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With the sustainable development of the construction industry, recycled aggregate
(RA) has beenwidely used in concrete preparation to reduce the environmental impact
of construction waste. Compressive strength is an essential measure of the
performance of recycled aggregate concrete (RAC). In order to understand the
correspondence between relevant factors and the compressive strength of
recycled concrete and accurately predict the compressive strength of RAC, this
paper establishes a model for predicting the compressive strength of RAC using
machine learning and hyperparameter optimization techniques. RAC experimental
data from published literature as the dataset, extreme gradient boosting (XGBoost),
random forest (RF), K-nearest neighbour (KNN), support vector machine regression
Support Vector Regression (SVR), and gradient boosted decision tree (GBDT) RAC
compressive strength prediction models were developed. The models were validated
and compared using correlation coefficients (R2), Root Mean Square Error (RMSE),
mean absolute error (MAE), and the gap between the experimental results of the
predicted outcomes. In particular, The effects of different hyperparameter
optimization techniques (Grid search, Random search, Bayesian optimization-Tree-
structured Parzen Estimator, Bayesian optimization- Gaussian Process Regression) on
model prediction efficiency and prediction accuracy were investigated. The results
show that the optimal combination of hyperparameters can be searched in the
shortest time using the Bayesian optimization algorithm based on TPE (Tree-
structured Parzen Estimator); the BO-TPE-GBDT RAC compressive strength
prediction model has higher prediction accuracy and generalisation ability. This
high-performance compressive strength prediction model provides a basis for
RAC’s research and practice and a new way to predict the performance of RAC.
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1 Introduction

With the awakening of sustainable development awareness in the construction industry,
green and low-carbon development has become an industry consensus (Spence and Mulligan,
1995; Sev, 2009; Giesekam et al., 2016; Zhang et al., 2017; Xia et al., 2018; Zhang et al., 2018). In
recent decades, China’s economy and urbanisation have grown rapidly. In urbanisation, many
natural resources are used for new buildings, leading to the depletion of natural resources. On
the other hand, construction waste from demolishing old buildings is difficult to dispose of and
causes environmental pollution. Therefore, exploring the recycling value of construction waste
has become a crucial step in the sustainable development of the construction industry. Recycled
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aggregate concrete (RAC) is undoubtedly the best example of
construction waste recycling. RAC processes waste concrete into
recycled concrete aggregates, replacing NA such as sand and gravel
in regular concrete. It conserves natural resources and effectively
disposes of construction waste, reducing environmental pollution
and land resources occupied by construction waste.

Many authors have evaluated the compressive strength of RAC,
which is a valid property that has an important impact on the
durability of RAC (Bai et al., 2020). The compressive strength of
RAC is affected by numerous factors, such as the replacement rate of
RA (Rakshvir and Barai, 2006; Gull, 2011), and the water-to-cement
ratio (Meng et al., 2021; Ying et al., 2022), coarse aggregate type, coarse
aggregate crushing rate, adherent mortar content, and moisture status
(Shi et al., 2012; Silva et al., 2015). It is not appropriate to study
influence factors independently, as the compressive strength of the
RAC is a function of many interacting influence factors. However, the
compressive strength of RAC is obtained by conditioning specimens
for a specified period and performing tests, which are lengthy and
costly in terms of the experimental period and material. There is a
complex non-linear relationship between the compressive strength of
RAC and the influencing factors, and new methods are needed to
accurately reflect and accurately clarify the correlation between these
influencing factors.

The rapid development of computer technology provides many
facilities for solving engineering problems (Guo et al., 2020b; Wang
et al., 2022a; Wang et al., 2022b). At the same time, machine learning
(ML) technology has made great progress. With its efficient data
processing capability and accurate data prediction ability, ML
technology has rapidly become popular in traditional engineering.
ML has been applied to predict various properties of concrete.
Artificial neural network (ANN) often used to predict RAC
compressive strength (Duan et al., 2013). Developed ANN models
on the Matlab platform for predicting the compressive strength of
concrete with different types and sources of RA. Show how the ANN
model outperformed the Model Tree (MT) and Non-linear Regression
(NLR) present in predicting concrete strength (Khademi et al., 2016).
Used three different algorithms to predict the compressive strength of
RAC, and the results showed that the ANN and adaptive neuro-fuzzy
inference system (ANFIS) models could accurately predict the
compressive strength of RAC. Mixes. Catherina et al. developed a

prediction model for the compressive strength of recycled aggregate
concrete based on the ANN and Cuckoo Search Method (CSM)
algorithms (Catherina and Chella, 2021). Although ANN shows
good non-linear mapping ability, it also has some areas for
improvement, including slow convergence, excessive learning and
local optimization, which will affect the accuracy and efficiency of
prediction.

ML methods rely on hyperparameter configuration. The choice of
hyperparameters directly determines the model’s performance and
computation time. In hyperparameter optimization, the primary
methods are the empirical method, grid search, random grid search,
swarm intelligence optimization algorithm and Bayesian optimization
algorithms. The advanced optimization framework Bayesian
optimization algorithm was used to optimize the hyperparameters of
the shear load capacity prediction model for SVR fiber-reinforced
plastics (FRP) reinforced concrete members (Alam et al., 2021). The
BOA-SVR model determined the optimal parameters in less time than
other methods (Nunez et al., 2020). (Alhakeem et al., 2022) used a grid
search method to optimize the GBRT hyperparameters to obtain a
highly accurate predictive model for the compressive strength of the
RAC (Guo et al., 2020a). Optimized BP models using Particle Swarm
Optimization (PSO) and Grey Wolf Optimizer (GWO) to predict the
non-linear relationship between random displacement and trigger
factors in landslide displacement, providing a solid basis for early
warning. The prediction models will have different prediction
accuracies under other hyperparameter configuration methods.
When the model is complex and the hyperparameters are increased,
it requires a lot of computational resources and time. Exploring Various
hyperparameter configuration methods has an important impact on the
accuracy and modelling efficiency of the RAC compressive strength
prediction model.

This paper developed XGBoost, RF, KNN, SVR andGBDT algorithm
models to predict the compressive strength of RAC using hyperparameter

FIGURE 1
Schematic diagram of the SVR algorithm.

FIGURE 2
Schematic diagram of the KNN algorithm.
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optimization with Grid search, Random search, Bayesian optimization-
Tree-structured Parzen Estimator, Bayesian optimization-Gaussian
Process Regression methods. Twelve key factors, including effective
water–cement ratio (weff/c), aggregate-cement ratio (a/c), RCA
replacement ratio (ρ), Parent concrete strength (PCS), nominal
maximum RA size (δR), nominal maximum NA size (δN), bulk
density of RCA (mR), bulk density of NA (mN), water absorption of
RCA (rR), water absorption of NA (rN), Los Angeles abrasion index of
RCA (lR), Los Angeles abrasion index of NA (lN) were used to predict the
compressive strength of RAC. The prediction accuracy of the proposed
models was evaluated in terms of evaluation indicators such as the
coefficient of determination (R2), mean absolute error (MAE), Root
Mean Square Error (RMSE), and the RAC compressive strength
prediction model with the highest accuracy was selected. At the same
time, the time spent by different hyperparameter optimization methods
and the degree of model optimization is calculated, and the
hyperparameter optimization method with high efficiency and good

results is selected. Although this paper only discusses the use of
machine learning and hyperparametric optimization methods for the
compressive strength of RAC, the model proposed in this paper can be
easily extended to predict other mechanical capacities of RAC. Therefore,
the machine learning approach proposed in this paper can be widely
applied to the construction industry.

