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Accurate P-wave first-motion-polarity (FMP) information can contribute to
solving earthquake focal mechanisms, especially for small earthquakes, to
which waveform-based methods are generally inapplicable due to the
computationally expensive high-frequency waveform simulations and
inaccurate velocity models. In this paper, we propose a deep-learning-based
method for the automatic determination of the FMPs, named “DiTingMotion”.
DiTingMotion was trained with the P-wave FMP labels from the “DiTing” and
SCSN-FMP datasets, and it achieved ~97.8% accuracy on both datasets. The
model maintains ~83% accuracy on data labeled as “Emergent”, of which the
FMP labels are challenging to identify for seismic analysts. Integrated with HASH,
we developed a workflow for automated focal mechanism inversion using the
FMPs identified by DiTingMotion and applied it to the 2019 M 6.4 Ridgecrest
earthquake sequence for performance evaluation. In this case, DiTingMotion
yields comparable focal mechanism results to that using manually determined
FMPs by SCSN on the same data. The results proved that the DiTingMotion has a
good generalization ability and broad application prospect in rapid earthquake
focal mechanism inversion.
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Introduction

In recent years, the rapid development of dense arrays and real-time seismology
technology has brought seismology into a new era. For example, there are over
5,000 broadband and over 10,000 strong motion seismic stations in China, and all data
are transmitted to the data center in real time via the Internet. The extensive volume of data
brings great challenges to routine earthquake cataloging and rapid focal mechanism
determination. The focal mechanisms can be solved from the P-wave first-motion-
polarity (FMP) information (e.g., HASH; Hardebeck & Shearer, 2002; Hardebeck &
Shearer, 2003) or the waveform information (e.g., gCAP; Zhao & Helmberger, 1994; Zhu
& Helmberger, 1996; Zhu & Zhou, 2016). However, the waveform-based methods suffer the
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high-computational cost of high-frequency seismogram simulations
and inaccurate velocity models when applied to small earthquakes
(e.g., M < 3) and generally require manual interventions. The
polarity-based methods rely on accurate FMP information that
used to be determined manually. In this study, we focus on the
automatic determination of FMPs and their application to
earthquake focal mechanism inversion.

P-wave FMP determination methods have been developed
mainly based on waveform amplitude change before and after
the arrivals (e.g., Chen & Holland, 2016; Pugh et al., 2016).
However, their accuracy is less than that of human experts,
especially for low signal-to-noise ratio phases and slow-starting

phases. In recent years, machine learning has been widely used
in all aspects of automated seismic data processing, including
seismic data denoising (Zhu W et al., 2019), earthquake detection
(Perol et al., 2018; Saad et al., 2020; Saad et al., 2022a), seismic phase
picking (Ross et al., 2018a; Wang et al., 2019; Zhou et al., 2019;
Mousavi et al., 2020; Saad et al., 2021; Xiao et al., 2021), phase
association (Ross et al., 2019b), earthquake location (e.g., van den
Ende et al., 2020; Zhang et al., 2022), magnitude estimation
(Mousavi & Beroza, 2020; Saad et al., 2022b), and earthquake
early warning (Zhang et al., 2021). It has also been used in the
FMP identification (e.g., Ross et al., 2018b; Uchide et al., 2020;
Cheng et al., 2021), which considers FMP identification as a typical

FIGURE 1
Diagram showing the DiTingMotion deep-learning neural network.
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classification problem and uses the convolutional neural network
(CNN) model with the classical structure for the automatic
prediction of the “up” or “down” FMPs of P phases.

