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Unconventional reservoirs are rich in petroleum resources. Reservoir fluid
property identification for these reservoirs is an essential process in
unconventional oil reservoir evaluation methods, which is significant for
enhancing the reservoir recovery ratio and economic efficiency. However, due
to the mutual interference of several factors, identifying the properties of oil and
water using traditional reservoir fluid identification methods or a single predictive
model for unconventional oil reservoirs is inadequate in accuracy. In this paper, we
propose a new ensemble learningmodel that combines 12 base learners using the
multiverse optimizer to improve the accuracy of reservoir fluid identification for
unconventional reservoirs. The experimental results show that the overall
classification accuracy of the adaptive ensemble learning by opposite
multiverse optimizer (AIL-OMO) is 0.85. Compared with six conventional
reservoir fluid identification models, AIL-OMO achieved high accuracy on
classifying dry layers, oil–water layers, and oil layers, with accuracy rates of
94.33%, 90.46%, and 90.66%. For each model, the identification of the water
layer is not accurate enough, which may be due to the classification confusion
caused by noise interference in the logging curves of the water layer in
unconventional reservoirs.
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1 Introduction

Reservoir fluid property identification is an important method for evaluating oil
reservoirs as it plays a key role in calculating oil reserve production and formulating oil
field development plans. Unconventional oil reservoirs, with their low permeability and
nonhomogeneous and complex pore structure, present challenges in identifying reservoir
fluid properties. Currently, reservoir fluid identification relies on various logging data to
explore the intrinsic connections among logging data, geological data, and oil and gas water
information in the reservoir. There are four types of methods used in reservoir fluid
identification: petrophysical methods (Das and Chatterjee, 2018), cross-plot techniques
based on cores or log responses, experimental formula methods (Moffatt and Williams,
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1998), and artificial intelligence methods (Bestagini et al., 2017). Due
to the mutual interference of many factors, such as reservoir
lithology and pore structure in unconventional oil reservoirs,
identifying the properties of oil and water using traditional
reservoir fluid identification methods remains a challenge.
Therefore, artificial intelligence techniques have been applied in
this field, providing new perspectives on fluid identification in
reservoirs.

With the rapid development of artificial intelligence techniques
in recent years, regression algorithm (Bestagini et al., 2017), support
vector machine techniques (Al-Anazi and Gates, 2010; Tohidi-
Hosseini et al., 2016), clustering algorithm (Baarimah et al.,
2019), genetic algorithm (Guerreiro et al., 1998), artificial neural
network (Onwuchekwa, 2018), decision tree algorithm (He et al.,
2020), random forest (Wang et al., 2020), and thermodynamics-
informed neural network (Zhang and Sun, 2021) are used in oil
reservoir evaluation.

In reservoir fluid identification, Yang et al. (2016) used a
synergistic wavelet transform and improved K-means clustering
technology to classify reservoir fluid. Al-Anazi and Gates (2010)
applied an SVM model to nonhomogeneous sandstone reservoirs
to classify reservoir fluid. The results obtained by Anazi
demonstrated that SVM is superior to traditional models in
data training and model generalizability of reservoir fluid in
nonhomogeneous sandstone reservoirs. Bestagini et al. (2017)
applied the XGBoost model to predict reservoir fluid layers based
on logging data and found that the ensemble learning model
shows good performance in reservoir fluid classification. Tohidi-
Hosseini et al. (2016) used least-squares support vector machine
(LSSVM) optimized by coupled simulated annealing (CSA) to
predict the reservoir fluid and showed that the LSSVM has better
learning ability after being optimized using an optimization
algorithm. Sun et al. (2019) used a machine learning feed-
forward neural network (FNN) and hierarchical cluster
analysis (HCA) to predict reservoir fluid through natural
gamma (NG) rays, high-resolution density (HRD) mapping,
and single-point resistance (SPR) logging. The prediction
results obtained show that their model had an R2 of 0.84,
reflecting the importance of data uniformity in reservoir fluid
identification. He et al. (2020) used a deep neural network (DNN)
to learn logging data for reservoir fluid identification. The study
adopted MAHAKIL to improve the performance of DNN on
imbalanced data and obtained good prediction results (F1 of
0.601, F0.5 of 0.597, and F2 of 0.577), reflecting the need for
model adjustment. Luo et al. (2022) proposed a long short-term
memory network (LSTM) to characterize the time series features
of logs varying with the depth domain. The kernel of the
convolutional neural network (CNN) is used to slide on log
curves to characterize their relationships. The innovation of
Luo’s work is not only an improved AI model but also the
creation of a multilevel reservoir identification process. At
present, there are two challenges in reservoir fluid
identification for unconventional reservoirs: 1. unconventional
reservoirs show unconventional features and irregular noise
information in well logging data, which require data cleaning,
processing, and prevention methods for the overfitting
phenomenon; 2. logging data from unconventional reservoirs
usually face data imbalance problems, which makes it difficult to

apply the model to fluid identification in unconventional
reservoirs.