2 Machine learning methods

2.1 Support vector regression (SVR)

Support Vector Regression (SVR) (Smola and Schölkopf,
2004) is a supervised learning algorithm for predicting discrete
values. The schematic diagram of the SVR algorithm is shown in
Figure 1. The basic idea of SVR is to find a regression plane such
that the total distance of all sample points to the plane is
minimized. Achieving this goal requires mapping linearly
indistinguishable low-dimensional data to a higher-dimensional
space with the help of kernel functions to make them linearly
distinguishable. SVR has the robustness to outliers, excellent
generalization ability, strong learning ability for high-
dimensional data, and high prediction accuracy (Vapnik et al.,
1996; Schölkopf et al., 2000; Basak et al., 2007; Awad and Khanna,
2015) The SVR problem can be formalized as the following
equation:

min
1
2
ω| || |2 + C∑m

i�1L yi, f xi( )( ) (1)
1
2

ω| || |2 + C∑m

i�1 λ+i + λ−i( )
s.t.

yi − f xi( )≤ ∈ + λ+i

f xi( ) − yi ≤ ∈ + λ−i

⎧⎨⎩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

FIGURE 3
Schematic diagram of the RF algorithm.

FIGURE 4
Schematic diagram of the GBDT algorithm.
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Where, ω is a vector, which determines the slope of the fitted line; C is
regularization coefficient; L(yi, f(xi)) is insensitive loss function;
λ+i , λ

−
i (i � 1, 2 . . . n) relaxation variable; ∈ is coefficient related to

the interval band; f(xi) is a fitted value; yi is a sample true value.

2.2 K-nearest neighbor (KNN)

K-Nearest Neighbor (KNN) (Peterson, 2009) is an instance-based
learning model. The schematic diagram of the KNN algorithm is
shown in Figure 2. The core idea of the KNN algorithm is that a sample
is classified into a category if most of its K nearest neighbors in the

feature space belong to that category. When using KNN to calculate
the predicted value of a data point, the model selects the K nearest data
points from the training data set and uses their mean values as the
predicted value of the new data point. The KNN algorithm, which does
not require estimation of parameters, does not require training and is
simple and easy to implement (Ray, 2019; Sen et al., 2020).

2.3 Random forest (RF)

Random forests (Breiman, 2001) are ensemble learning algorithms
that contain multiple decision trees. The schematic diagram of the RF
algorithm is shown in Figure 3. The decision trees are grown
randomly, and a randomly selected fraction of the samples brought
back for release from the training data is used to construct the decision
trees. Similarly, a portion of the features is randomly selected for
training. Each tree has different samples and features, and the result
differs. When dealing with classification problems, the random forest
prediction category is the plurality of the class to which the random
forest prediction sample units belong. When dealing with regression
problems, the output value is the average of all tree predictions. The
random forest algorithm takes less time, is less prone to overfitting,
can handle high-dimensional data with more features, and is the
algorithm with higher accuracy (Liu et al., 2012; Yuan et al., 2022).

2.4 Gradient boosting decision tree algorithm
(GBDT)

Gradient Boosting Decision Tree (Friedman, 2001), which is a
representative algorithm in boosting and the most used ML algorithm
in the industry. The schematic diagram of the GBDT algorithm is
shown in Figure 4. GBDT can flexibly handle various types of data,

FIGURE 5
Schematic diagram of GS and RS.

FIGURE 6
Framework of compressive strength prediction model of RAC.
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including continuous and discrete values, and has the advantages of
high efficiency, nominal missing values, easy model construction, high
training accuracy, and good generalization ability. GBDT consists of
two parts: Decision Tree (Quinlan, 1986), and Gradient Boosting
(Freund et al., 1999).

The value of the negative gradient of the loss function in the
current model is used as an approximation of the residuals of the
boosted tree algorithm in the regression problem. That is, the iterative
decision tree uses the residuals formed after the result of the previous
tree construction as input data to construct the next subtree when
constructing trees; the final prediction results are obtained by
accumulating the subtree prediction results in the order of
construction (Liang et al., 2020).

2.5 Extreme gradient boosting algorithm
(XGBoost)

Extreme Boosting Tree (XGBoost) (Chen and Guestrin, 2016) is
an ensemble algorithm based on Decision Trees, an upgrade of the
Gradient Boosting Decision Tree algorithm. By constructing weak
learners, continuously iterating to reduce the residuals of the last
iteration, and accumulating the results of multiple weak learners as the
final prediction output, XGBoost achieves a balance between the
accuracy and complexity of the Tree model through loss functions
and regularization items. At the same time, it greatly reduces the
complexity of the model and improves the efficiency of the model
operation (Li and Chen, 2020; Liang et al., 2020).

XGBoost is a ML algorithm based on the additive model
framework, which uses a forward distribution algorithm and
Regression Trees as the base learners. An optimal solution is
sought for each Regression Tree to gradually approximate the
optimal loss function. Expressed as Eq. 3 (Friedman, 2001).

ŷ k( )
i � ∑k−1

j�1 fj xi( ) + fj
k( ) xi( ) (3)

Where, ŷ(k)
i represents the predicted value of the i th sample; fj(xi) is

the regression j th tree, and is xi the number of base learners;∑k−1
j�1 fj(xi) is the cumulative result of the previous k − 1

regression trees; and fj
(k)(xi) is the current k th regression tree to

be optimized.
In the XGBoost algorithm, the objective function is specific to each

tree. For an arbitrary tree, the objective function has two components;
one is an arbitrarily differentiable loss function that controls the
empirical risk of the model. The remaining component contains
the model complexity. Expressed as Eqs. 4, 5 (Chen and Guestrin,
2016).

Obj t( ) � ∑N

i�1l yi, ŷ
t( )

i( ) +∑t

j�1Ω fj( ) (4)
≈ ∑N

i�1l yi, ŷ
t−1
i + ft(xi( )) + Ω fj( ) (5)

Where, ŷ(t)
i is the predicted value of the i th sample; yi is the true value;

N is the number of samples; l(yi, ŷ
(t)
i ) is the loss function;∑t

j�1Ω(fj)
is the regularization item.

Splitting the objective function with the sample as the objective
into one with the leaf nodes as the objective and substituting the
second-order Taylor expansion formula into the objective function
yields (Chen and Guestrin, 2016):

Obj t( ) � ∑T

j�1 ∑
i∈Ij

gi( )wj + 1
2

∑
i∈Ij

hi + λ( )w2
j[ ] + γT (6)

≈ ∑T

j�1 wj + Gj( ) + 1
2

λ +Hj( ) + γT (7)

Where, gi � zŷ(t−1) l(yi, ŷ
t−1
i ), hi � zŷ(t−1) l(yi, ŷ

t−1
i ),

Gj � ∑
i∈Ij

gi, Hj � ∑
i∈Ij

hi

Minimize the objective function to obtain the predicted values of
leaf nodes; minimize the objective function Obj(t)*, Expressed as Eqs.
8, 9 (Chen and Guestrin, 2016).

w*
j � − Gj

Hj + λ
(8)

TABLE 1 Description of data used in this study.

