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Most satellite-derived bathymetry (SDB) methods developed thus far from passive
remote sensing data have required in situ water depth, thus limiting their utility in
areas with no in situ data. Recently, new Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2) observations have shown great potential in providing high-precision a
priori water depth benefits from range-resolved lidar. In this study, we propose a
combined active and passive remote sensing SDBmethod using only satellite data.
An adaptive ellipse DBSCAN (AE-DBSCAN) algorithm is introduced to derive a
priori bathymetric data from ICESat-2 data to automatically adapt to the terrain
change complexity, and then we use these a priori bathymetric data in Sentinel-2
images to help build a model between remote sensing reflectance (Rrs) and water
depth. Three machine learning (ML) methods are then employed, and the
performances compared with conventional empirical SDB models are
presented. After that, the results using different Sentinel-2 Rrs band
combinations and the effects with and without atmospheric correction on ML-
based SDB are discussed. The results showed that our AE-DBSCAN method
performs better than the standard DBSCAN method, and the ML-based SDB
can achieve an overall RMSE of less than 1.5 m in St. Thomas better than the
traditional SDB method. They also indicate that ML-based SDB can obtain a
relatively high-precision water depth without atmospheric correction, which
helps to improve processing efficiency by avoiding a complex atmospheric
correction process.
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1 Introduction

With over 1.6 million km of global coastline, this part of the coastal zone is the link
between land and sea and provides important ecological and environmental data. Shallow
water bathymetry is an important parameter for coastal zone observations that can be used
for offshore activities, resource management and defense activities. However, echo-sounders
at a resolution of 1 km have determined less than 18% of the nearshore bathymetric
information (Wölfl et al., 2019). The nearshore bathymetric data, known as the “white gaps”,
are still urgently needed for collection. Traditional bathymetric charts are based on ship- or
aircraft-based surveys (Gao, 2009). Due to the high cost and time-consuming nature of
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shipborne surveys and the highly dynamic nature of many shallow
water environments, it is not possible to survey all areas of interest,
and shipborne surveys have thus far typically only applied to limited
ports andmajor shipping lanes (Chénier et al., 2018).While accurate
bathymetry to depths up to approximately 70 m is possible using
airborne LiDAR, the relatively high costs associated with these
systems limit their application to large or remote areas (Ilori and
Knudby, 2020). Satellite-based bathymetry can serve as an
alternative to traditional depth measurements in optically shallow
waters.

Satellite-derived bathymetry (SDB), primarily in optically
shallow water, can provide updated and detailed bathymetric
data for shallow areas with higher spatial-temporal coverage and
adequate vertical and horizontal accuracy. Passive optical satellite
remote sensing images based on the relationship between reflected
radiation and water depth in shallow water can be used to map
bathymetry. SDB can be retrieved using an empirical method
approach. Empirical methods use regression or similar analysis to
establish a mathematical and statistical relationship between water
depth and the remotely sensed radiance of a water body (Lyzenga,
1978; Lyzenga, 1985; Parker and Sinclair, 2012; Chénier et al., 2018).
Therefore, most empirical methods need to be accompanied by in
situ data on water depth for calibration; ideally, these data should be
up to date and have a good geographical and depth distribution,
which, obviously, are very difficult to obtain. NASA launched the
Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) in September
2018. ICESat-2 carries one instrument, the advanced topographic
laser altimeter system (ATLAS). Before the launch of ICESat-2, early
ATLAS-based prototype MABEL studies demonstrated the its
potential to identify inland and nearshore bathymetry (Forfinski-
Sarkozi and Parrish, 2016; Jasinski et al., 2016). Subsequently, the
bathymetric product ALT03, operated by ICESat-2, was able to
replace the in situ data to provide potential seed bathymetric point
datasets for SDB(Parrish et al., 2019; Albright and Glennie, 2021).

Due to the sensitivity of the ICESat-2 ATLAS detector, the raw
lidar photons contain large amounts of noise caused by sunlight
(Albright and Glennie, 2021). Density-based spatial clustering of
applications with noise (DBSCAN) has been proven to be a fast
method for extracting seafloor photon signals (Ma et al., 2020; Chen
et al., 2021b). The radius ε and the threshold Minpts are key
parameters in DBSCAN. Points in a cluster are classified as
signals when the density of adjacent points in radius ε exceeds a
threshold Minpts (Ester et al., 1996). Despite the accuracy of
existing DBSCAN methods, it is still very difficult to determine
the values of key algorithm parameters due to the number of raw
photons and the complexity of the underwater terrain. In our
previous study, we proposed an adaptive ellipse DBSCAN (AE-
DBSCAN) algorithm for ICESat-2 photon data processing (Xie et al.,
2021). AE-DBSCAN can calculate the optimal detection parameters
by adaptive iteration. In this algorithm, the determination of the
adaptive radius and threshold improves the accuracy and efficiency
of the detection results. Based on this method, large ICESat-2
bathymetric datasets can be obtained, which can be replaced with
in situ data for training model coefficients of the relationship
between reflectance (Rrs) and depth.