In this paper, we propose a deep CNN model to identify P-wave
FMPs, the so-called “DiTingMotion”. Compared to previous studies
that determine FMP with deep learning, this study has distinct
features as follows: i) In terms of data, we extend the training set by
combining both the DiTing (Zhao et al., 2022) and SCSN-FMP
(Ross et al., 2018b) datasets; ii) In terms of deep-learning model, we
designed a novel formulation of the input, proposed a CNN with
side-output layers for FMP classification, and used the focal loss
instead of classic cross-entropy for training; iii) In terms of
evaluation, we demonstrate that DiTingMotion provides high
accuracy and generalization ability in different test datasets as
well as real-world applications. We build a workflow to
automatically obtain focal mechanisms from continuous seismic
waveforms and apply it to the 2019 Ridgecrest earthquake sequence
for performance evaluation. We compare our automatic focal
mechanism result with the SCSN routine focal mechanism
catalog. The results show that with accurate P arrival time
picking, the DiTingMotion can reliably identify P-wave FMPs
with comparable accuracy as manual FMPs. Furthermore, it can
complement events with insufficient manual FMPs to improve the
focal mechanism solution.

Methodology

Design of the neural network

Figure 1 shows the network architecture of the “DiTingMotion”
neural network. It has five convolutional blocks, the first two consist
of two 1D convolutions and one max-pooling layer. The last three
blocks contain three 1D convolutions and one max-pooling layer,
and a side layer follows the last convolutional layer of each block.
These five side layers aggregate to form the final output and output
the classification probability with a sigmoid activation function. The
“Up” and “Down” polarity is then determined by comparing the
classification probability with the threshold. The network
architecture is developed from holistically-nested edge detection
(HED) (Xie & Tu, 2015). One advantage of the HED is that it has
side outputs attached to CNN layers. The CNN layer gets a larger
receptive field as the network proceeds deeper. Thus, the final output
can capture patterns at different levels and scales by combining all
the side outputs. Besides, HED uses deep supervision in training,
which enables the shallow layers to be trained more adequately.
The HED is originally designed to detect fine features of object
edges. The targets of interest in P-wave FMP determination are the
edge features around the P wave arrival. For the details of the
model, e.g., CNN kernel size, number of layers, and number of
CNN blocks, etc., please see Supplementary Table S1 in the
electronic supplement.

In addition to using raw vertical component slices centered at P
arrivals for FMP determination, the “DiTingMotion” takes the sign
function of the difference of the vertical waveform after the P wave
arrival time as another input, which is calculated as follows:

y i[ ] � sign x i[ ] − x i − 1[ ]( )

where x is the original vertical component seismic waveform, i is the
number of sampling point, and sign is the sign function. This
component can effectively reflect the initial polarity of the slow-
starting P wave. Figure 2 shows a visualization example of the input.

The output of “DiTingMotion” includes the polarity sign and
clarity. For polarity signs, there are “up” (U), “down” (D), and
“uncertain” (x). For clarity signs, there are “impulsive” (I),
“emergent” (E), and “uncertain” (−). Note that we only use the
“x” class for polarity in training for the compatibility of the SCSN-
FMP dataset. In testing, we force the network to predict between the
“U” and “D”.

Training, validation and testing

We trained the DiTingMotion using both DiTing and SCSN-
FMP datasets. The DiTing dataset is a large-scale Chinese seismic
benchmark dataset that has 641,025 high-quality P-wave FMP labels
from >1300 broadband and short-period seismometers distributed
throughout China with epicenter distance up to ~330 km from
2013 to 2020 (Zhao et al., 2022). The DiTing dataset not only
contains polarity information (“U”, “D”) but also includes the
corresponding clarity instructions (“I”, “E”, and “x”). The SCSN-
FMP dataset contains ~4.84 million seismograms, with epicenter
distances < ~100 km (Ross et al., 2018b). For the DiTing dataset, we
randomly split 75%, 10%, and 15% of the DiTing dataset for
training, validation, and testing, respectively. For the SCSN-FMP
dataset, we use ~2.49 M samples for the training process (90% for
training and 10% for validation) and ~2.35 M samples for testing.