Unit Quantity Mean Median Minimum Maxmum

Weff/C - 521 0.49 0.490 0.190 0.870

a/c - 521 3.09 3 1.65 6.50

ρ % 521 51.07 50 1.50 100

PSC MPa 521 6.13 0 0 100

δR mm 521 21.35 20 0 32

δN mm 521 21.76 20 10 38

mR kg·m3 521 1,657.29 2,320 10 2,880

mN kg·m3 521 1,535.76 2,540 0 2,970

rR % 521 3.534 4.100 0 11.90

rN % 521 0.60 0.30 0 2.50

lR - 521 6.72 0 0 42

lN - 521 4.76 0 0 32

Compressive strength MPa 521 43.19 41.5 15.464 108.50
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Obj t( )* � minObj t( ) � γT − 1
2
∑T

j�1
Gj

2

Hj + λ
(9)

The key problem of the decision tree growth process is how to split
the nodes. The XGBoost algorithm adopts a greedy strategy. For each
leaf node division, the structural fraction gain is calculated, and the

point with the largest gain is selected for branching. Expressed as Eq 10
(Chen and Guestrin, 2016).

gain � 1
2

GL
2

HL + λ
+ GR

2

HR + λ
+ GL + GR( )2
HL +HR + λ

[ ] − γ (10)

Where GL
2

HL+λ is the structure fraction of the left node, GR
2

HR+λ is the
structure fraction of the right node, and (GL+GR)2

HL+HR+λ the structure fraction
of the parent node.

2.6 Hyperparameter configuration method

Grid search (GS) and random search (RS) (Feurer and Hutter,
2019) are the most common hyperparameter configuration methods.
The schematic diagram of GS and RS is shown in Figure 5. GS brings
all parameter combinations in the parameter space into the model for
training and finally selects the best-performing hyperparameter
combination (Bergstra et al., 2011). The larger the parameter space,
the greater the arithmetic power and time required for GS. The
computational effort needed for grid search increases exponentially
when the parameter dimension rises. RS does not use the whole
hyperparameter space and constructs a parameter subspace using
partial parameter combinations to search within the subspace, which
improves the computational speed yet ensures the accuracy of the
search. For high-dimensional data, random search is more effective
than grid search.

Unlike the enumeration idea of GS and RS, Bayesian Optimization
(BO) is based on the a priori idea. The core idea of BO is to use the
prior probability of the objective function and known observation
points to update the posterior probability distribution and then find
the next minimal value point with a more posterior probability
distribution and get the optimal hyperparameter after numerous
iterations. The later hyperparameters are taken based on the results
of the previous hyperparameters so that the best combination of
hyperparameters can be configured in less time.BO is an
application of machine learning automation that aims to configure
hyperparameters automatically to achieve the best performance and
reduce the human effort required to apply machine learning (Bergstra
and Bengio, 2012; Eggensperger et al., 2015).BO can be expressed as
the following equation:

x* � argmaxx∈χ f x( ) (11)
where x* is the optimal hyper-parameter combination, χ is the
parameter space, and f(x) is the objective function.

The key steps in BO are the probabilistic surrogate model and the
acquisition function. The probabilistic proxy model builds a
probability distribution model based on the existing history data;
the acquisition function is used to select the basis for the next
parameter combination and continuously adds different parameter
combinations to the probabilistic surrogate model until the maximum
number of iterations is reached.

The main difference between different Bayesian optimization
methods lies in the probabilistic agent models and collection
functions, main including Gaussian process (GP), and tree-
structured Parzen estimators (TPE) models (Ozaki et al., 2020).

GP brings much convenience to modeling tasks in machine
learning and statistics, and it can be used to specify functional
distributions without the need for a specific functional form

FIGURE 7
This paper uses data distribution.
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(Rasmussen and Nickisch, 2010). Assume that the hyperparameters to
be optimized are X � X1, X2 . . . , Xt{ } and the dataset obtained after
BO-GP iteration isDt � (x1, f(x1)), (x2, f(x2) . . . , (xi,f(xt)){ }. The
Gaussian process assumes that the observation points obey a Gaussian
distribution, and the expression is as follows:

f x1: t( ) ~ GP μ x1: t( ),∑ x1: t, x1: t( )( ) (12)

∑ x1: t, x1: t( ) �
k x1, x1( ) / k x1, xt( )

..

.
1 ..

.

k xt, x1( ) / k xt, xt( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

From Bayes theorem:

P f xt+1( )∣∣∣∣f x1: t( )( )∝P f x1: t( )∣∣∣∣f xt+1( )( )P f xt+1( )( ) (14)

The optimal hyperparameters are finally obtained by continuously
updating the iteration to make Xmin � Xt+1.

TPE utilizes tree-structured adaptive Parzen estimators that
handle discrete, categorical, and conditional variables with lower
computational complexity than GP (Rasmussen, 2003). It shows
better performance in complex parameter search space problems
(Bergstra et al., 2013). The procedure is as follows.

P x
∣∣∣∣y( ) � l x( ) if y*>y

g x( ) if y≥y*{ (15)

Where x is the observation, y* � min (x1,f(x1)), . . . (xi,f(xi)){ } is the
optimal value in the observation threshold; l(x) is the density estimate of the
loss function of observation x less than y*;and g(x) indicates the density
composition of the loss function of observationxi greater than or equal toy*.

The collection function chosen for the TPE model is EI, defined as
follows:

EIy*: � ∫yp

−∞
y* − y( )P y

∣∣∣∣x( )dy � ∫yp

−∞
y* − y( )P y

∣∣∣∣x( )P y( )
P x( ) dy

(16)
Let γ � P(y<y*) and ∫P(y|x)P(y)dy � γl(x) + (1 − γ)g(x) ,

construct:

EIy*: � γy* − l x( )∫yp

−∞P y( )dy
γl x( ) + 1 − y( )g x( ) ∝ γ + g x( )

l x( ) 1 − γ( )( )−1
(17)

The process of determining the next sampling point is achieved by
maximizing the EI function. Eq. 12 indicates that the maximum EI value is
obtainedwhen the hyperparameterx has themaximumprobability of l(x)
and the minimum probability of g(x). In the TPE model, the process of
maximizing EI is the process of maximizing g(x)

l(x) . The larger
g(x)
l(x) is, the

greater the possibility that the next sampling point x takes a value greater
than y in the objective function, and the better the hyperparameter
performance.

FIGURE 8
Input parameter data distribution Multi-correlation matrix of the input parameters and output.
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TABLE 2 The optimal combination of super parameters of prediction models determined under different hyperparameter configuration methods.