Most existing SDB studies are based on conventional
empirical models, such as the linear model and band ratio
model (Lyzenga, 1978; Stumpf et al., 2003). However,

conventional models are too simple to be suitable for complex
and large-scale environments. Machine learning methods have
attracted much attention because of their advantages in accepting
high-dimensional features to build non-linear models (Auret and
Aldrich, 2012). Machine learning approaches such as random
forest (RF) (Auret and Aldrich, 2012; Tonion et al., 2020),
support vector machine (SVM) (Misra et al., 2018; Mateo-
Pérez et al., 2021), multilayer perceptron (MLP) (Wang et al.,
2020) and neural networks (NN) (Kaloop et al., 2022) have been
applied to multispectral remote sensing water depth inversion.
Many studies focus on improving model accuracy, but in situ
coverage is still needed. This may be a major limitation of SDB, as
shallow water field data are not available in many regions.
Recently, the active-passive fusion bathymetric inversion
method has become the mainstream method of nearshore
bathymetry. Due to the limitations of previous methods, it is
difficult to obtain enough bathymetric points as the prior data to
replace the in situ data for bathymetric learning (Zhong et al.,
2022). Therefore, it is rare to compare machine learning method
performance in active-passive fusion bathymetric inversion.

In the SDB process, atmospheric corrections (AC) are a key step
in satellite data analysis related to the aquatic environment,
including those related to bathymetric extraction (Goodman
et al., 2008; Bramante et al., 2013). Over the open ocean, satellite
sensors receive approximately 90% of the radiation from the
atmosphere. In coastal waters, these contributions can be higher
than 90%, especially in the blue and green bands, but in the case of
highly turbid waters associated with higher reflectivity signals, the
red and near-infrared (NIR) bands are typically much lower (Wang,
2010). The atmospheric influence can be variable between images,
compromising the results. AC errors are associated with
uncertainties generated through atmospheric path scattering and
water surface reflectances (i.e., sunlight) (Botha et al., 2016).
Therefore, the discussion of AC errors in bathymetry combining
passive multispectral remote sensing imagery and active LiDAR data
is also of profound focus.

FIGURE 1
Study areas over the Virgin Islands. The red lines in this figure are
the ground tracks of ICESat-2 used in the study. The basemap data are
from World_Ocean_Base produced by ArcGIS 10.1, which is an
attribution from Esri, Garmin, GEBCO, NOAA NGDC, and other
contributors.
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The purpose of this study is to investigate the performance of
an improved SDB combining active and passive remote sensing,
including an adaptive ellipse DBSCAN method to automatically
satisfy ICESat-2 bathymetric datasets as the prior bathymetric
data and different machine learning models for building the
model between Rrs and water depth. The remainder of the
paper is organized as follows. The study areas and data

sources are described in the next section. The third section
describes our proposed method in this paper. The fourth
section explains the results and validation of the proposed
method. The fifth section discusses the effect of different
machine learning models, band combinations, and
atmospheric correction on SDB. Finally, the final section
concludes the paper.

TABLE 1 Detailed information on the study areas and satellite data.

Details Location Area (km2) ICESat-2 ATL03 date Sentinel-2 date

St. Thomas 18.3–18.4°S 582.6 2018/11/22–06:03 gt1r/2r/3r 2018/11/21

2019/12/15–23:21 gt1r/2r/3r

64.8–65.1°W 2020/12/13–06:00 gt1l/2l/3l

2021/05/18–10:41 gt1r/2r/3r

Anguila 18.0–18.4°S 1,538.2 2019/01/11–03:32 gt1l/2l/3l 2020/5/14

2019/04/11–23:12 gt1l/2l/3l

2019/06/09–08:18 gt1l/2l/3l

62.9–63.3°W 2019/10/07–02:34 gt1l/2l/3l

2020/01/05–22:13 gt1l/2l/3l

2020/01/09–10:11gt1r/2r/3r

St. Croix 17.6–17.9°S 2,112.6 2018/12/21–04:39 gt1r/2r/3r 2019/8/13

2019/01/19–03:15 gt1l/2l/3l

2019/04/19–22:55 gt1l/2l/3l

64.9–64.4°W 2019/06/17–08:01 gt1r/2r/3r

2019/09/16–03:41 gt1r/2r/3r

2021/09/15–04:57 gt1r/2r/3r

Basseterre 17.1–17.6°S 3,328.7 2018/11/10–06:28 gt1r/2r/3r 2021/4/1

2019/04/11–23:12 gt1l/2l/3l

2019/09/08–03:58 gt1r/2r/3r

62.4–63.0°W 2019/10/07–02:34 gt1r/2r/3r

2019/12/07–23:37 gt1l/2l/3l

2020/01/05–22:13 gt1r/2r/3r

Anegada 18.2–18.8°S 5,850.5 2018/10/20–07:35 gt1r/2r/3r 2020/4/19

2019/05/15–09:33 gt1l/2l/3l

2019/08/14–05:13 gt1l/2l/3l

64.1–64.9°W 2019/12/15–23:21 gt1r/2r/3r

2020/06/18–02:38 gt1r/2r/3r

2020/08/14–23:50 gt1l/2l/3l

Ganquan Island 16.50–16.52°N \ 2019/02/22–13:51 gt1l/2l/3l 2021/03/05

2019/05/24–09:31 gt1l/2l/3l

111 2019/07/21–18:37 gt1l/2l/3l

58–111.59°E 2019/10/20–14:17 gt1r/2r/3r
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2 Study areas and data sources