During the training process, we use a data augmentation that
flips the seismograms and their corresponding labels, which is
similar to Uchide (2020). We use the Adam optimizer with a
learning rate of 0.0003 (Kingma & Ba, 2014) for optimizing the
loss function. Dropout (Srivastava et al., 2014) and early stopping
strategies are applied to avoid the overfitting problem. We use the
focal loss function (Lin et al., 2017) to train DiTingMotion. The FL is
formulated as the following:

FL pt( ) � − 1 − pt( )γ log pt( ), γ≥ 0, where pt � p ify � 1
1 − p otherwise.

{

Here y ∈ 0, 1{ } denotes the ground truth class and p ∈ [0, 1] is
output probability of the DiTingMotion for the corresponding class.
Different from conventional cross entropy (CE), the focal CE has a
modulating factor (1 − pt)γ to prevent the loss from being
dominated by easily classified examples. For example, if a
training instance is well-classified; pt would be close to 1, which
leads the modulating factor to 0. Then the loss of easy examples is
down-weighted, and the model can have more focus on hard
training examples. We trained the model for 80 epochs with a
batch size of 32(Figure 3). Figure 3 shows the train and validation
loss curves using the two different losses. By comparing the
DiTingMotion trained with CE and focal CE with γ � 2, we find
that focal CE has a small (about ~2%) yet consistent improvement
over the CE in training and validation accuracy.

We then test the well-trained DiTingMotion model using the
DiTing and SCSN-FMP test sets. We use the confusion matrix to
evaluate the model performance. As Figure 4 shows, high accuracy
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FIGURE 2
An example of the input data includes the raw vertical waveform (upper trace) and its corresponding sign function (lower trace).

FIGURE 3
The training and validation curves for cross entropy (CE) and focal cross entropy (Focal CE).

FIGURE 4
The DiTingMotion confusion matrix (CM) on the test set of DiTing (A), SCSN-FMP (B), and samples with “E” clarity from the DiTing dataset (C). The
X-axis is the prediction, and the Y-axis is the true label.
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on both the two test sets are achieved: the model can achieve ~97%
accuracy for both “U” and “D” polarities, which proves that the
DiTingMotion model has comparable performance to the model
trained by Ross et al. (2018b) on the SCSN-FMP dataset (i.e., 95%)
and keeps the same good performance on the DiTing dataset that
recorded by the China Seismological Network. Besides, importantly,
due to the specially designed sign function for the emergent FMPs,
the DiTingMotion model has relatively robust performance on data
with less clear FMPs. We test an independent test set (from the
DiTing dataset) with 3934 “E” clarity labeled samples, the predicted
accuracy drops but still achieves ~83% (Figure 4C). The training and
testing of the model are performed on an Nvidia Telsa V100s GPU
card and the application time is 41.7 ms ± 880 µs per loop (mean ±
std. dev. of 7 runs, 10 loops each) for predicting one sample from a
single station.

Workflow for focal mechanism inversion

With reliable FMP prediction, we can further use the HASH
method to invert the focal mechanism, which is a widely used
polarity-based focal mechanism determination program developed
by Hardebeck and Shearer (2002), Hardebeck and Shearer (2003).
The main reason why HASH is suitable for our automatic workflow
is that it accounts for possible errors in earthquake locations and
velocity models, as well as the tolerance of a certain number of
wrong FMPs. On the other hand, HASH has demonstrated excellent
performance for focal mechanism inversion in other similar studies
using machine learning (ML) based FMPs (e.g., Ross et al., 2018b;
Uchide et al., 2020; Cheng et al., 2021).

Figure 5 shows the workflow, the code. The input of the HASH
method is the source location, station locations, seismic velocity
model, P-wave FMPs, and S/P amplitude ratios, then it will compute
takeoff angles and perform a grid search over the strike, dip, and rake
to find the set of acceptable focal mechanism solutions. If there are
multiple solutions that fit all the impulsive polarities, HASH chooses
the solution with the minimized number of misfit emergent FMPs.
The earthquake locations and phase arrivals can be accessed from

the routine phase file (e.g., via the Southern California Seismic
Network—SCSN). Based on the manual picks, DiTingMotion
predicts P-wave FMPs from sliced waveforms, which will be
utilized by HASH for focal mechanism inversion along with S/P
amplitude ratios. With the aid of recently developed ML-based
phase pickers, earthquake catalogs (with locations and arrivals)
also can be automatically built from continuous waveforms, for
example, via the LOC-FLOW developed by Zhang et al. (2022).