Algorithm Hyperparameters Grid search Random search TPE-BO GPR-BO

XGBoost Gamma 12 12 0.757 0

learning_rate 0.2 0.2 0.1216 0.172

max_depth 4 4 4 4

n_estimators 207 208 202 211

reg_lambda 0 0 0.002 0

Subsample 0.9 0.9 0.935 0.947

RF max_depth 5 9 19 16

max_leaf_nodes None None 145 151

max_samples 0.8 0.9 0.9998 0.9999

min_samples_leaf 1 1 1 1

min_samples_split 1 2 2 2

min_impurity_decrease 0 0 0 0

n_estimators 240 240 193 193

GBDT Criterion friedman_mse friedman_mse friedman_mse mse

learning_rate 0.15 0.15 0.2165 0.1249

max_depth 4 4 4 4

min_impurity_decrease 0 0 0 0

n_estimators 231 161 239 244

Subsample 0.9 0.9 0.9965 0.9564

KNN Algorithm ball_tree ball_tree ball_tree ball_tree

leaf_size 31 31 31 31

n_neighbors 4 4 4 4

P 1 1 1 1

weights’ distance distance distance distance

SVR Kernel rbf rbf rbf rbf

Gamma 0.1 0.1 0.1 0.1

C 100 100 100 100

TABLE 3 Performance comparison of prediction models under different hyperparameter optimization methods.

Algorithm Method Grid search Random search TPE-BO GPR-BO

XGBoost Cross-validation scores 0.8486 0.8486 0.8595 0.8514

Testing Set Score 0.7953 0.7954 0.8067 0.8182

Search time 4,268.203s 131.0329s 137.000s 18,494.00s

RF Cross-validation scores 0.7596 0.7595 0.7833 0.7832

Testing Set Score 0.7580 0.7580 0.7771 0.7775

Search time 30,566.7817s 1,180.560s 330.000s 21,767.000s

GBDT Cross-validation scores 0.8555 0.8548 0.8669 0.8585

Testing Set Score 0.7984 0.7897 0.7907 0.7989

Search time 4,079.2515s 264.3815s 257.000s 22,734.000s

Frontiers in Earth Science frontiersin.org08

Zhang et al. 10.3389/feart.2023.1112105

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1112105


3 Experimental process

3.1 Experimental framework

The RAC compressive strength prediction model’s core is to use
Python to access the database of RAC compressive strength, train
the XGBoost, RF, KNN, SVR, and GBDT models, and then use
cross-validation and the Hyperparameter configuration method
(GS, RS, BO-TPE, BO-GPR) to optimize the hyperparameters in
the specified hyperparameter space to produce a high-precision

RAC compressive strength prediction model. The specific process is
as Figure 6.

Step 1: The Experimental data of RAC compressive strength were
collected to train the prediction model.

Step 2: Using Python to call the XGBoost, RF, KNN, SVR and GBDT
module in the machine learning library, input the data into the
model for training without adjusting the hyperparameters, and
then use the model to fit the test set data to see the prediction
effect.

FIGURE 9
Optimization Effect of Hyperparameter configuration Method in Different Models.
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Step 3: Hyperparameter tuning of the models. Hyperparameter
optimization is performed on the XGBoost model and RF
model, KNN model, SVR model, and GBDT model using 10-
fold cross-validation combined with the Hyperparameter
configuration method in the training set.

Step 4: The optimized hyperparameters are input to each model for
training. The test set data are input to the trained models, and
the accuracy and generalization ability of the models are
verified by calculating R2, RMSE and MAE to compare the
performance of different models.

FIGURE 10
Comparison of predicted values of models.
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3.2 Experimental procedure

3.2.1 Data analysis
Various studies have investigated the compressive strength (CS)

of RAC. As a result, an extensive dataset with experiments on the
CS of RAC was recently assembled in reference (Yuan et al., 2022).
521 of these data were selected for training and testing the machine
learning model. Twelve key factors, including effective
water–cement ratio (weff/c), aggregate-cement ratio (a/c), RCA
replacement ratio (ρ), Parent concrete strength (PCS), nominal
maximum RA size (δR), nominal maximum NA size (δN), bulk
density of RCA (mR), bulk density of NA (mN), water absorption of
RCA (rR), water absorption of NA (rN), Los Angeles abrasion index
of RCA (lR), Los Angeles abrasion index of NA (lN) were used as
model inputs, and finally the model predictions of the compressive
strength of RAC were output. Table 1 shows the mean, median,
maximum, and minimum values of the data used in this study. The
distribution of the data used in this paper is shown in Figure 7. The
effective water–cement ratio is mainly distributed in 0.3–0.6; the
aggregate-cement ratio is mainly distributed in 2–4; the
replacement rate of RAC mainly takes values around 0%, 20%,
50% and 30%; The Parent concrete strength ranged from 0 MPa to
75 MPa; The nominal maximum NA size and the nominal
maximum NA size is mainly distributed in 15 mm–30 mm; The
bulk density of RCA and the bulk density of NA ranged from
2,500/kg m3 to 3,000/kg m3; the water absorption of RCA is mainly
distributed in 4%–8%; the water absorption of NA is mainly
distributed in 0.3%–1.5%; Los Angeles abrasion index of RCA
ranges from 30 to 45 MPa; Los Angeles abrasion index of NA
ranged from 20 to 35.

Figure 8 illustrates the multiple correlation matrix of the input
parameters and outputs used in this study. The shades of color indicate
the magnitude of the correlations. Among the input variables, the
highest correlation was found between bulk density of RCA (mR) and
water absorption of RCA (rR), R=0.74; followed by the correlation
between bulk density of NA (mN) and water absorption of NA (rN) of
0.7; The correlation coefficient between RCA replacement ratio (ρ)
and bulk density of RCA (mR) is 0.59; The correlation coefficient
between RCA replacement ratio (ρ) and water absorption of RCA (rR)
is 0.46. The larger the RAC replacement rate, the more mortar adhered
to the surface of RAC with higher water absorption (Chakradhara Rao
et al., 2011; McNeil and Kang, 2013; Duan and Poon, 2014). Between
the input and output variables, the correlation between the Parent
concrete strength (PCS) and the compressive strength (CS) of RAC
was the largest. Furthermore, the correlation between the input and
output variables was relatively low overall. As a result, all input
variables were chosen in this study to improve the predictive
model’s accuracy.

3.2.2 Hyperparameter configuration
The grid search algorithm brings all the parameter combinations

in the parameter space into the model for training. The grid search
algorithm traverses each parameter combination, which consumes a
lot of computational resources; the random grid search selects some
parameter combinations as “subspace” by non-relaxed sampling and
searches only these parameter combinations. The hyperparameter
combinations are shown in Table 2. Bayesian optimization is a
state-of-the-art automated method for tuning parameters, which
proceeds as follows:

Step 1: According to the determined parameter space, randomly generate
hyperparameter combinations X � [x1, x2, x3, x4 . . .xn] within
the hyperparameter taking values, substitute them into the data
set, and train the prediction model to obtain the corresponding
objective function of the parameter combinations, i.e., the cross-
validation assessment index(R2); Y �
[f(x1), f(x2), f(x3), f(x4) . . .f(xn)] form the initial
hyperparameter and prediction accuracy data set.

Step 2: The sample points are classified as good or poor based on the
prediction accuracy dataset, and an agent model is built.

Step 3: The next set of hyperparameter sampling points xn+1 is sought
from the proxy model based on the EI acquisition function.
The hyperparameter combination is substituted into the data
set for training to obtain the predicted values of the
compressive strength of recycled concrete with the cross-
validation evaluation index f(xn+1).

Step 4: If the cross-validation assessment index meets the
requirements, f(xn+1) is used as the best hyperparameter
most and the procedure is terminated.

