR-MME and the single
models for all variables. The delta-corrected MME can better
capture the spatial pattern of P, PET and T in ACA.

3.2 Future projections of climatic factors

3.2.1 Temporal change
In the historical period (1961–2014), the observed P from GPCC

data showed an increasing trend at a rate of 3.15 mm/10a by an
increasement of 17.03 mm in ACA. Meanwhile, the PET from CRU
data decreased by 0.59 mm at a rate of 0.11 mm/10a, and the T from
CRU data increased from 7.05°C to 7.14°C with a rate of 0.016°C/10a. It
is not hard to see that the ACA is likely to warm in the future
(Figure 4).

In the future period (2015–2100), the P, PET, and T consistently
show an increasing trend. The increase rate of P is 2.23 mm/10a,
3.40 mm/10a, 3.60 mm/10a and 3.62 mm/10a for SSP126, SSP245,
SSP370, and SSP585, respectively. The increase rate of P under the four
SSP-RCPs have a smaller gap. Overall, the increase in P is gently. The
increase rate of PET under the four SSP-RCPs is 8.44 mm/10a,
8.94 mm/10a, 14.58 mm/10a, and 26.99 mm/10a, respectively,
significantly increasing with the intensify of radiative forcing.
Meanwhile, T increases by 1.89°C, 2.57°C, 4.61°C, and 6.76°C, or a
warming rate of 0.22°C/10a, 0.30°C/10a, 0.54°C/10a, and 0.79°C/10a,
respectively. On the whole, the increase rate of PET is much higher
than that of P, indicating that drought will be strongly intensified in
the future in the context of rising temperature, especially under high
emissions.

For the six subregions, the future change in each climatic factor
is different due to the various geographical locations and
topographic conditions (Figure 5). The increase rate of P ranges
from 0.71 to 8.21 mm/10a, with a strong spatial and temporal
heterogeneity. The fastest increase rate is in Tajikistan, followed by
Kyrgyzstan, Kazakhstan, Uzbekistan, Turkmenistan, and Xinjiang
of China. The increase rate of PET is from 5.68 to 33.43 mm/10a,
with the highest increase in Uzbekistan, followed by Turkmenistan,
Kazakhstan, Kyrgyzstan, Tajikistan and Xinjiang of China. The
increase rate of T is from 0.19 to 0.83°C/10a, with the most intense

FIGURE 3
Simulation capability of single models shown in Standardized Taylor diagram for (A) precipitation (P), (B) potential evapotranspiration (PET) and (C)
temperature (T). Letters denote single models, details seen Table 1; Arabic numbers denote multi-model ensemble mean,1 is MME, 2 is delta-corrected MME
and 3 is GWR-corrected MME.

FIGURE 4
Temporal changes in precipitation (P), potential evapotranspiration (PET), and temperature (T) during the historical period (1961–2014) and the future
period (2015–2100) under four SSP-RCPs in ACA. The shaded area is the corresponding standard deviation.

Frontiers in Earth Science frontiersin.org07

Cao et al. 10.3389/feart.2023.1102633

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1102633


warming in Kazakhstan, followed by Kyrgyzstan, Xinjiang of
China, Uzbekistan, Turkmenistan and Tajikistan. Combined, the
faster rising P and T is in Uzbekistan, Kazakhstan, Kyrgyzstan and
Tajikistan, while the rapid increase in PET is mainly in the
northern of ACA.

3.2.2 Spatial variation
Compared with the historical reference period (1986–2010), the P,

PET and T in near-term (NT), mid-term (MT) and long-term (LT)
under four SSPs mainly show increasing trend in most area of ACA,
which is particularly evident over time and under higher emissions.