2.1 Study areas

In this study, five islands, as shown in Figure 1, are selected
considering the local clear water conditions, and the laser
trajectories of ICESat-2 passing five study islands on different
dates are shown as red lines. Five study islands are distributed
around Viking Island, which are St. Thomas, Anguila, St. Croix,
Basseterre and Anegada. They are located in the north of the Greater
Antilles, facing the Caribbean Sea in the west and the North Atlantic
in the north. The water column in the shallow areas of these islands
is clear, which makes it easy for ICESat-2 ATLAS to detect the
nearshore seafloor topography. The continuously updated digital
elevation model (CUDEM) at St. Thomas, developed by NOAA’s
National Centers for Environmental Information (NCEI) and
released in December 2014, is the validation data for this paper
(NOAA). The vertical accuracy of CUDEM is 0.5 m and the
horizontal accuracy is 1 m. In addition, the spatial resolution of
the digital elevation model is 1/9 arc second (3.43 m). Table 1 lists
the specific geographical location, ICESat-2 route and Sentinel-2
multispectral remote sensing image information of each study area.
Notably, each study area is more than just a shallow island, and these
study islands range in size from 582.6 km2 (St. Thomas) to
5,850.5 km2 (Anegada).

2.2 Satellite data

2.2.1 ICESat-2 data
ICESat-2 ATLAS is a space-based laser altimeter launched in

September 2018, which is a photon-counting lidar consisting of
three strong-weak beam pairs with a revisit period of 91 days and a
distance between laser footprints along the track of only 0.7 m
(Altamimi et al., 2016). The distance between each beam pair is
3.3 km, and the spacing on the ground between the strong and weak
beams within each pair is 90 m. The laser pairs are divided into a
strong beam and a weak beam based on an energy ratio of 1:4, which
can effectively improve surface elevation change detection. Each
laser has a repetition frequency of 10 kHz at 532 nm wavelength.
Each footprint is 70 cm apart and has a diameter of approximately
13 m (Neumann et al., 2013; Neumann et al., 2019). The ICESat-2
geolocation photon data are available in the ATL03 product, which
is disseminated through the National Snow and Ice Data Center
(NSIDC) (Markus et al., 2017; Neumann et al., 2018). The
ATL03 datasets report time, latitude, longitude, and elevation
information for each photon above the World Geodetic System
(WGS) 84 ellipsoid.

2.2.2 Sentinel-2 imagery
Sentinel-2 data are selected as passive remote sensing imagery

for the multispectral features in this study. Sentinel-2, launched
in June 2015, is a dual-satellite mission developed by the
European Space Agency (ESA) with a revisit period of 5 days
(Drusch et al., 2012; NOAA, 2023). Sentinel 2 carries the
Multispectral Imager (MSI) that measures remote sensing
images for multispectral bathymetry. We used Level-1C (L1C)
data, available on the U.S. Geological Survey (USGS) website. The

Level-2A (L2A) image data are obtained by atmospheric
correction based on L1C data with the Sen2Cor plug-in at
SNAP, while the L1C data without atmospheric correction are
retained for comparison. Sen2Cor is an L2A processor whose
primary purpose is to correct single-date Sentinel-2 L1C top-of-
atmosphere products from atmospheric effects to provide L2A
bottom-of-atmosphere reflectivity products (Main-Knorn et al.,
2017). Band 2 (blue), Band 3 (green), Band 4 (red), Band 5
(vegetation red edge 1, VRE1), Band 6 (vegetation red edge 2,
VRE2), Band 7 (vegetation red edge 3, VRE3), Band 8 (near-
infrared, NIR) Band 11 (SWIR1) and Band 12 (SWIR2) in
Sentinel-2 imagery are applied for our study. The 9 spectral
bands chosen in the study cover the range of 490–2,190 nm.

3 Methodology

Figure 2 illustrates a general workflow that is used in this paper.
First, Sentinel-2 multispectral images are preprocessed with AC.
Additionally, ICESat-2 bathymetric points are extracted from
ATLAS ATL03 data as the prior data. Then, the ICESat-2
bathymetric points are aligned with the preprocessed Sentinel-2
images, and the training datasets are extracted from the Sentinel-2
image corresponding to each prior water depth point. Subsequently,
the training datasets are input into the machine learning model
training. Finally, the other whole bathymetric maps are generated by
the trained models. The CUDEM data at St. Thomas are used for
validation.

3.1 Adaptive ellipse DBSCAN for bathymetric
photon detection

When downloading ICESat-2 ATL03 data from the official
website, we can narrow the data based on search criteria such as
date, longitude and latitude, draw bounding boxes on the Earth’s
surface, or import a shape file smaller than 350 points. After
obtaining an ATL03 file that passes through the target island, the
bathymetric photon points are extracted from ICESat-2 ATL03 data
by the following steps. The whole flowchart of the adaptive ellipse
DBSCAN algorithm is shown in Figure 3. The input ICESat-2
ATL03 data are intercepted along the vertical elevation direction,
and the interception range should roughly include the sea surface
and the bottom topography. The ATL03 data are taken as the
horizontal axis in the along-track distance direction, and the
along-track distance axis is reduced. Then, the data are
segmented, and each segment is taken as a photonic signal
dataset D. For each segment, the instantaneous sea surface
elevation Ssuf is calculated, and the photonic data above Sdown
photon data are removed. Then we compute the Euclidean
distance matrix for all points in dataset D and sort each row
element in the distance matrix in ascending order.

Then the candidate radius Dε is calculated:

Dε � εk � Dk | 1≤ k≤N{ } (1)
where k � 1, 2, . . . , N;N is the length of D.Dk is the element of the
sorted Euclidean distance matrix of D.