3.2.3 Model evaluation
After the prediction model is built, its performance needs to be

evaluated. The model evaluation indexes used in this paper are:
correlation coefficient (R2), Root Mean Square Error (RMSE), and
mean absolute error (MAE). Of these, R2 judges the feasibility and
linearity of the model; MAE reflects the mean of the absolute errors
between the predicted and actual values; RMSE represents the
square root of the second order sample moments of the
difference between the predicted and observed values, the
equation is as follows:

R2 � 1 − ∑i yi − fi( )2∑i yi − �y( )2 (18)

�y � 1
n
∑n

i�1yi (19)

RMSE �
             
1
n
∑n

i�1 yi − fi( )2√
(20)

MAE � 1
n
∑n

i�1 y
∣∣∣∣ i

− fi

∣∣∣∣∣∣∣ (21)

Where: n is the total number of samples involved in the training; yi is
the measured value of the strength of RAC in group i; fi is the
predicted value of RAC in group i.

4 Results and analysis

4.1 Analysis of the impact of hyperparametric
configuration methods on model
performance

The grid search hyperparameters consume more computational
resources for the same parameter space. Therefore, the grid search
hyperparameter space is smaller than the Bayesian optimization
hyperparameter space. The grid search hyperparameter space is the
same as the random search hyperparameter space. This makes it easier
to compare how different hyperparameter optimization methods
affect how well a model works. Moreover, the number of iterations
is the same for Gaussian Process (GP)-based Bayesian optimization
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and TPE-based Bayesian optimization, which is 1,000 iterations. The
optimization effect of the hyperparameter configuration method in
different models is shown in Figure 9 and Table 3.

The grid and the random search methods are essentially
enumerative, with a similar combination of hyperparameters
searched and not much difference in cross-validation scores.
However, because the search space of random search is only a
subspace of the full domain space, the hyperparameter search time
is substantially reduced compared with grid search, and the speed of
random search is 15–32 times faster than grid search in this
experiment. The larger the hyperparameter search space and the
more complex the model, the more significant the difference in
search time between the two. The performance of the prediction
models under TPE-based Bayesian optimization was better than that
of the grid search method and the random grid search method, and the
fit of the XGBoost, RF, and GBDT models increased by 0.00109,
0.0238, and 0.004, respectively. The performance of the prediction
models under TPE-based Bayesian hyperparameter optimization was
better than that of GPR-based Bayesian hyperparameter optimization.
In the prediction models under Bayesian hyperparameter
optimization, the degree of fit of XGBoost, RF, and GBDT models
increased by 0.0081, 0.0001, and 0.0084 in turn, and was faster, with
the average search time of the TPE method being about 241 s and the
average search time of the GPR method being 20,998 s. In this
experiment, the TPE-BO hyperparameter optimization method
reduced the search time by a factor of 65–134 compared to the
GPR-BO method.

4.2 Comparative analysis of the performance
of different models

The comparison graphs of the predicted values of different
models are shown in Figure 10. All the following prediction models
adopt BO-TPE super-parameter configuration method. As seen
from the figure, the predicted values of the SVR prediction model
deviate significantly from the actual values. In each prediction
model, the predicted values of sample 12 and sample
44 deviated substantially from the true values, with a relative
error of up to 140%, possibly because the sample was an outlier.
Excluding the above abnormal samples, the KNN prediction model

is unstable, with a minimum relative error of 3.18% and a maximum
relative error of 39.62% between the predicted and true values; the
deviations between the predicted and true values of the XGBoost,
RF and GBDTmodels were relatively small, with an average relative
error of 12.2%, 13.02%, and 10.94% for each model respectively; the
minimum relative error between the predicted and actual values
was 0.24% for the XGBoost model, 0.16% for the RF model and 0%
for the GBDT model. Ensemble learning models outperform
individual learning models, and the GBDT model has the
smallest deviation from the true value and the highest prediction
accuracy of any Ensemble learning model.

As seen in Table 4, Figure 11, the cross-validation R2 score for
the GBDT model was the highest, being 0.0074, 0.0836, 0.1925, and
0.317 more heightened than the XGB, RF, KNN, and SVR models,
respectively. Therefore, the GBDT model has better fitting and
generalization capabilities, followed by the XGBoost model, RF
model, KNN model, and SVM model. The cross-validation R2

scores and training set R2 scores of the XGBoost, SVR, and
GBDT models were all higher than the test set scores, which
shows that the overall prediction effect of the models was higher
than the prediction effect in the test set, and the models did not
predict well in this randomly selected test set. The cross-validation
R2 scores and training set R2 scores of the RF and KNNmodels were
not significantly different from the test set scores. The model
normally performed in prediction on this randomly selected test
set. The XGBoost, RF, and GBDT models have smaller differences
between training set R2 and test set R2 than the other models. Their
generalization error and empirical error balance are higher than the
other models. The single model learning has higher empirical risk
and easy overfitting compared to integrated learning (XGBoost, RF,
GBDT); The training set R2 of the KNNmodel is larger than the test
set, and the training set R2 of the SVR model is smaller than the test
set R2. The SVR model may have structural risk.

The RMSE evaluates the degree of variability in the data, with
smaller values of RMSE indicating that the predictive model describes
the experimental data with better accuracy. The prediction models in
descending order of RMSE are the RF model, XGBoost model, SVR
model, KNN model, and GBDT model with RMSE of 13.37, 13.47,
14.2, 14.52, and 15.45, respectively. The RF, SVR, and XGBoost models
have better data description capability. The KNN and GBDT models
have a large RMSE and may be affected by outliers.

TABLE 4 Performance comparison of prediction models of different RA concrete.

XGBoost RF KNN SVR GBDT

R2 Training 0.9980 0.9707 0.9980 0.5982 0.9995

Testing 0.8067 0.7770 0.6744 0.4114 0.7907

Cross-validation 0.8595 0.7833 0.6664 0.5499 0.8669

RMSE Training 0.6774 2.6264 0.3455 9.7215 0.3474

Testing 7.1011 7.6264 9.2161 12.3920 7.3897

Cross-validation 13.6706 13.3683 14.5179 14.1952 15.4523

MAE Training 0.4840 1.9523 0.0560 7.3493 0.0563

Testing 4.7576 5.3456 6.5160 9.2291 4.4714

Cross-validation 10.7253 10.8279 11.5830 11.4475 11.8661
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The MAE indicator avoids the problem of forecast deviations and
true values canceling each other out. The MAE of each model was not
very different, and the smallest XGBoost model. The MAE of the
XGBoost model was smaller than the RF model, KNN model, SVR
model, and GBDT model by 0.1, 0.86, 0.72, and 1.14 respectively.

The average R2 of the cross-validation set for each prediction
model is smaller than the training and validation sets, and the average
RMSE and MAE are larger than the training and validation sets. The
possible reasons for this are 1. The small size of the recycled coarse
aggregate concrete sample data; 2. Insufficient relevant features given

about recycled coarse aggregate concrete; and 3. The presence of
outliers in the collected data. Collecting additional data and features
for model training and improving the model’s generalization
capability is necessary.