FIGURE 5
Temporal changes in precipitation (P), potential evapotranspiration (PET) and temperature (T) during the future period (2015–2100) under four SSP-RCPs
in six subregions. XJ CHN (row 1), KAZ (row 2), KGZ (row 3), UZB (row 4), TKM (row 5), TJK (row 6). The shaded area is the corresponding standard deviation.
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Specifically, the widespread increase in P is mainly observed over
Kazakhstan, Kyrgyzstan and Tajikistan, with P increased about
10–30 mm. A slight increase in P is seen in the other three
subregions. In particular, the northern Xinjiang of China has a
decreased p less than 20 mm in NT and MT, showing a weak drying
trend (Figure 6). In terms of PET, it appears a general feature of less
increase in east and more increase in west. Thus, the regions with large
increased PET are mainly seen over the western Kazakhstan, Uzbekistan
and Turkmenistan (Figure 7). As to temperature, it shows a general
characteristic of more increase in north and less increase in south. The
significantly increased T is observed in northern and western Kazakhstan,

northern Xinjiang of China, with the 2–4°C increment inNT andMT and
even more than 4.5°C in LT (Figure 8).

3.3 Future projections of drought
characteristics

3.3.1 Drought trends
The 12-month SPEI in ACA shows a significant fluctuating

downward trend in the future. The drought conditions are
slightly aggravated under the scenarios of SSP126 and

FIGURE 6
Spatial variations in annual total precipitation (P) under SSP126, SSP245, SSP370, and SSP585 in near-term (2026–2050, column 1), mid-term
(2051–2075, column 2), and long-term (2076–2100, column 3) relative to the historical reference period (1986–2010) in ACA.

FIGURE 7
Spatial variations in annual total potential evapotranspiration (PET) under SSP126, SSP245, SSP370 and SSP585 in near-term (2026–2050, column 1),
mid-term (2051–2075, column 2), and long-term (2076–2100, column 3) relative to the historical reference period (1986–2010) in ACA.
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SSP245, but strongly strengthened under SSP370 and SSP585
(Figure 9).

Compared with the historical reference period, the drought in NT
showing a mitigating trend. InMT, the drought is worse but showing a
slightly easing trend, and the differences among the four scenarios is
small. In LT, however, the drought will be distinctly aggravated with
the radiative forcing intensified, indicating that ACA will face higher
drought risk in the long run.

In terms of spatial distribution, the northern Kazakhstan,
Kyrgyzstan, and northern Xinjiang of China had a wetting
trend in the historical period, and meanwhile the southern

Xinjiang of China, western Kazakhstan, Uzbekistan and
Turkmenistan had a drying trend (Figure 10A). In the future,
the spatial pattern of drying trends under the four scenarios
are generally consistent but the amplitude is different. Under
SSP126, the slowly wetting trend area accounts for 3.7%, which
is mainly located in the northeastern Kazakhstan and Kyrgyzstan
(Figure 10B). With the emission increased, the proportion of
significant drying trend area is increased by 54%, 88%, 96%,
and 99%, respectively, under the four SSPs (Figure 10B-E). The
whole ACA will be severely affected by drought under SSP585
(Figure 10E).

FIGURE 8
Spatial variations in annual average temperature (T) under SSP126, SSP245, SSP370 and SSP585 in near-term (2026–2050, column 1), mid-term
(2051–2075, column 2), and long-term (2076–2100, column 3) relative to the historical reference period (1986–2010) in ACA.

FIGURE 9
Changes in the 12-month SPEI under the four SSP-RCPs in the future period (2015–2100) in ACA. (Left panel) and the comparison of SPEI between the
future three periods (NT 2026–2050, MT 2051–2075, LT 2076–2100) and the historical reference period (ref 1986–2010) (Right panel).
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3.3.2 Drought characteristics
Drought events based on 1-month SPEI were analyzed using the

three-threshold run theory. The spatial distribution shows that the
characteristics of drought number (DN), drought duration (DD),
drought frequency (DF) and drought intensity (DI) are different
under four emission scenarios (Figure 11).

