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In seismic data processing, the reconstruction and interpolation of missing traces
are essential tasks. To overcome the limitations of irregularly sampled seismic
data, this paper proposes a seismic data interpolation method combining the
smoothing fast iterative soft threshold algorithm (SFISTA) and the curvelet
transform; this method uses the curvelet domain as the sparse domain. For
comparison, the contourlet transform is used for different sparse domains, and
the fast iterative shrinkage-thresholding algorithm (FISTA) is used for different
optimization algorithms. Numerical modeling and real data show that the SFISTA
method in the curvelet domain can give better reconstruction effects and higher
reconstruction accuracy than those in the contourlet domain with the FISTA
method; in addition, the SFISTA method in the curvelet domain can be used to
reconstruct the missing traces of three-dimensional seismic data.
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1 Introduction

In complex environments, seismic data reconstruction has great significance as a
recovery technique. Under external disturbance, irregularly sampled seismic data will
affect further geological data processing such as migration imaging and data
interpretation. In order to obtain high-quality seismic data, interpolation reconstruction
is needed to approximate the original data. In recent years, under the compressive sensing
theory, seismic data reconstruction methods based on sparse constraints have become more
and more popular. It mainly consists of the sparse transform, measurement matrix, and
reconstruction algorithm. The sparse transforms that are often used include the Fourier
transform (Zhang et al., 2013; Ciabarri et al., 2014), curvelet transform (Hennenfent et al.,
2010; Liu et al., 2015; Zhang et al., 2017; Zhang et al., 2019; Tian and Qin, 2022), contourlet
transform (Eslami and Radha, 2006), and seislet transform (Liu W et al., 2016). Because the
curvelet transform undergoes multi-scale and multi-direction analysis and can perform the
optimal local decomposition of seismic data (Yang et al., 2017), the curvelet transform is
employed in this paper as a sparse transform, and the contourlet transform is also used in this
paper for comparison analysis.

A classical sparse recovery problem usually requires minimizing the L0 norm, which is NP-
hard. The L1 norm is the approximate of the L0 norm, which is a convex function, and can be
solved by the convex optimization algorithms or tools; so, the L0 norm is replaced by the L1
norm for simplicity and effectiveness. The iterative soft threshold algorithm (ISTA) shows
great advantages (Daubechies et al., 2004; Mohsin et al., 2015) for a convex optimization
algorithm. Gradually, a faster ISTA algorithm (FISTA) has been developed. FISTA is more
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suitable the synthesis approach to sparse recovery. And for the
analysis approach to sparse recovery, Tan et al. (2014) proposed a
monotone version of the fast iterative shrinkage-thresholding
algorithm, which is the smoothing fast iterative soft threshold
algorithm (SFISTA). In this paper, we introduce the SFISTA
method-based curvelet transform to the seismic data interpolation
reconstruction problem (Tan et al., 2014; Liu Y et al., 2016; Pokala and
Seelamantula, 2020; Shen et al., 2020). The theory is given in section 2,
and experimental results are given in section 3.

2 Theory

Assuming that the observed seismic data is y and the
downsampling matrix is U, the irregular missing seismic data can
be modeled as follows:

y � Ux + n, (1)
where n is a randomly generated noise and x is the original
seismic data.

The interpolation problem can be expressed as follows:

min
x

1
2

y −Ux‖22
���� + λ Ψx‖ ‖1, (2)

where ‖·‖2 is the L2 norm, ‖·‖1 is the L1 norm, λ is the regularization
parameter, andΨ is the analysis operator. Moreover,Ψ*Ψ � I, where
Ψ* denotes the adjoint of the operator Ψ and I is the identity matrix.
The sparse transform can be expressed as x � Ψα, where Ψ is the
transform operator and α is the sparse coefficient. Let us denote the
following equation:

f x( ) � 1
2
Ux − y
���� ����22, (3)

where f(x) is the smooth part.

g Ψx( ) � λ Ψx‖ ‖1, (4)
where g(Ψx) is the non-smooth part that needs to be replaced by the
Moreau envelope with an approximately smooth form gμ(Ψx),
where μ is the smooth approximate parameter.

∇gμ Ψx( ) � 1
μ
Ψ* Ψx − Tλμ Ψx( )( ), (5)

where ∇ is the gradient and Tλμ is the soft threshold operator; the
threshold of Tλμ is the multiplication of λ and μ.

In this paper, the process of the smoothing fast iterative soft
threshold algorithm (Shen et al., 2020) for optimization is expressed
as follows:

FIGURE 1
Reconstruction results of synthetic data in the contourlet domain. (A)Original data; (B) 50% of randomlymissing data; (C) interpolated data obtained
by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F) reconstructed
errors obtained by the SFISTA method.