4.3 Feature sensitivity analysis

The objectives of the work are to 1) Determine the importance of
each input parameter to the compressive strength of the RAC (Medina

FIGURE 11
Comparison of model prediction performance.
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et al., 2021). 2) Quantitatively calculating the importance of different
features affecting the compressive strength of RAC helps to
understand the intrinsic mechanism of the compressive strength of
RAC. XGBoost prediction model ranks the importance of different
features affecting the strength of concrete, and their results are shown
in Figure 12.

The feature importance ranking in the XGBoost prediction model is
nominal maximum RA size (δR), nominal maximum NA size (δN), bulk
density of NA (mN), water absorption of NA (rN), effective water–cement
ratio (weff/c), Parent concrete strength (PCS), Los Angeles abrasion
index of RCA (lR), bulk density of RCA (mR), water absorption of RCA
(rR), aggregate-cement ratio (a/c), Los Angeles abrasion index of NA (lN),
RCA replacement ratio (ρ). The importance of nominal maximum RA
size (δR) and nominal maximum NA size (δN) is 41.7% and 14.5%,
respectively, two characteristics strongly related to the crushing index of
the aggregates. The physicochemical mechanism of compressive strength
of concrete, fracture, and energy dissipation of recycled aggregate concrete
material is a central physical mechanism (Bai et al., 2021; Bai et al., 2023).
The crushing index is an essential parameter of aggregate strength.
Because of the RAC the surface roughness, internal cracks, and other
characteristics make its crushing index higher than that of NA, and its
contribution to the compressive strength of RAC is lower than that of NA.
The importance of water absorption of NA (rN) and water absorption of
RCA (rR) is 7.2% and 3.2 respectively. Studies have shown that the water
absorption of RAC is greater than that of NA and that less absorbent
aggregates have higher strength RAC (Koper et al., 2017). The importance
of the bulk density of RAC (mR) and the bulk density of NA (mN) is 4.1%
and 7.4 respectively. The bulk density of RAC is lower than NA. RAC has
a looser internal structure, greater porosity than NA, and therefore,
greater water absorption and lower compressive strength (Wagih et al.,
2013). The importance of the Los Angeles abrasion index of RCA (lR) and
Los Angeles abrasion index of NA (lN) is 5.0% and 2.1%, respectively. The
Los Angeles abrasion index measures the quality of the aggregate, with a
higher Ameaning a less abrasive aggregate. The RAC aggregate has lower

compressive and abrasion resistance than the NA due to the loss of virgin
aggregate in the RAC separation and fragmentation of the mortar
attached to the exterior of the RAC (González-Taboada et al., 2016;
Park et al., 2018). The importance of the effective water–cement ratio
(weff/c) on the compressive strength of RAC is 5.3%. The larger the
weff/c, the more free water inside RAC, and the evaporation of free water
will form small pores inside RAC, making the compressive strength of
RAC become smaller. The importance of PSC is 5.3%, and many
experimental results show that RAC made from recycled aggregates
derived from high-strength parent concrete has a higher compressive
strength than RAC made from recycled aggregates derived from normal
parent concrete (Kou and Poon, 2015; Chakradhara Rao, 2018; Ahmad
Bhat, 2021).

5 Conclusion

In this study, Bayesian optimization methods were used to tune the
hyperparameters of the machine learning model to predict the non-linear
relationship between the compressive strength of the RAC and the
relevant influencing factors. The following conclusions were drawn:

(1) Based on the TPE-BO hyperparameter optimization method, the
performance of the RAC compressive strength prediction model is
effectively improved, and the efficiency is higher than other
hyperparameter optimization methods.

(2) The TPE-BO optimized model was put to predict the compressive
strength of RAC, and the TPE-BO-GBDT model obtained a higher
prediction accuracy with a 10-fold cross-validation R2 = 0.8669 when
comparing the R2, RMSE, and MAE of different models.

(3) The ranking of the importance of the features affecting the
compressive strength of RAC are: δR, δN, mN, rN, weff/c,
PCS, lR, mR, rR, a/c, lN, ρ, and this conclusion can provide a
reference for the subsequent selection of features.

FIGURE 12
Ranking of feature importance of XGBoost Model.
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Although this paper only discusses the use of machine learning
combined with Bayesian optimization in predicting the compressive
strength of RAC, the TPE-BO optimization machine learning
approach proposed in this paper can be extended to predict the
mechanical properties of other types of concrete. In future work,
we will collect more RAC experimental data and related influencing
factors and try more hyperparameters optimization methods, such as
PSO, GWO algorithm, and Differential Evolution (DE), to improve
the accuracy and efficiency of the model prediction.

Data availability statement

Publicly available datasets were analyzed in this study. This data can
be found here: https://www.mdpi.com/article/10.3390/ma15082823/s1.

Author contributions

ZX carried out the main writing of the article and the content of
numerical test. DC revised the structure of the article and provided financial
support. LW and CY has sorted out the references and layout of the article.

Funding

This research was completed under the support of the
GuangXi Key Laboratory of New Energy and Building Energy
Saving.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmad Bhat, J. (2021). Effect of strength of parent concrete on the mechanical
properties of recycled aggregate concrete. Mater. Today Proc. 42, 1462–1469. doi:10.
1016/j.matpr.2021.01.310

Alam, M. S., Sultana, N., and Hossain, S. Z. (2021). Bayesian optimization algorithm
based support vector regression analysis for estimation of shear capacity of FRP reinforced
concrete members. Appl. Soft Comput. 105, 107281. doi:10.1016/j.asoc.2021.107281

Alhakeem, Z. M., Jebur, Y. M., Henedy, S. N., Imran, H., Bernardo, L. F., and Hussein, H.
M. (2022). Prediction of ecofriendly concrete compressive strength using gradient
boosting regression tree combined with GridSearchCV hyperparameter-optimization
techniques. Materials 15 (21), 7432. doi:10.3390/ma15217432

Awad, M., and Khanna, R. (2015). “Support vector regression,” in Efficient learning
machines (Berlin, Germany: Springer), 67–80.

Bai, B., Zhou, R., Cai, G., Hu, W., and Yang, G. (2021). Coupled thermo-hydro-
mechanical mechanism in view of the soil particle rearrangement of granular
thermodynamics. Comput. Geotechnics 137, 104272. doi:10.1016/j.compgeo.2021.104272

Bai, B., Zhou, R., Yang, G., Zou, W., and Yuan, W. (2023). The constitutive behavior and
dissociation effect of hydrate-bearing sediment within a granular thermodynamic
framework. Ocean. Eng. 268, 113408. doi:10.1016/j.oceaneng.2022.113408

Bai, G., Zhu, C., Liu, C., and Liu, B. (2020). An evaluation of the recycled aggregate
characteristics and the recycled aggregate concrete mechanical properties. Constr. Build.
Mater. 240, 117978. doi:10.1016/j.conbuildmat.2019.117978

Basak, D., Pal, S., and Patranabis, D. C. (2007). Support vector regression. Statistics
Comput. 11 (10).

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-
parameter optimization. Adv. neural Inf. Process. Syst. 24.

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13 (2).

Bergstra, J., Yamins, D., and Cox, D. (2013). “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures,” in
Proceedings of the International conference on machine learning: PMLR), Atlanta,
Georgia, USA, June 2013, 115–123.