In the future period (2015–2100), the average DN of the whole
ACA is 180, 163, 143, and 119 under SSP126, SSP245, SSP370, and
SSP585, respectively. Notably, there will be a total of 207 droughts in
northeastern Xinjiang of China under SSP126. The average DD is 2.28,

2.54, 2.92, and 3.59, respectively, with the longest DD of 6.85 months
in southeastern Xinjiang of China under SSP585. The DF is 0.3974,
0.3976, 0.3979, and 0.3983, and the DI is 2.46, 2.73, 3.09, and 3.77,
respectively, under the four emissions. With the increase in emissions,
the DN decreases, but the DD, DF, and DI all increase, shown
evidently in southern Xinjiang of China, Turkmenistan and
Uzbekistan, indicating that these subregions will have higher
drought risk in the future.

The change in droughts of the future three periods were further
analyzed (Figure 12). Compared with the reference period, drought

FIGURE 10
Spatial patterns of SPEI-trend in historical period (1961–2014) (A) and future period (2015–2100) in ACA under SSP126 (B), SSP245 (C), SSP370 (D) and
SSP585 (E) (Grids with black dots are the area passing the 0.05 significance test).

FIGURE 11
Spatial distribution of characteristics of drought events, including the total number of droughts (DN, column 1), drought duration (DD, column 2), drought
frequency (DF, column 3) and drought intensity (DI, column 4), based on 1-month SPEI in ACA under four SSP-RCPs (SSP126, SSP245, SSP370 and SSP585) in
the future (2015–2100).
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may moderate in NT. The DF and DI will decrease by 10.8%–58.4%
and 12.3%–40%, respectively, with a significant downward trend in
southeastern Xinjiang of China, southwestern Kazakhstan, central and
western Uzbekistan and western Turkmenistan. In MT and LT,
drought will strengthen. The DF in MT will increase on the whole,
especially in northern Xinjiang of China and southeastern Kazakhstan.
In LT, the intensified drought under SSP370 and SSP585 will mainly
occur in Xinjiang of China, western Kazakhstan, Uzbekistan and
Turkmenistan, which can be largely attributed to the increased
temperature and the resulting increased evapotranspiration (Figures
6, 7). On the whole, the DF will mainly show an increasing trend.
Combined with the change in DN andDD, drought events in ACAwill
exhibit an overall characteristic of decreasing DN, increasing DF,
stronger DI and longer DD. The drought risk will be higher in Xinjiang
of China, Turkmenistan and Uzbekistan, followed by Tajikistan,
Kyrgyzstan and Kazakhstan.

4 Discussion

GCMs are essential tools for providing reliable data to support the
projection of future drought trends and spatial-temporal distribution
(Jiang et al., 2022; Ma et al., 2022; Qi et al., 2022). Climate is influenced
by terrestrial systems, natural factors and anthropogenic activities.
Thus, the climate projection by GCMs is affected by multi-source
uncertainties, such as greenhouse gas and aerosol emission scenarios,

climate model structure and parameterization, and internal variability
of the climate system (Salehnia et al., 2019; Chen and Yuan, 2022). In
this study, CMIP6 GCMs were found to have better simulation
capability by Delta correction method than GWR correction
method, indicating that the robust relationship in the multivariable
bias correction (MBC) method needs further exploration to better
modify the model data (Themeßl et al., 2012; Zhang and Chen, 2021;
Vrac et al., 2022). In ACA, drought will strengthen to varying degrees
in the future, the uncertainties of which can be reduced by considering
more climatic variables, models and scenarios.

Studies have shown that precipitation, potential
evapotranspiration and temperature are changing at different rates
under the background of global warming. The average annual
temperature in ACA has proven to increase by more than 6°C
under SSP585 (Didovets et al., 2021; He et al., 2021; Hua et al.,
2022). And some of them pointed out that precipitation will seriously
differentiate under various emission scenarios by the end of the 21st
century (Song et al., 2021a; Hamed et al., 2022). Unlike the above
studies, the future precipitation in ACA will not rise sharply and the
increase rate is smaller in this study. In its sub-regions, the increase
rates in precipitation will increase significantly with the emission
intensified in Xinjiang of China, Kyrgyzstan and Tajikistan. Consistent
with previous studies, the increase in evapotranspiration will offset the
most increased precipitation as the temperature rises in ACA in the
future period (Li et al., 2021; Song et al., 2021b; Hua et al., 2022).
Although ACA is affected by the westerlies on the whole, the spatial