TABLE 1 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 784.34 450.45

SNR 10.12 12.41
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∇f x̂k( ) � UT Ux̂k − y( ), (6)

where k is the number of iterations, and x̂0 � x0 and t0 � 1.

∇gμ Ψxk( ) � 1
μ
Ψ* Ψxk − Tλμ Ψxk( )( ). (7)

The core iterations of the SFISTA are as follows:

xk+1 � x̂k − 1
L

∇f x̂k( ) + ∇gμ Ψxk( )( ), (8)

where L is the Lipschitz constant. At 0< γ≤ 1, L � 1/γ. Substituting
(6) and (7) in (8), the aforementioned equation is equivalent to the
following equation:

xk+1 � x̂k − γ

μ
xk − Ψ*Tλμ Ψxk( )( ) + γUT y − Ux̂k( ), (9)

where γ is the iteration step size. tk+1 is expressed as follows:

tk+1 �
1 +

������
1 + 4t2k

√
2

. (10)

Then, we derive the following equation:

x̂k+1 � xk+1 + tk − 1
tk+1

xk+1 − xk( ). (11)

The specific algorithm steps are as follows:

Parameters: λ � 10−3,μ � 10−3/λ � 1, γ � 1/(1 + 1/μ)
Initialization: x0, x̂0, t0 � 1

When not convergent, the following equations are used to

calculate:

xk+1 � x̂k − γ
μ (xk − Ψ*Tλμ(Ψxk)) + γUT(y − Ux̂k)

tk+1 � 1+ ����
1+4t2

k

√
2

x̂k+1 � xk+1 + tk−1
tk+1 (xk+1 − xk)

RLNE � ‖x̂−x‖2
‖x‖2

end if RLNE< 10−6 or the maximum number of iterations is

reached.

end

Output: x

Algorithm 1. SFISTA for seismic data interpolation

TABLE 2 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 223.16 193.62

SNR 17.75 20.67

FIGURE 2
Reconstruction results of synthetic data in the curvelet domain. (A)Original data; (B) 50% of randomlymissing data; (C) interpolated data obtained by
the FISTAmethod; (D) interpolated data obtained by the SFISTAmethod; (E) reconstructed errors obtained by the FISTAmethod; (F) reconstructed errors
obtained by the SFISTA method.
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Parameters: λ � 10−3, γ � 1

Initialization: α0, α̂0, t0 � 1

When not convergent, the following equations are used to

calculate:

αk+1 � Tγλ(γΨUT(y − UΨ*αk) + α̂k)
tk+1 � 1+ ����

1+4t2
k

√
2

α̂k+1 � αk+1 + tk−1
tk+1 (αk+1 − αk)

RLNE � ‖α̂−α‖2
‖α‖2

end if RLNE< 10−6 or the maximum number of iterations is

reached.

end

Output: α

Algorithm 2. FISTA for seismic data interpolation

3 Examples

In this section, we conduct numerical experiments with different
seismic data to demonstrate the reconstruction performance of the

SFISTAmethod in the curvelet domain. The algorithm performance
is evaluated by interpolation results, the average amplitude
spectrum, single-channel interpolation effect, reconstruction
error, and signal-to-noise ratio. Numerical experiments are used
to test the method. At last, the paper continues to test the 3D
interpolation effect of the interpolation method of the proposed
method. The experiments are conducted on a Millet computer
running on the Windows 10 operating system and Inter Core
m3-6Y30.

3.1 Synthetic examples

3.1.1 Seismic data interpolation in the contourlet
domain

The regularization parameters of the FISTA and SFISTA
methods are set to 10−3. The step size of the FISTA is 1, and the
step size of the SFISTA is set to 0.5 (Liu Y et al., 2016); the number of
iterations is set as 500. The two-dimensional data tests have the same
parameters.

Part data on the Marmousi2 model (Martin et al., 2006) are
selected as test data; the data are shown in Figure 1A. Figure 1B
shows the irregular data with 50% of the traces removed randomly,
and this part’s records are padded with zeros. The sparse domain is
the contourlet domain. Figures 1C,D are interpolation results of
Figure 1B using FISTA and SFISTA methods based on the
contourlet transform. Figures 1E,F show the reconstruction errors
that correspond to the FISTA and SFISTA methods, in which the

TABLE 3 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 1695.09 407.17

SNR 9.11 25.07

FIGURE 3
Reconstruction results of the coral reef model in the contourlet domain. (A) Original data; (B) 50% of randomly missing data; (C) interpolated data
obtained by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F)
reconstructed errors obtained by the SFISTA method.
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reconstruction residuals of the SFISTA method have smaller
amplitude ranges than those of the FISTA method. It is obvious
that the reconstruction method of SFISTA based on the contourlet
transform is more effective.