The candidate threshold dataset Dmpts is calculated:
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Dmpts � minptsk � Nsn −Nno( ) + ln M( )
ln Nsn/Nno( ) , 1≤ k≤N{ } (2)

whereNsn is the average number of noise photon signals for each
εk and Nno is the average number of noise photon signals. M is
the number of frames that the original photon divided in the
vertical direction. If Dmpts is not an integer, then it is
rounded up.

Iterate through k, and put the corresponding εk and minptsk
into DBSCAN to cluster the photonic signal dataset D, and obtain
the generated clusters under different k values; when the generated
clusters are the same three times in a row, record the cluster as the
optimal cluster. Continue clustering until the generated number of
clusters is no longer the optimal number of clusters, and choose the
maximum k corresponding to when the number of clusters is the
optimal number of clusters as the optimal k; the radius
corresponding to the optimal k and the minimum clustering

threshold are the optimal DBSCAN parameters of D; put the
optimal radius and the minimum clustering threshold into
DBSCAN for clustering operation, and obtain the topography
corresponding to the current segment data. The preliminary
ICESat-2 bathymetric photon points are obtained using the
optimal parameters in DBSCAN.

The preliminary ICESat-2 bathymetric photon points then
need refraction correction to correct the displacement caused
by the refraction of the air/water interface geometry (Parrish
et al., 2019). Since the detection results still retain some
interference signals, we need to determine outliers or noise that
are significantly different or inconsistent with the signal to
improve the accuracy. We next apply wavelet filtering to the
data, and then, the data are classified into three categories by
the K-medoids algorithm. Outlier points along the horizontal and
vertical axes were removed. Outliers along the horizontal and
vertical axes that differ from the median of the window by more

FIGURE 2
Overview of the whole methodology.

FIGURE 3
Adaptive ellipse DBSCAN algorithm flowchart.
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than three scaled median absolute deviations (MADs) are
removed.

3.2 Data preprocessing

Before deriving the water depth, Sentinel 2 L1C level images are
atmospherically corrected to L2A level products using the SNAP
Sen2cor plug-in, followed by a series of preprocessing steps,
including subset, cloud and land removal. For comparison, our
study examines the results using uncorrected images, which means
that the preprocessed L1C images without atmospheric correction
are also training datasets. Since the resolution of the ICESat-2
bathymetric points (0.7 m) is different from that of the Sentinel-2
image (10 m), it is necessary to downsample the ICESat-2
bathymetric points at the Sentinel-2 image resolution of 10 m.
The ICESat-2 bathymetric point data with high spatial resolution
should be matched with the Sentinel-2 images according to their
geographical position. Each pixel of the Sentinel-2 image may
correspond to multiple ICESat-2 bathymetric point data, so the
average of these ICESat-2 bathymetric point data is calculated as the
a priori bathymetric data of the pixel. Meanwhile, the Sentinel-2 Rrs
vectors of each band corresponding to the ICESat-2 data are taken as
the training data. The proportions for training datasets (including
validation) and testing were 80% and 20%, respectively.

Furthermore, this research tries several different band
combinations, as shown in Table 2, to observe their influence on
the prediction models. Band 3 includes the basic natural color bands
(red, blue and green). Band 4 adds the NIR band based on natural
color. Band 6 adds SWIR1 and SWIR2 compared to band 4. Band
8 covers all selected bands except NIR, while band 9 contains all
bands.

3.3 Prediction model training

Machine learning methods have shown great advantages in
regression analysis. In this study, the ICESat-2 bathymetric point
datasets extracted in Section 3.2 and the corresponding Sentinel-2
remote sensing reflectances are applied as input vectors for training
models. Three typical machine learning predictions are selected to
evaluate the capabilities of ICESat-2 bathymetry estimation in this
paper, and the linear model (Lyzenga, 1985) and the band ratio
model (Stumpf et al., 2003) are also used for comparison. The
Random Forest has been noted for its robust generalization ability

and capacity to select optimal numbers of features and decision trees
for classification or prediction purposes (Manessa et al., 2016). The
Neural network models can continually train and optimize their
structure’s parameters, thereby producing non-linear water depth
inversion results (Lippmann, 1987). The Support Vector Machine
approach can effectively fit large volumes of data and identify
appropriate approximation functions for bathymetry (Wang
et al., 2019). The Sentinel-2 Rrs vectors of the specified band
over five study areas were input into the trained model, and the
corresponding water depth of that pixel point was obtained. Finally,
the retrieved bathymetric map was generated by rearrangement. All
prediction models were developed in MATLAB 2022A.

3.3.1 Random forest (RF)
Breiman introduced random forest in 2001 (Breiman, 2001),

which is used in recognition, regression, classification and other
fields. This model is based on a set of decision trees (forests) that are
trained toward the best combination (Kullarni and Sinha, 2013).
Random forests are more adapted to data that are high-dimensional
and have a large number of samples, so their advantages are also
reflected in their excellent performance in dealing with high-
dimensional and large quantities of data without artificial data
cleaning, feature combination, dealing with sample imbalance, or
even vacancy value filling. In this paper, the number of decision trees
constructed by the model is considered in random forest. The
number of decision trees considered varies from 50 to 200 trees.