Application to the 2019 ridgecrest
earthquake sequence

We use the 4 July 2019 Ridgecrest earthquake sequence in
southern California as a case study to evaluate the performance
of our workflow. We choose this region and this earthquake
sequence because 1) the HASH method has already been
routinely used by the SCSN for a long time (Yang et al., 2012),
and most importantly, 2) focal mechanisms of the earthquake
sequence have been well studied using the HASH method (Lin
et al., 2020) and waveform-based gCAP3D method (Wang et al.,
2019), which provide us with independent benchmarks.

From the first foreshock of the MW 6.4 on 17:33:48, 4 July to the
aftershocks that occurred following the MW 7.1 through 23:59:59,
9 July 2019, a total of 1,241 events with magnitude ≥ 2.5 were
reported by the SCSN (K Hutton et al., 2010). We collect the three-
component seismograms from 41 permanent stations and four
temporary stations located within 120 km of the MW

7.1 mainshock. In our focal mechanism inversion, P arrivals are
from the SCSN catalog, and the velocity model is from Shelly, D. R.
(2020). FMPs are obtained from the SCSN and DiTingMotion for
result comparison.

Firstly, we assessed the impact of P arrival time accuracy on FMP
results. Since the quantity and quality of FMPs for each event are
critical to the focal mechanism inversion, for a fair comparison, we
screened out 529 common events from the SCSN catalog and ML
catalog (Liu et al., 2020), with at least 15 common associated P
arrival times, and magnitudes range from 2.5 to 4.9. These events

FIGURE 5
Workflow showing HASH focal mechanism inversion using DiTingMotion.
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have 11,980 P common arrival times and 10,347 P-wave FMPs from
the SCSN catalog. First, we test the performance of DiTingMotion
on the manual P arrivals from the SCSN. The accuracy of FMP
identification can achieve 89.9% U) and 89% D), respectively
(Figure 6A). Among the 11,980 P waveforms, there are
1,634 FMPs with clarity of “x” (uncertain), while DiTingMotion
identified 1,187 of them (i.e., 546 up and 641 down), and only
447 were evaluated as “x” (Figure 6A). Although we do not have
labels to evaluate the accuracy for these additional predictions, we
find that these ML-discovered FMPs are a good complement to focal
mechanism inversion through the later result comparisons. Second,
we test the performance of DiTingMotion on the ML arrivals from
Liu et al. (2020). We find a significant decrease in accuracy
(i.e., 71.3%(U) and 74.6%(D); Figure 6B), suggesting that the
marked P arrivals affect the FMP identification in DiTingMotion.
We compare the arrival difference between the manual arrivals and
ML arrivals and find that the ML arrivals may have 0 ~ ± 0.1s
difference (with a majority of differences < 0.05 s) from the manual
picks (see Supplementary Figure S1 in the electronic supplement).
To verify the tolerance of pick uncertainties in DiTingMotion, we
perturb the P manuals arrivals by ± 0.05 s and re-evaluate its
performance. Results show that the accuracy reduces to 81.8%
(U) and 80.3% (D) (Figures 6C, D) and it drops more when the

arrival time used is before the true time (Figure 6C). It suggests that
the accuracy of arrival time picking has a significant impact on
DiTingMotion for FMP identification because the sign function we
use as input exactly starts from the P arrivals.