FIGURE 12
Characteristics of drought events in six subregions under four SSP-RCPs (SSP126, SSP245, SSP370, and SSP585) in historical reference period
(1986–2010) and future NT (2026–2050), MT (2051–2075) and LT (2076–2100). (A) Drought number (DN), (B)Drought duration (DD), (C) Drought frequency
(DF), (D) Drought intensity (DI).
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and temporal distribution and variation in climatic factors could be
various due to the different topography and geographical locations of
subregions (Liu et al., 2018). The enhancement of westerly circulation
and its southward movement may be the main reason for the increase
of precipitation in Central Asia (Yu et al., 2019). The weakening of
summer precipitation and temperature anomalies in Central Asia is
not conducive to water vapor input in the west and north of the arid
region of Central Asia (Lioubimtseva et al., 2005). In addition, the
climatic factors and SPEI were found to be correlated with the Arctic
Oscillation (AO), North Atlantic Oscillation (NAO) and El Nino-
Southern Oscillation (ENSO) in ACA (Cook et al., 2018; Dilinuer and
Li, 2018; Mukherjee and Mishra, 2022).

Different degrees of drought in the future will bring great threats
and challenges to the water resources, agricultural and animal
husbandry production, economic development and human health
in ACA (An et al., 2022; Dou et al., 2022; Prodhan et al., 2022). It
is predicted that drought will intensify under different scenarios in the
future. The frequency of drought events is generally higher in most
areas of ACA (Hua et al., 2022). And the future drought duration
based on SPEI decreases in the near-term future periods and increases
in the mid-term and long-term future periods (Ta et al., 2022). In this
study, droughts are likely to increase dramatically, especially in
Xinjiang of China, Turkmenistan and Uzbekistan in the late 21st
century. With the emphasis on carbon neutrality in the IPCC report
on global warming of 1.5°C, to peak global carbon emissions and
achieve carbon neutrality as soon as possible is an urgent need to
achieve the long-term temperature targets proposed in the Paris
Agreement. Therefore, understanding future changes in drought
conditions in the arid Central Asia is critical for developing
adaptation measures to cope with the challenge of rapid climate
change (Huang and Zhai, 2021).

5 Conclusion

In this study, the performance of 30 CMIP6 GCMs in simulating
P, PET and T in ACA were evaluated. To reduce the uncertainties of
estimation, the multi-model ensemble mean (MME) and bias
correction method were used. After then, the change in future
climatic factors and drought characteristics were analyzed. The
primary results are as follows.

The 30 CMIP6 GCMs have a good spatial simulation ability for P,
PET and T (p<0.01). There are large differences in the P simulation
among all climate models, but small in the PET and T simulation. The
delta-corrected MME outperforms the GWR-corrected MME.

In the future period (2015–2100), P, PET and T show increasing
trends to varying degrees. The increase rate of P is 2.23 mm/10a,
3.40 mm/10a, 3.60 mm/10a and 3.62 mm/10a, under SSP126, SSP245,
SSP370, and SSP585, respectively. Meanwhile, the increase rate of PET
is 8.44 mm/10a, 8.94 mm/10a, 14.58 mm/10a, and 26.99 mm/10a, and
that of T is 0.22°C/10a, 0.30°C/10a, 0.54°C/10a, and 0.79°C/10a,
respectively. Uzbekistan, Kazakhstan, Kyrgyzstan and Tajikistan are
the regions with faster P and T rise, and the northern of ACA are the
main area with the rapid growth of PET.

The total number of drought events will decrease with the
emission increased. However, the drought duration, frequency and

intensity will increase. Compared with the historical reference period,
drought is likely to be moderate in the near-term (2026–2050), but
severe in the mid-term (2051–2075) and long-term (2076–2100).
Drought events in ACA will show an overall characteristic of
decreasing DN, longer DD, increasing DF and stronger DI.
Drought risk is increasing in all subregions, especially in Xinjiang,
Turkmenistan and Uzbekistan in the future.
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