3.3.2 Neural network (NN)
A neural network is a parallel computing architecture that

can create non-linear multiparameter relationships between
reflectances from different spectral bands and water depths
(Lippmann, 1987). The processing performed by each neuron
in the network includes forming a weighted sum of the inputs,
followed by a non-linear transfer function to produce an output
(Sandidge and Holyer, 1998). The feedforward network consists
of a series of layers. The first layer has a connection from the
network input. Each subsequent layer has connections from the
previous layer. The final layer produces the output of the
network. Feedforward neural networks with enough neurons
in the hidden layer can be adapted to any finite input‒output
mapping problem. The feedforward neural network used in this
study is a two-layer feedforward network with sigmoid hidden
neurons and linear output neurons. The number of hidden layer
neurons is set to 50. The transfer function is a sigmoid function,
and the type of regression is chosen.

TABLE 2 Sentinel-2 band combinations.

Channels Central wavelength (nm) Band detail Number of bands

3-Band 490, 560, 665 Red, Green, Blue 3

4-Band 490, 560, 665, 842 Red, Green, Blue, NIR 4

6-Band 490, 560, 665, 842, 1,610, 2,190 Red, Green, Blue, NIR, SWIR1, SWIR2 6

8-Band 490, 560, 665, 705, 740, 783, 1,610, 2,190 Red, Green, Blue, VRE1, VRE2, VRE3
SWIR1, SWIR2

8

9-Band/All bands 490, 560, 665, 842, 705, 740, 783, 1,610, 2,190 Red, Green, Blue, NIR, VRE1, VRE2, VRE3, SWIR1, SWIR2 9
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3.3.3 Support vector machine (SVM)
SVM is a machine learning method proposed in the 1990s

based on statistical learning theory and the principle of structural
risk minimization (Vapnik, 1999). SVM is a binary classification
model that maps training data into a feature space by means of a
kernel function and finds the best hyperplane that separates data

points of one class from data points of another class. Different
kernel functions can lead to completely different properties
(Yang et al., 2021). Popular kernel functions include linear,
non-linear, radial basis function (RBF), sigmoid and Gaussian
kernel functions, which are suitable for different applications
(Agarwal and Kumar, 2016). When there is no prior knowledge

FIGURE 4
(A) The Sentinel-2 basemap in St. Thomas: the red line presents the laser trajectories of ICESat-2 on 18 May 2021, and the yellow line on the red
trajectory indicates the detection result position shown in this section. The RGB background satellite imagery was obtained by Sentinel-2 on
21 November 2018. The detection comparison using different DBSCAN algorithms. The original detected seafloor photons red, the detected sea surface
is yellow, and the original photons are grey: (B) AE-DBSCAN; (C) standard DBSCAN with fixed ε � 1.0m;Minpts � 5. The corresponding error scatter
plots of ICESat-2 bathymetric point depth vs. in situ depth: (D) AE-DBSCAN; (E) standard DBSCAN with fixed ε � 1.0m and Minpts � 5.
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about the data, the Gaussian kernel is chosen in this paper
with the kernel scale set to

			
P/4

√
, where P is the number of

predictors.

3.4 Result assessment

The accuracy of the inverse satellite bathymetrymapwas verified by
comparing the predicted depth with the in situ depth in St. Thomas. In
other regions, the results were evaluated by comparing predicted depths
with ICESat-2 bathymetric point data. Metrics such as root mean
squared error (RMSE), coefficient of determination (R2), MAE (mean
absolute error), and bias are used to evaluate the effectiveness of the
regression models.

RMSE �
																					∑N

i�1 dreali − dprediti( )2/N√
(3)

R2 � 1 − ∑N
i�1 dreali − dprediti( )2∑N
i�1 dreali − dpredit( )2 (4)

MAE � ∑N

i�1 dreali − dprediti

∣∣∣∣ ∣∣∣∣/N (5)
Bias � ∑N

i�1 dreali − dprediti( )/N (6)

where dreal is the measured depth, dpredit is the predicted depth
corresponding to dreal, dpredit is the mean value of the predicted
depth and N is the length of the dataset.

4 Results

4.1 Bathymetric photon detection using AE-
DBSCAN

Figure 4A shows the Sentinel-2 basemap on 21 November
2018. The red line indicates the laser track of ICESat-2 on 18 May
2021, and the yellow line on the red line indicates the location of
the sounding results shown in this section. The purple lines
named Site A and Site B indicate the positions of bathymetric
profiles in Section 5.1. To evaluate the SDB results using separate
training in each region, Sites A and B in Figure Figure4A are
selected to present bathymetric inversion results. Sites A and B
are located in the same coastal waters of St. Thomas, but have
different water conditions and different images. Figures 4B,C
show the results of ICESat-2 seafloor signal detection using AE-
DBSCAN and the standard DBSCAN with fixed ε =1.0 m and
Minpts =5. Figures 4D,E show the corresponding scatter plots of
ICESat-2 bathymetric point depth vs. in situ depth.

Figures 4B,C illustrate that the results using the AE-DBSCAN
algorithm can better track the ICESat-2 seafloor return signal
photons since the adaptive ε and Minpts adapt to the variation in
photon signal density. In contrast, the standard DBSCAN retains many
unnecessary noise points due to the fixed threshold, which affects the
subsequent results. As illustrated in Figure 4D, the AE-DBSCAN tends
to fit the in situ data. The AE-DBSCAN result yields an overall accuracy
of 0.44 m with an R2 of 0.99. For comparison, the standard DBSCAN
yields a lower accuracy of approximately 1.62 m with an R2 of 0.92.