Secondly, we compared three HASH focal mechanisms obtained
using different FMP inputs. Common events between the SCSN
focal mechanism catalog, Lin et al. (2020)’s and Wang and Zhan
(2020)’s are selected for result comparison. The first two focal
mechanism catalogs are done by HASH, while the latter is
obtained through waveform inversion. For HASH results, we
only choose focal mechanisms with quality “A” and “B” from the
SCSN catalog and Lin et al. (2020)’s since quality “C” and “D” results
have large uncertainties. For waveform inversion-based focal
mechanisms (Wang and Zhan, 2020), we use them all because
they are verified by waveform fitting and are reliable. Based on
the above selection criteria, 450 events from the SCSN catalog,
247 events from Lin’s catalog, and 116 events from Wang’s catalog
are selected. There are three kinds of FMP input for focal
mechanism inversions: 1. ML FMP based on manual picks (“ML”
for short); 2. Manual FMP (“Man” for short); 3. Manual FMP,
supplemented by ML FMP based on manual picks (“Man+ML” for
short). To quantitatively characterize the difference between these
results, we adopt the Kagan angle analysis (Kagan, 2007), in which

FIGURE 6
The confusionmatrix of FMPs according to different P arrival times: (A)manual P picks from SCSN; (B)machine learning P picks from Liu et al., 2020;
(C) 0.05s earlier than the manual P arrivals; (D) 0.05s later than the manual P arrivals.
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the Kagan angle represents the difference in rotation angle between
two independent focal mechanisms. Figure 7 shows the
corresponding Kagan angles between the three inversion results
and the three reference catalogs. The comparison results with the
three catalogs are consistent: the Kagan angles are mainly distributed
in the [10°,30°] interval in all the results, and the 80% lines are
around 40°. The 80% line is to show which result is the closest to the
reference catalog. “Man+ML” is the best in the comparison with
SCSN catalog andWang et al. (2019), and slightly worse than “Man”
in Lin et al. (2020), which proves ML FMP can be a useful
supplement to the manual FMP. It is also worth mentioning that
the result difference between “Man” and “ML” is minor using the
SCSN as a reference (Figure 7A), which means if the P arrival time
picking is accurate, ML FMP alone can be sufficiently good for the
HASH focal mechanism inversion.

Most inversion results with Kagan angles distributed in the [10°,
30°] interval are reliable, like Figure 8A shows, different results have
very close focal mechanism solutions and have few inconsistencies in
the FMP inputs. SinceML usually identifiesmore FMPs, in some cases
the ML provides the best solution, for example, in Figure 8B, there are
8 “x” in the manual FMP while only 1 in ML FMP, due to the FMP
number is not enough, theMan result doesn’t constrain well, and even

Man+ML is not as good as ML, that means there is obvious wrong
FMP in Man results (like “WRC2”), since all the other inputs are
exactly the same for all three results.

However, in addition to FMP inputs, many other factors would
also affect the final inversion results, for example, the azimuth
distribution of stations, the signal-to-noise ratio of data, the
choice of velocity models, or different HASH parameters settings.
All these factors make it seems quite normal to have up to 40° Kagan
angle differences between different results (a comparison between
the three reference catalogs we used in this paper is available in
Supplementary Figure S2). We thus performed an analysis of events
with Kagan angle large than 40°, as the Venn diagram in Figure 7D
shows, there are 52 events simultaneously present in all the results.
After checking their P waves with ML and manual FMPs, we found
that most of these events were related to seven stations: “JRC2”
(49 related), “WVP2” (48 related), “WHF” (46 related), “MPM”

(46 related), “CLC” (45 related), “WRC2” (38 related), “WCS2”
(32 related). By calculating the confusion matrix of these stations
separately (see Supplementary Figure S3 in the electronic
supplement), we found that the ML FMP identification accuracy
of these stations (81%–88%) is indeed relatively lower than the
overall level (89.9%). The discrepancies between different results

FIGURE 7
The histograms of Kagan angles according to three HASH results with different inputs: manual FMP combined with machine learning FMP (blue),
manual FMP only (yellow), and machine learning FMP using manual picks (green). The 80% line indicates that the number to the left of the line accounts
for 80% of the total. (A) Compare with SCSN catalog; (B) Compare with Lin et al. (2020); (C) Compare with Wang and Zhan (2020); (D) Venn diagram of
three HASH results with Kagan angle larger than 40°.
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may be because individual waveforms have low signal-to-noise
ratios, resulting in controversial FMPs (see an example in
Supplementary Figure S4A). Of course, we cannot exclude that
the reference solution itself is wrong (see Supplementary
Figure S4B).