The performance of the proposed method in seismic data
interpolation could be evaluated using different qualitative and
quantitative analyzing tools. The reconstruction error is the
general quantitative evaluation tool used in seismic data
interpolation; the reconstruction error is defined to be
∑ |x − x̂|, where x denotes the original data and x̂ denotes the
reconstructed seismic data. If the reconstruction error is smaller,
the reconstructed seismic data will be closer to the original data.
SNR is the signal-to-noise ratio, which is defined as

SNR � 101og10
‖x‖22

‖x−x̂‖22. A higher SNR value means that the data

have better reconstruction quality. The reconstruction error and
signal-to-noise ratio are illustrated in Table 1. Table 1 shows that
the SFISTA method has a smaller reconstruction error value and
higher SNR. Compared to the two methods, the SFISTA method

based on the contourlet transform has a lower reconstruction error
and higher SNR, and therefore, the SFISTA method shows better
performance.

3.1.2 Seismic data interpolation in the curvelet
domain

The part of the Marmousi2 model is shown in Figure 2A.
Figure 2B shows the irregular data with 50% of the traces
missing randomly. Figures 2C, D show interpolation effects using
FISTA and SFISTA methods based on the curvelet transform.
Figures 2E, F show the reconstruction errors that correspond to
the FISTA and SFISTA methods, in which the reconstruction
residuals of the SFISTA method have a smaller magnitude than
those of the FISTA method. It is obvious that the reconstruction
method of SFISTA in the curvelet domain is more effective.

Comparing Figures 1, 2, the SFISTA method in the curvelet
domain has lower reconstruction errors when using the qualitative
analyzing method. Comparing Tables 1, 2, the SFISTA method in
the curvelet domain has lower reconstruction errors and higher SNR
when using the quantitative analyzing method. The SFISTA method
shows better performance when using the curvelet domain as the
sparse domain.

3.1.3 Coral reef model tests in the contourlet
domain

The selected coral reef synthetic data are illustrated in
Figure 3A. Figure 3B shows corrupted data with 50% of traces

FIGURE 4
Reconstruction results of the coral reef model in the curvelet domain. (A) Original data; (B) 50% of randomly missing data; (C) interpolated data
obtained by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F)
reconstructed errors obtained by the SFISTA method.

TABLE 4 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 902.74 323.55

SNR 15.45 27.72
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missing randomly. Figures 3C, D show interpolation effects using
FISTA and SFISTA methods in the contourlet domain. Figures 3E,
F show the reconstructed errors between the reconstruction and
original data; Figure 3F shows a smaller reconstructed error.
Table 3 shows the reconstruction error and SNR, which
demonstrates the validity of the SFISTA method in the
contourlet domain.

3.1.4 Coral reef model tests in the curvelet domain
The selected Coral reef synthetic data are tested in the curvelet

domain; the original data are shown in Figure 4A. Figure 4B shows
corrupted data with 50% of traces missing randomly. Figures 4C, D
show interpolation results using FISTA and SFISTA methods in the
curvelet domain. Figures 4E, F show the reconstructed errors
between the reconstruction and original data; Figure 4F shows a
smaller reconstructed error. Table 4 shows the reconstruction error
and SNR, which demonstrates the validity of the proposed method.

Comparing the detailed values in Tables 3, 4, the reconstruction
performance of the SFISTA method in the curvelet domain is better
than that in the contourlet domain.

3.2 Field examples

3.2.1 Seismic data interpolation in the contourlet
domain

The field data are illustrated in Figure 5A. Figure 5B
shows corrupted data with 50% of traces missing randomly.
Figures 5C, D show interpolation effects using FISTA and
SFISTA methods in the contourlet domain. By comparing
the interpolation results of the ellipse regions, we learn that
the reconstruction results of the SFISTA method in the
contourlet domain are similar to the original data. Figures
5E, F show the reconstructed errors between the
reconstruction and original data; Figure 5F shows a smaller
reconstructed error. Table 5 shows the reconstruction error and
SNR, which demonstrates the validity of the SFISTA method in
the contourlet domain.

3.2.2 Seismic data interpolation in the curvelet
domain

The field data are illustrated in Figure 6A. Figure 6B shows
incomplete seismic data with 50% of traces missing randomly.
Figures 6C, D show interpolation effects using FISTA and
SFISTA methods in the curvelet domain. By comparing the
interpolation results of the ellipse regions, we learn that the
reconstruction data on the SFISTA method in the curvelet
domain are similar to the original data. Figures 6E, F show
the reconstructed errors between the reconstruction and
original data; Figure 6F shows a smaller reconstructed error.

FIGURE 5
Reconstruction results of field data in the contourlet domain. (A)Original data; (B) 50% of randomly missing data; (C) interpolated data obtained by
the FISTAmethod; (D) interpolated data obtained by the SFISTAmethod; (E) reconstructed errors obtained by the FISTAmethod; (F) reconstructed errors
obtained by the SFISTA method.