4.2 Validation

Figure 5A demonstrates the in situ bathymetric map in St. Thomas
and Figures 5B–F demonstrate the bathymetric maps there using the
random forestmodel with different band combinations. All bathymetric
results are generated consistently for all depth ranges up to 20 m,
beyond the slope into the open ocean shown as dark blue in maps. The
SDB results using the random forest (RF) algorithmwith different band
combinations exhibit qualitatively good agreement with those
identifiable in the in situ data. All SDB results efficiently describe
the nearshore depth with good precision. Overall, SDB maps retrieved
the depth gradient with high accuracy as in the CUDEM map from
coastal zones to the open ocean.

Figures 6A–F show the validation of the random forest-
estimated depth with different band combinations vs. in situ
depth in St. Thomas. For the retrieved depths in St. Thomas, the
results using RF with 8-Band and 9-Band have comparable best
performances with respective ranges of RMSE of 1.35 m and R2 of
0.97, with slightly lower errors found in the result using RF with 8-
Band. The worst result is obtained by using RF with 3-Band with an
RMSE value of 1.45 m and an R2 of 0.96. These other calibration
results produce RMSEs of 1.36 m and 1.31 m and R2 values of
0.97 and 0.97 when using RF with 4-Band and 6-Band, respectively.
The majority of the points follow the 1:1 line, as shown in these
scatter plots, indicating good performance using RF with different
band combinations, and all RMSEs are less than 8% of the maximum
depth. The ICESat-2 bathymetry data are used to evaluate the
bathymetry results. Figure 6F shows the scatter plot of the
random forest-estimated depth with the 3-Band vs. ICESat-2
bathymetric point depth with an RMSE of 1.51 m and an R2 of
approximately 0.97.

4.3 Bathymetric retrieval maps

Figures 7A,C,E,G show SDB maps in Anguila, Basseterre, St. Croix
and Anegada using random forest with 3-Band, respectively. Figures
7B,D,F,H show the scatter plots of the random forest-estimated depth
with 3-Band vs. ICESat-2 bathymetric point depth corresponding to the
left map. The SDB maps at the four sites depict the shallow water area
within 0–20 m. In these study areas, since no in situ bathymetric data
are available, the ICESat-2 bathymetric data are used to evaluate the
bathymetric results derived from the ICESat-2 bathymetric points and
Sentinel-2 images alternatively. The scatter result using random forest
(RF) with 3-Band in St. Thomas has the best R2 with a value of
approximately 0.97 (Figure 6F), while the other SDB error scatter plots
in Anguila, Basseterre, St. Croix and Anegada have comparable
performances with respective ranges of an R2 of approximately 0.96.
The RMSE values within the same depth range in St. Thomas, Anguila,
Basseterre, St. Croix and Anegada are 1.51 m, 1.77m, 1.69m, 1.46 m
and 1.44m, respectively, which are all less than 10% of the maximum
depths. Table 3 lists the accuracy assessment parameters for all the
selected islands using RF with 4-Band and 9-Band. The bathymetric
map in St. Croix produces a less significant error compared to other
locations with a higher R2 and lower RMSE. Overall, the table indicates
that the accuracy tends to increase with the number of training bands.
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5 Discussion

5.1 Validation over different area

In order to demonstrate the efficacy of machine learning
techniques in predicting bathymetry in different waters, we
conducted the active and passive satellite data presented in
Table 1 at Ganquan Island. Using the RF, NN, and SVM
models with 3-Band, we generate SDB maps at Ganquan

Island, as depicted in Figures 8A–C. The results obtained from
each model demonstrated a similar trend in bathymetric
estimation from shallow to deep waters. To validate our
findings, we utilized in situ data collected by the Shanghai
Institute of Optics and Fine Mechanics (SIOM), Chinese
Academy of Sciences (CAS), via an airborne LiDAR
instrument (Chen et al., 2021a; Liu et al., 2021). Table 4 lists
the accuracy assessment of estimated depths compared to the in
situ depths at Ganquan Island, employing diffirent prediction

FIGURE 5
The bathymetric maps in St. Thomas: (A) CUDEM depth; (B) SDB map using random forest with 3-Band; (C) SDB map using random forest with 4-
Band; (D) SDB map using random forest with 6-Band; (E) SDB map using random forest with 8-Band; (F) SDB map using random forest model with 9-
Band.
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models. Notably, RF yielded the highest R2 value (0.965),
followed by SVM (0.952), while NN has the lowest R2 (0.949).
The ranking order remains consistent for the RMSE and MAE fit
results as well. Overall, the results indicate that machine learning
could produce stable and reliable inversion results for
bathymetry at Ganquan Island in the South China Sea.

5.2 Comparison of different SDB models

Table 5 presents the summary accuracy assessment in St. Thomas
with R2, RMSE, MAE and bias for three machine learning prediction
models and two empirical models with 3-Band and 9-Band. The R2

values within 3-Band for RF, NN, SVM and the linear model are 0.96,

FIGURE 6
The error scatter plots of random forest-estimated depth vs. in situ depth in St. Thomas using different band combinations: (A) 3-Band; (B) 4-Band;
(C) 6-Band; (D) 8-Band; (E) 9-Band; (F) scatter plot of random forest-estimated depth vs. ICESat-2 bathymetric point depth.
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0.94, 0.96 and 0.82, and the corresponding RMSEs are 1.44 m, 1.69 m,
1.48 m and 2.19 m, respectively. Among them, the RF model fits the in
situ data best, while the empirical linear model provides the worst
results. The fitting results of the band ratio model are followed by the

results of theNNand are better than those of the linearmodel. Note that
all the bias values are positive, whichmeans that the SDB results predict
shallower depths than the in situ depths. Similarly, the results with 9-
Band are better than thosewith 3-Band, where the best result is obtained

FIGURE 7
SDBmap at different sites using random forest with 3-Band: (A) Anguila; (C) Basseterre; (E) St. Croix; (G) Anegada. The error scatter plots of Random
forest-estimated depth with 3-Band vs. ICESat-2 bathymetric point depth over different sites: (B) Anguila; (D) Basseterre; (F) St. Croix; (H) Anegada.
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using RF. Overall, the ML-based SDB achieved an overall RMSE of less
than 1.5 m in St. Thomas better than traditional empirical models,
which shows the advantage of ml models in establishing non-linear
relationships between Rrs and depth.