Discussion and conclusion

We have developed a novel machine-learning algorithm for the
efficient identification of P-wave FMP from raw seismic waveforms.
This method is developed from the network architecture for edge
detection in image recognition, and in addition to using the original
P waveform, the sign function of the difference of the vertical
waveform after the P wave arrival time was also used to enhance
the input features. The model trained with the above strategies
resulted in strong generalization ability: 1) the model reached 97.3%
(“D”) and 97.86% (“U”) accuracy on the SCSN test dataset, and
97.48%(“D”) and 97.77%(“U”) accuracy on the DiTing dataset; 2)
the model achieved 85.58% (“U”) and 83.15% (“D”) for the
recognition of the challenging “emergent” labeled data.

Though the use of sign functions as input enhances the ability
to recognize all kinds of FMP features, on the other hand, the
algorithm also becomes more sensitive to the accuracy of P arrival
time. A test on 10,347 P waveforms showed that even 0.05 s
disturbances in P arrival time could significantly affect FMP
identification results (e.g., Figures 6C, D). This is different from
the model developed by Ross et al. (2018b) and Uchide (2020), in
which they augmented the data by time shift and made the model
more flexible to the uncertainties in arrival-time picking. However,
improving the tolerance for time shifts would decrease the polarity
classification performance, especially for complex examples. In our

opinion, the phase picking accuracy should be considered by
picking algorithms or seismic analysts rather than a polarity
determination model.

We have applied DiTingMotion to the automatic focal
mechanism inversion workflow. Given the accurate P arrival
times, the accuracy of FMP identification can achieve 89.9% (U)
and 89% (D), respectively, when compared with manual FMP in the
SCSN catalog. We evaluate three HASH solutions derived from
different sources of FMPs by calculating the Kagan angle between
our results and three reference focal mechanism catalogs, in which
we find ML FMP can be a valuable supplement to the manual FMPs
and improve the HASH inversion results in general. Finally, we
analyzed several of the most common scenarios that lead to
inconsistencies between ML-FMP-based HASH inversion and
manual results.

In conclusion, machine learning has made significant progress
in P-wave FMP identification and has initially demonstrated its
application potential in the automatic inversion of focal
mechanisms. Of course, in practical applications, in addition to
FMPs, many other factors would also affect the inversion results, for
example, the azimuth distribution of stations, the signal-to-noise
ratio of data, or the choice of velocity models that we have not
discussed in this article. Since no matter how well-trained the
machine learning model is, it will make a small number of
mistakes and has a certain degree of randomness, it is very
important to establish an effective tolerance mechanism for
mistakes. One of the better strategies is to use ML FMPs together
with manual FMPs, especially in those regions with relatively dense
station coverage. ML is a great complement to human recognition
results. In areas with low signal-to-noise ratios or sparse stations,
automatic identification methods should be used more cautiously.
This situation will improve with more data sets with high-quality

FIGURE 8
Two examples (A, B) of focal mechanism solution comparisons with different FMP inputs. (A, B, left) P waveforms with arrival times (dash-dotted
green lines), ML FMP and sharpness (blue texts), andmanual FMP and sharpness (red texts). (A, B, right) The corresponding focal mechanisms from theML,
Man, Man+FML FMPs, with FMP signs and station locations on the beach balls.
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and multi-category labels like DiTing has continuously been
proposed, and the generalization ability of machine learning
models will improve over time.
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