Breiman, L. (2001). Random forests.Mach. Learn. 45 (1), 5–32. doi:10.1023/a:1010933404324

Catherina, V. P., and Chella, K. N. (2021). Prediction of compressive strength of recycled
aggregate concrete using artificial neural network and cuckoo search method. Mater.
Today Proc. 46, 8480–8488. doi:10.1016/j.matpr.2021.03.500

Chakradhara Rao, M., Bhattacharyya, S., and Barai, S. (2011). Influence of field recycled
coarse aggregate on properties of concrete. Mater. Struct. 44 (1), 205–220. doi:10.1617/
s11527-010-9620-x

Chakradhara Rao,M. (2018). Properties of recycled aggregate and recycled aggregate concrete:
Effect of parent concrete. Asian J. Civ. Eng. 19 (1), 103–110. doi:10.1007/s42107-018-0011-x

Chen, T., and Guestrin, C. (2016). “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, San Francisco, CA, USA, August 2016, 785–794.

Duan, Z.-H., Kou, S.-C., and Poon, C.-S. (2013). Prediction of compressive strength of
recycled aggregate concrete using artificial neural networks. Constr. Build. Mater. 40,
1200–1206. doi:10.1016/j.conbuildmat.2012.04.063

Duan, Z., and Poon, C. (2014). Properties of recycled aggregate concrete made with
recycled aggregates with different amounts of old adhered mortars.Mater. Des. 58, 19–29.
doi:10.1016/j.matdes.2014.01.044

Eggensperger, K., Hutter, F., Hoos, H., and Leyton-Brown, K. (2015). “Efficient
benchmarking of hyperparameter optimizers via surrogates,” in Proceedings of the
AAAI Conference on Artificial Intelligence, Austin, TX, USA, January 2015.()

Feurer, M., and Hutter, F. (2019). “Hyperparameter optimization,” in Automated
machine learning (Berlin, Germany: Springer), 3–33.

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting. Journal-
Japanese Soc. Artif. Intell. 14 (771-780), 1612. .

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Ann. statistics 29, 1189–1232. doi:10.1214/aos/1013203451

Giesekam, J., Barrett, J. R., and Taylor, P. (2016). Construction sector views on low
carbon building materials. Build. Res. Inf. 44 (4), 423–444. doi:10.1080/09613218.2016.
1086872

González-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., and Carro-López, D.
(2016). Study of recycled concrete aggregate quality and its relationship with recycled
concrete compressive strength using database analysis. Materiales de Construcción 66
(323), e099. doi:10.3989/mc.2016.06415

Gull, I. (2011). Testing of strength of recycled waste concrete and its applicability.
J. Constr. Eng. Manag. 137 (1), 1–5. doi:10.1061/(asce)co.1943-7862.0000255

Guo, Z., Chen, L., Gui, L., Du, J., Yin, K., and Do, H. M. (2020a). Landslide displacement
prediction based on variational mode decomposition and WA-GWO-BP model.
Landslides 17 (3), 567–583. doi:10.1007/s10346-019-01314-4

Guo, Z., Chen, L., Yin, K., Shrestha, D. P., and Zhang, L. (2020b). Quantitative risk
assessment of slow-moving landslides from the viewpoint of decision-making: A case
study of the three gorges reservoir in China. Eng. Geol. 273, 105667. doi:10.1016/j.enggeo.
2020.105667

Khademi, F., Jamal, S. M., Deshpande, N., and Londhe, S. (2016). Predicting strength of
recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference
system and multiple linear regression. Int. J. Sustain. Built Environ. 5 (2), 355–369. doi:10.
1016/j.ijsbe.2016.09.003

Koper, A., Koper, W., and Koper, M. (2017). Influence of raw concrete material quality
on selected properties of recycled concrete aggregates. Procedia Eng. 172, 536–543. doi:10.
1016/j.proeng.2017.02.063

Frontiers in Earth Science frontiersin.org15

Zhang et al. 10.3389/feart.2023.1112105

https://www.mdpi.com/article/10.3390/ma15082823/s1
https://doi.org/10.1016/j.matpr.2021.01.310
https://doi.org/10.1016/j.matpr.2021.01.310
https://doi.org/10.1016/j.asoc.2021.107281
https://doi.org/10.3390/ma15217432
https://doi.org/10.1016/j.compgeo.2021.104272
https://doi.org/10.1016/j.oceaneng.2022.113408
https://doi.org/10.1016/j.conbuildmat.2019.117978
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1016/j.matpr.2021.03.500
https://doi.org/10.1617/s11527-010-9620-x
https://doi.org/10.1617/s11527-010-9620-x
https://doi.org/10.1007/s42107-018-0011-x
https://doi.org/10.1016/j.conbuildmat.2012.04.063
https://doi.org/10.1016/j.matdes.2014.01.044
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1080/09613218.2016.1086872
https://doi.org/10.1080/09613218.2016.1086872
https://doi.org/10.3989/mc.2016.06415
https://doi.org/10.1061/(asce)co.1943-7862.0000255
https://doi.org/10.1007/s10346-019-01314-4
https://doi.org/10.1016/j.enggeo.2020.105667
https://doi.org/10.1016/j.enggeo.2020.105667
https://doi.org/10.1016/j.ijsbe.2016.09.003
https://doi.org/10.1016/j.ijsbe.2016.09.003
https://doi.org/10.1016/j.proeng.2017.02.063
https://doi.org/10.1016/j.proeng.2017.02.063
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1112105


Kou, S.-c., and Poon, C.-s. (2015). Effect of the quality of parent concrete on the
properties of high performance recycled aggregate concrete. Constr. Build. Mater. 77,
501–508. doi:10.1016/j.conbuildmat.2014.12.035

Li, Y., and Chen, W. (2020). A comparative performance assessment of ensemble
learning for credit scoring. Mathematics 8 (10), 1756. doi:10.3390/math8101756

Liang, W., Luo, S., Zhao, G., and Wu, H. (2020). Predicting hard rock pillar stability
using GBDT, XGBoost, and LightGBM algorithms. Mathematics 8 (5), 765. doi:10.3390/
math8050765

Liu, Y., Wang, Y., and Zhang, J. (2012). “New machine learning algorithm: Random
forest,” in Proceedings of the International Conference on Information Computing and
Applications, Wuhan, China, October 2012, 246–252.

McNeil, K., and Kang, T. H.-K. (2013). Recycled concrete aggregates: A review. Int.
J. Concr. Struct. Mater. 7 (1), 61–69. doi:10.1007/s40069-013-0032-5

Medina, V., Hürlimann, M., Guo, Z., Lloret, A., and Vaunat, J. (2021). Fast physically-
based model for rainfall-induced landslide susceptibility assessment at regional scale.
Catena 201, 105213. doi:10.1016/j.catena.2021.105213

Meng, T., Wei, H., Yang, X., Zhang, B., Zhang, Y., and Zhang, C. (2021). Effect of mixed
recycled aggregate on the mechanical strength and microstructure of concrete under
different water cement ratios. Materials 14 (10), 2631. doi:10.3390/ma14102631

Nunez, I., Marani, A., and Nehdi, M. L. (2020). Mixture optimization of recycled
aggregate concrete using hybrid machine learning model. Materials 13 (19), 4331. doi:10.
3390/ma13194331

Ozaki, Y., Tanigaki, Y., Watanabe, S., and Onishi, M. (2020). “Multiobjective tree-
structured parzen estimator for computationally expensive optimization problems,” in
Proceedings of the 2020 genetic and evolutionary computation conference, Cancun
Mexico, July 2020, 533–541.