2 Methodologies

2.1 Multiverse optimizer

The multiverse optimizer (MVO) is a new method of an intelligent
optimization algorithm proposed by Mirjalili et al. (2016), which has
been successfully applied in various function optimizations and
engineering designs (Vivek et al., 2018; Hassan and Zellagui, 2019;
Jain et al., 2019; Dao et al., 2020; Zhou et al., 2022). The multiverse
theory in physics is the inspiration for the MVO algorithm. In the
multiverse theory, the emergence of the individual universe is the result
of a single giant explosion, and multiple giant explosions have
contributed to the birth of the entire multiverse population. White
holes, black holes, and wormholes are the three core concepts in the
multiverse theory: white holes have strong repulsion and can release all
objects; black holes have extremely high gravitational forces and can
absorb all objects; and wormholes connect different universes and the
orbit of the transported object.

MVO is based on the principle that matter in the universe
transfers from white holes to black holes through wormholes. Under
the combined action of white holes, black holes, and wormholes, the
entire multiverse population will eventually reach a state of
convergence. MVO classifies the search process into two stages:
exploration and development. The exploration of the search space is
completed through the exchange of black/white holes, and the
development process is completed in the way of wormholes.
MVO cyclically iterates the initial universe through white hole/
black hole tunnels and wormholes, in which the universe represents
the feasible solution to the problem, the objects in the universe
represent the components of the solution, and the expansion rate of
the universe represents the fitness value of the solution. The
mathematical model of the algorithm is given as follows:

Multiverse initialization: A set of random universes U is created,
as shown in Equation 1.

U �
x1
1 x2

1 / xd
1

x1
2 x2

2 / xd
2

..

. ..
. ..

. ..
.

x1
n x2

n / xd
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Here, d is the number of variables and n is the number of
universes (candidate solutions).

Black and white hole mechanisms: Due to the different
expansion rates of each individual universe, objects in an
individual universe are transferred through white hole/black hole
orbits. This process follows the roulette mechanism, as shown in
Eq. 2.

xj
i � xj

k r1 <NI Ui( ),
xj
i r1 ≥NI Ui( ),{ (2)

where xj
i is the i variable of the j universe. NI(Ui) is the

normalized expansion rate of the universe i. r1 is a random number
between 0 and 1, and xj

k is the i variable of the j universe selected
according to the spiral mechanism.
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Wormhole mechanism: Without considering the size of the
expansion rate, in order to achieve local changes and improve its
own expansion rate, the individual universe will stimulate the
internal objects to move to the current optimal universe as
shown in Eqs 3–5.

WEP � WEPmin + l ×
WEPmax −WEPmax

L
( ), (3)

TDR � 1 − l1/p

L1/p
. (4)

Here, WEP represents the probability of the existence of
wormholes in the multiverse space, WEPmin represents the
minimum probability (0.2 in this study), WEPmax represents the
maximum probability (1 in this study), l represents the current
number of iterations, and L represents the maximum number of
iterations. TDR represents the travel distance numerical value,
where p (equal to 6 in this article) defines the development
accuracy in iterations. The higher the value of p, the faster the
local development but smaller the scope of the search.

xj
i �

Xj + TDR × ubj − lbj( ) × r4 + lbj( ), r3 < 0.5,

Xj − TDR × ubj − lbj( ) × r4 + lbj( ), r3 ≥ 0.5,

⎧⎨⎩ r2 <WEP,

xj
i , r2 ≥WEP.

⎧⎪⎪⎨⎪⎪⎩
(5)

Here, xj
i represents the j object of the current optimal universe

and ubj and lbj refer to the lower and upper bounds of xj
i ,

respectively. r2, r3, and r4 are random numbers in the range [0, 1].