More detailed cross-sections at Site A and Site B are provided in
Figure 9. The first cross profile (Figure 9A) compares different
estimated depths using different prediction models and in situ
depths from the south around the nearshore area to the north
estuary. The errors generated by the SVM and NN models occur at
almost all depth levels, especially in very shallow areas. Figure 9B
shows a similar trend. The difference between the predicted depths
using the RF model and the in situ depths is stable within 6 m, so the
RF model produces a good fit with the in situ data compared with

other models in St. Thomas. Comparatively, the RFmodel has a high
degree of flexibility and can be used to create suitable models if a
large quantity of training data is available.

5.3 Comparison of different band
combinations

To verify the chosen band combinations in the RF model,
Figure 10A shows the RMSE graph for the increment of 1 m depth,
which illustrates that all band combinations improve the accuracy with
increasing depth. In the shallow water region within 8 m, the results of
each band combination do not differ significantly. 4-Band achieves
higher accuracy than 6-Band except in the 5–7 m depth range. In
general, the RMSE of the result using 8-Band is overall lowest among
the combinations in St. Thomas except at the 4 m depth range, and the
accuracy using 9-Band is very close to that of 8-Band, followed by the
results using 6-Band, and 3-Band gives the worst result. As shown in
Figures 6D,E, the scatter plot in St. Thomas using RF with 8-Band and
9-Band also provides similar excellent performance. This is because the
number of bands affects the decision result of adjusting the decision tree
in the random forest. The more bands involved in training, the richer
the decision results obtained, and it will determine the accuracy (Belgiu
and Drăguţ, 2016). However, increasing the number of bands infinitely
upward causes overfitting and makes the performance worse, and
setting a reasonable number of training bands is also important for
prediction accuracy.

FIGURE 8
SDB map at Ganquan Island using different models with 3-Band: (A) RF; (B)NN; (C)SVM.

TABLE 3 Accuracy assessment of random forest-estimated depth vs. ICESat-2
bathymetric point depth for all the islands with 4-Band and 9_Band.

Site 4-Band 9_Band

R2 RMSE (m) R2 RMSE (m)

St. Thomas 0.9630 1.4128 0.9730 1.2410

Anguila 0.9667 1.3349 0.9746 1.3917

Basseterre 0.9661 1.6602 0.9673 1.3737

St. Croix 0.9681 1.6497 0.9715 1.2503

Anegada 0.9577 1.4734 0.9737 1.2385

TABLE 4 Accuracy assessment of estimated depth vs. in situ depth using different prediction models at Ganquan Island.

Prediction models Bands combinations R2 RMSE (m) MAE (m) Bias (m)

RF 3-Band 0.9652 0.9005 0.8296 −0.0813

NN 3-Band 0.9498 1.1885 0.9107 −0.1242

SVM 3-Band 0.9521 1.0679 0.9938 −0.0947
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Figure 10B illustrates the importance of the bands in the RF
model. Regardless of the band combination, the green band
contributes the most to the tree nodes and has the highest
feature importance, which greatly affects the RF model
construction and accuracy, followed by the blue band except
3-Band. Due to the high transparency of the blue and green bands
in water, the light from the two bands can penetrate deeper water,
and their reflectance is very important for the bathymetric
inversion results (He et al., 2021). In the three combinations
containing the NIR band (i.e., 4-Band, 6-Band and 9-Band), the
importance of the NIR band is higher than that of the red band,
which indicates that the NIR band has the potential to replace the
role of the RED band in training. However, the importance
difference between the two bands decreases as the number of
bands increases, indicating that the addition of other bands
dilutes the importance of red and NIR bands. The VRE and
SWIR bands are easily absorbed in the water and are less
important in model training.

TABLE 5 Accuracy assessment of estimated depth vs. in situ depth using different prediction models in St. Thomas.

Prediction models Bands combinations R2 RMSE (m) MAE (m) Bias (m)

RF 3-Band 0.9640 1.4442 1.1528 −0.0987

9-Band 0.9723 1.279 0.9934 −0.1558

NN 3-Band 0.9430 1.6853 1.4135 −0.1787

9-Band 0.9573 1.4711 1.1973 −0.2089

SVM 3-Band 0.9620 1.4752 1.1778 −0.203

9-Band 0.9636 1.4503 1.1593 −0.0716

Linear Model 3-Band 0.8412 2.1936 1.6177 −1.0612

Band Ratio Model Blue, Green 0.9239 1.7823 1.3025 −0.0091

TABLE 6 Accuracy assessment of random forest-estimated depth using
Sentinel-2 images without atmospheric correction vs. ICESat-2 bathymetric
point depth for all the islands with 4-Band and 9-Band.