Park, S. S., Kim, S. J., Chen, K. Q., Lee, Y. J., and Lee, S. B. (2018). Crushing
characteristics of a recycled aggregate from waste concrete. Constr. Build. Mater. 160,
100–105. doi:10.1016/j.conbuildmat.2017.11.036

Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia 4 (2), 1883. doi:10.4249/
scholarpedia.1883

Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn. 1 (1), 81–106. doi:10.
1007/bf00116251

Rakshvir, M., and Barai, S. V. (2006). Studies on recycled aggregates-based concrete.
Waste Manag. Res. 24 (3), 225–233. doi:10.1177/0734242x06064820

Rasmussen, C. E. (2003). “Gaussian processes in machine learning,” in Summer school
on machine learning (Berlin, Germany: Springer), 63–71.

Rasmussen, C. E., and Nickisch, H. (2010). Gaussian processes for machine learning
(GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015.

Ray, S. (2019). “A quick review of machine learning algorithms,” in Proceedings of the
2019 International conference on machine learning, big data, cloud and parallel
computing (COMITCon): IEEE), Faridabad, India, February 2019, 35–39.

Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000). New support
vector algorithms. Neural Comput. 12 (5), 1207–1245. doi:10.1162/089976600300015565

Sen, P. C., Hajra, M., and Ghosh, M. (2020). “Supervised classification algorithms in
machine learning: A survey and review,” in Emerging technology in modelling and graphics
(Berlin, Germany: Springer), 99–111.

Sev, A. (2009). How can the construction industry contribute to sustainable
development? A conceptual framework. Sustain. Dev. 17 (3), 161–173. doi:10.1002/sd.373

Shi, F., Huang, T., Tanikawa, H., Han, J., Hashimoto, S., and Moriguchi, Y. (2012).
Toward a low carbon–dematerialization society: Measuring the materials demand and
CO2 emissions of building and transport infrastructure construction in China. J. Industrial
Ecol. 16 (4), 493–505. doi:10.1111/j.1530-9290.2012.00523.x

Silva, R., de Brito, J., and Dhir, R. (2015). The influence of the use of recycled aggregates
on the compressive strength of concrete: A review. Eur. J. Environ. Civ. Eng. 19 (7),
825–849. doi:10.1080/19648189.2014.974831

Smola, A. J., and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics
Comput. 14 (3), 199–222. doi:10.1023/b:stco.0000035301.49549.88

Spence, R., and Mulligan, H. (1995). Sustainable development and the construction
industry. Habitat Int. 19 (3), 279–292. doi:10.1016/0197-3975(94)00071-9

Vapnik, V., Golowich, S., and Smola, A. (1996). Support vector method for function
approximation, regression estimation and signal processing. Adv. neural Inf. Process. Syst. 9.

Wagih, A. M., El-Karmoty, H. Z., Ebid, M., and Okba, S. H. (2013). Recycled
construction and demolition concrete waste as aggregate for structural concrete. HBRC
J. 9 (3), 193–200. doi:10.1016/j.hbrcj.2013.08.007

Wang, Y., Li, X., Wang, Z., and Liu, J. (2022a). Deep learning for magnitude prediction
in earthquake early warning. Gondwana Res. doi:10.1016/j.gr.2022.06.009

Wang, Y., Zhao, Q., Li, Y., Zhang, M., and Zhu, W. (2022b). Detecting cable force
anomalies on cable-stayed bridges using the STA/LTA method. Sustainability 14 (18),
11373. doi:10.3390/su141811373

Xia, B., Olanipekun, A., Chen, Q., Xie, L., and Liu, Y. (2018). Conceptualising the state of
the art of corporate social responsibility (CSR) in the construction industry and its nexus to
sustainable development. J. Clean. Prod. 195, 340–353. doi:10.1016/j.jclepro.2018.05.157

Ying, J., Su, F., and Chen, S. (2022). Long term performance of recycled concrete beams
with different water—Cement ratio and recycled aggregate replacement rate. Front. Struct.
Civ. Eng. 16, 302–315. doi:10.1007/s11709-022-0803-7

Yuan, X., Tian, Y., Ahmad, W., Ahmad, A., Usanova, K. I., Mohamed, A. M., et al.
(2022). Machine learning prediction models to evaluate the strength of recycled aggregate
concrete. Materials 15 (8), 2823. doi:10.3390/ma15082823

Zhang, L., Li, Q., and Zhou, J. (2017). Critical factors of low-carbon building
development in China’s urban area. J. Clean. Prod. 142, 3075–3082. doi:10.1016/j.
jclepro.2016.10.160

Zhang, Y., Kang, J., and Jin, H. (2018). A review of green building development in China
from the perspective of energy saving. Energies 11 (2), 334. doi:10.3390/en11020334

Frontiers in Earth Science frontiersin.org16

Zhang et al. 10.3389/feart.2023.1112105

https://doi.org/10.1016/j.conbuildmat.2014.12.035
https://doi.org/10.3390/math8101756
https://doi.org/10.3390/math8050765
https://doi.org/10.3390/math8050765
https://doi.org/10.1007/s40069-013-0032-5
https://doi.org/10.1016/j.catena.2021.105213
https://doi.org/10.3390/ma14102631
https://doi.org/10.3390/ma13194331
https://doi.org/10.3390/ma13194331
https://doi.org/10.1016/j.conbuildmat.2017.11.036
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1007/bf00116251
https://doi.org/10.1007/bf00116251
https://doi.org/10.1177/0734242x06064820
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1002/sd.373
https://doi.org/10.1111/j.1530-9290.2012.00523.x
https://doi.org/10.1080/19648189.2014.974831
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1016/0197-3975(94)00071-9
https://doi.org/10.1016/j.hbrcj.2013.08.007
https://doi.org/10.1016/j.gr.2022.06.009
https://doi.org/10.3390/su141811373
https://doi.org/10.1016/j.jclepro.2018.05.157
https://doi.org/10.1007/s11709-022-0803-7
https://doi.org/10.3390/ma15082823
https://doi.org/10.1016/j.jclepro.2016.10.160
https://doi.org/10.1016/j.jclepro.2016.10.160
https://doi.org/10.3390/en11020334
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1112105

	Prediction of compressive strength of recycled aggregate concrete using machine learning and Bayesian optimization methods
	1 Introduction
	2 Machine learning methods
	2.1 Support vector regression (SVR)
	2.2 K-nearest neighbor (KNN)
	2.3 Random forest (RF)
	2.4 Gradient boosting decision tree algorithm (GBDT)
	2.5 Extreme gradient boosting algorithm (XGBoost)
	2.6 Hyperparameter configuration method

	3 Experimental process
	3.1 Experimental framework
	3.2 Experimental procedure
	3.2.1 Data analysis
	3.2.2 Hyperparameter configuration
	3.2.3 Model evaluation


	4 Results and analysis
	4.1 Analysis of the impact of hyperparametric configuration methods on model performance
	4.2 Comparative analysis of the performance of different models
	4.3 Feature sensitivity analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