TABLE 5 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 3904.69 3633.50

SNR 6.43 7.16
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Table 6 shows the reconstruction error and SNR results of the two
algorithms in the curvelet domain. Comparing the two methods,
SFISTA performs better with a lower error and higher SNR.

Figure 7A plots the interpolation single trace of the missing trace
with zero values. In Figures 7, the black, pink, and blue lines correspond
to the original data and those obtained by FISTA and SFISTAmethods,
respectively. Figure 7B shows the zoomed traces from the transparent
gray window of Figure 7A. A detailed comparison reveals that the blue
line is similar to the black line. We can, therefore, affirm that the
proposed SFISTA method can better restore the significant features of
the useful signal than the FISTA method.

Comparing the detailed values in Tables 5, 6, the SFISTA
method in the curvelet domain is better than that in the
contourlet domain.

FIGURE 6
Reconstruction results of field data in the curvelet domain. (A)Original data; (B) 50% of randomlymissing data; (C) interpolated data obtained by the
FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F) reconstructed errors
obtained by the SFISTA method.

TABLE 6 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 2968.24 2220.78

SNR 9.18 12.91

FIGURE 7
(A) Comparison of a missing single-trace amplitude interpolated
with FISTA and SFISTA methods; (B) zoomed traces from the
transparent gray window of (A).

FIGURE 8
Average amplitude spectrum from original data, interpolated
with FISTA and SFISTA methods.
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The performance of these methods could be investigated more
by comparing the average amplitude spectrum (Mafakheri et al.,
2022). The average amplitude spectrum presents the original data
and those obtained by FISTA and SFISTA methods, as shown in
Figure 8 by the black, pink, and blue lines, respectively. The SFISTA
method in the curvelet domain gives a closer spectrum to that of the
original data, particularly in the range of 5–30 Hz. In this case, our
method has better performance.

3.2.3 Three-dimensional seismic data tests
The experimental results of three sets of 2D data show that

SFISTA based on the curvelet transform shows good performance.
Next, this method will be tested for 3D seismic data reconstruction.
The 3D data (size: 64 × 64 × 64) are from the software package of
MathGeo 2020 (https://gitee.com/sevenysw/MathGeo2020). The 3D
discrete curvelet transform method comes from the reference of
Ying et al. (2005).

The original data are shown in Figure 9A. Figure 9B shows
corrupted data with 51% of the traces removed randomly; the
iteration number of the FISTA and SFISTA methods is 1000.
Figures 9C, D show the interpolation results using the FISTA
and SFISTA methods in the curvelet domain. Figures 9E, F show
reconstructed errors obtained by the FISTA and SFISTA methods.
The quantitatively recovered reconstruction error and SNR are
shown in Table 7; Table 7 illustrates that the SFISTA method is
better than the FISTA method.

Figure 10A plots the interpolation single trace from Figures
9C, D. The black, pink, and blue lines represent the original data

and those obtained by FISTA and SFISTA methods,
respectively. Figure 10B shows the zoomed traces from the
transparent gray window of Figure 10A. A detailed
comparison reveals that the blue line is similar to the black
line. We can, therefore, affirm that the proposed SFISTA
method can better restore the significant features of the
useful signal than the FISTA approach.

The performance of these methods could be investigated
more by comparing the average amplitude spectrum. The
average amplitude spectrum of the original data and FISTA
and SFISTA methods are shown in Figure 11 by the black,
pink, and blue lines, respectively. Interestingly, in this case,
the reconstruction data obtained by our method are very
similar to the original data.

4 Conclusion

In this paper, we proposed a new seismic data reconstruction
method combining the curvelet transform and the SFISTA method.

FIGURE 9
Reconstruction results of three-dimensional field data in the curvelet domain. (A) Original data; (B) 51% of randomly missing data; (C) interpolated
data obtained by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F)
reconstructed errors obtained by the SFISTA method.

TABLE 7 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 27781.58 18396.99

SNR 7.32 10.79
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Comparing the results obtainedwhenusing the contourlet and curvelet
domainsas thesparsedomain, itcanbeconcludedthat theoptimization
algorithm in the curvelet domain has better performance. In the same
sparse domain, comparing the FISTA and SFISTA methods, it can be
concluded that SFISTA shows better performance. The seismic data
reconstruction effects of SFISTA based on the curvelet transform have
been demonstrated by quantitative and qualitative comparisons with

several sets of data. The proposed method can be used for 2D and 3D
seismic data reconstruction.
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FIGURE 10
(A) Comparison of a missing single-trace amplitude interpolated with FISTA and SFISTA methods; (B) zoomed traces from the transparent gray
window of (A).

FIGURE 11
Average amplitude spectrum from original data, interpolated
with FISTA and SFISTA methods.
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