Sites Bands R2 RMSE(m) MAE(m) Bias

St. Thomas 4-Band 0.9691 1.3055 1.0237 −0.0405

9-Band 0.9609 1.4385 1.1278 −0.0056

Anguila 4-Band 0.9685 1.6383 1.3511 0.002

9-Band 0.9655 1.6746 1.3722 −0.0358

Basseterre 4-Band 0.9381 1.4564 1.173 −0.0124

9-Band 0.9443 1.3876 1.115 0.0915

St. Croix 4-Band 0.9668 1.3969 1.0826 −0.225

9-Band 0.9668 1.3835 1.0707 −0.3018

Anegada 4-Band 0.9735 1.2394 0.9264 −0.0016

9-Band 0.9516 1.2468 0.9353 0.0126

FIGURE 9
Bathymetric cross profiles at Sites A and B over St. Thomas showing a comparison between the RF model and in situ depths: (A) Site A; (B) Site B.
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5.4 Comparison of SDB with and without
atmospheric correction

The Rrs information received by the MSI includes the reflection
from the water surface, the water body and the water bottom and
atmospheric reflection. The Sen2Cor atmospheric correction
procedure eliminates the influence of atmospheric contribution
(Toming et al., 2016). Figure 11A depicts the RMSE values using
Sentinel-2 images without atmospheric correction for each
increment of 1 m, indicating that the accuracy tends to increase
as the depth range increases. When the water depth range is greater
than 10 m, the RMSE of the results using 4-Band is the smallest with
the highest accuracy, followed by the results using 6-Band, 8-Band
and 9-Band, and the results of 3-Band are still the worst. Compared
to Figure 10A, the overall values of RMSE using Sentinel-2 images
without AC are larger for bathymetry inversion, indicating that
atmospheric correction helps to improve the accuracy of
bathymetric inversion.

Figure 11B illustrates the predictor importance estimates in
random forest training using Sentinel-2 images without
atmospheric correction. Similar to the results shown in
Figure 10B, the blue and green bands are still very important
in RF model training using Sentinel-2 images without AC. Since
the images are not atmospherically corrected, the importance of
the red band is increased, surpassing the blue band in 3-Band and

the NIR band in 9-Band. When using the NIR band, lands, clouds
and Sun glint signals can be masked (Mishra et al., 2005; Lyzenga
et al., 2006). Thus, the NIR band is a very important band in
atmospheric correction (Wang et al., 2012), and atmospheric
correction based on the NIR band is also widely used (Gordon
and Wang, 1994; Wang, 2016). When training the model using
the Rrs vectors without atmospheric correction, including the
NIR band helps to improve the training accuracy. Machine
learning makes use of the NIR band for atmospheric
correction, thus eliminating the need for atmospheric
correction. However, when the number of bands reaches
saturation, other bands share the role of the NIR bands,
making the accuracy of the results using 9-Band lower than
those of 8-Band.

ICESat-2 bathymetry data are used to evaluate the accuracy of
bathymetry inversion using Sentinel-2 images without
atmospheric correction for the five islands. Table 6
summarizes the accuracy assessment parameters using the RF
model with 4-Band and 9-Band. The inversion accuracy of
Anegada is relatively good, with an R2 of 0.97 and an RMSE
of 1.24 m among the results using 4-Band and St. Croix is
consistent with an R2 of 0.97 and an RMSE of 1.40 m for the
results using 4-Band. This indicates the potential application of
depth inversion using remote sensing images without
atmospheric correction, which helps to improve efficiency.

FIGURE 10
(A) Random forest prediction RMSE graph for each increment of
1 m in depth; (B) predictor importance estimates in random forest
training.

FIGURE 11
(A) Random forest prediction RMSE graph using Sentinel-2
images without atmospheric correction for each increment of 1 m
depth; (B) predictor importance estimates in random forest training
using Sentinel-2 images without atmospheric correction.
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6 Conclusion

In this study, we proposed an active and passive remote sensing
combined SDB method using only satellite data. We employed three
machine learning methods and the performances compared with
conventional empirical SDB models are presented. The results show
that compared to the standard DBSCAN method, the AE-DBSCAN
method we used in seafloor return signal detection can achieve
higher accuracy with an RMSE of 0.44 m and an R2 of 0.99,
benefiting from an adaptive process and changeable key
parameters that can adapt well to photon density variations.
Additionally, the a priori bathymetric point data derived from
ICESat-2 are consistent with the in situ data in St. Thomas, and
the bathymetric inversion results using random forest for
bathymetric inversion combined with Sentinel-2 images also
maintain high accuracy with the in situ data in St. Thomas, with
an RMSE of less than 1.5 m.

Furthermore, the ML-based SDB achieved an overall RMSE of
less than 1.5 m in St. Thomas better than the traditional empirical
SDB method, and the accuracy of bathymetric inversion using the
random forest model outperformed the neural network and SVM
models. Using the random forest model, the higher the number of
bands, the higher the inversion accuracy, but 8-Band is optimal and
slightly higher than the accuracy of 9-Band. The inversion results
using Sentinel-2 images without AC with RMSEs less than 2 m are
inferior to those using Sentinel-2 images with AC, but it is still an
attempt to help improve the efficiency of bathymetric inversion by
avoiding a complex atmospheric correction process. In the future,
the present method will help build global nearshore bathymetric
datasets using only satellite data in large-scale regions, and the
retrieval of global SDBs will greatly benefit from the large datasets
constructed in this paper. (Coastal and Marine Ecosystem, 2022).
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