2.2 Opposition-based learning for the
multiverse optimizer

In the MVO, the update of the individual mainly depends on the
size of the expansion rate and is then randomly updated according to
the current global optimal universe and wormhole existence
probability (WEP) parameters. Since the optimal value in the
early stage of the algorithm is often too far from the true value,
using the global optimal universe and the updated strategy will
increase the probability of the algorithm falling into the local
optimal and may cause the algorithm to slow down the
convergence speed. Therefore, this study introduces opposition-
based learning (OBL) to improve the global search ability and
algorithm stability of the MVO.

OBL was proposed by Tizhoosh (2005) to improve the
convergence stability and global search ability of other algorithms
by considering opposite anti-population, opposite weight, anti-
behavior, anti-exploration, anti-exploitation, etc. Currently, some
scholars have introduced OBL into optimization algorithms such as
PSO (Wang et al., 2011), WOA (Ewees et al., 2018), SCA (Gupta and
Deep, 2019), and SSA (Tubishat et al., 2020). In this study, OBL is
introduced into MVO, and the OBL-MVO algorithm is established
for optimizing ensemble learning. The difference between the OBL-
MVO and MVO lies in three stages: negative universe initialization,
anti-black hole mechanism and anti-white hole mechanism, and
anti-wormhole mechanism. The OBL-MVO algorithm includes a
total of six stages: initialization of the positive universe and negative
universe, calculation of the expansion rate (fitness value) of the

universe, black hole and white hole mechanism, anti-black hole
mechanism and anti-white hole mechanism, wormhole mechanism,
and anti-wormhole mechanism. The positive universe and negative
universe initialization run only once, and the remaining five stages
are executed in a loop. The conceptual model of the proposed
algorithm is given in Figure 1.

The following section introduces the initialization of the positive
universe and the negative universe, the anti-black hole mechanism,
the anti-white hole mechanism, and the anti-wormhole mechanism.

Anti-multiverse establishment: In order to solve the situation of
the optimal value of theMVO algorithm often being too far from the
real value in the early stage, the global search ability and convergence
speed of the algorithm are improved. From the establishment stage
of the multiverse population, the universe is divided into a positive
universe and negative universe (the number of populations is
consistent with the original MVO algorithm), and the positive
universe is established by Eqs 6–9:

U �
x1
1 x2

1 / xd
1

x1
2 x2

2 / xd
2

..

. ..
. ..

. ..
.

x1
n/2 x2

n/2 / xd
n/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

x′ji � ubj − xj
i + ubj, (7)

U′ �
x′11 x′21 / x′d1
x′12 x′22 / x′d2
..
. ..

. ..
. ..

.

x′1n/2 x′2n/2 / x′dn/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

Uall � U U′[ ]. (9)
Here, x′

i is the corresponding negative universe in the positive
universe xi and x′ji is the anti-object of the corresponding object in
the negative universe.

Anti-black hole mechanism and anti-white hole mechanism: The
material exchange mechanism between black holes and white holes is
the exploration of the search space by MVO, but there are problems of
the local search accuracy being too high and global search ability being
insufficient. Therefore, the global search ability and overall stability of
the algorithm are increased by setting the reverse black hole and reverse
white hole mechanisms. The reverse black hole and reverse white hole
mechanisms include random black hole and white hole stage and
reverse object propagation stage. Both stages are controlled by a
convergence factor λ that decreases linearly with the number of
iterations to control the probability of occurrence. The random
black hole and white hole stages are shown in Eq. 11, and the
reverse object propagation stage is shown in Eq. 12:

λ � 1 − l

L
, (10)

xj
i � xj

k, r7 < λ,
xj
i , r7 ≥ λ,

{ (11)

xj
i �

xj
k, r5 < 0.5,

xj
i , r5 ≤ 0.5,

{ r6 < λ,

xj
i , r6 ≥ λ,

⎧⎪⎪⎨⎪⎪⎩ (12)

where λ is a convergence factor that decreases linearly with the
number of iterations. r5 and r6 are random numbers in the
range [0, 1].
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The anti-wormhole mechanism: The anti-wormhole
mechanism differs from the wormhole mechanism, where the
anti-wormhole mechanism improves the global search by
searching backward from the universe with the lowest expansion
rate. To prevent this mechanism from affecting convergence,
internal objects are, therefore, only stimulated to move toward
the current worst universe if it is determined that the anti-
wormhole mechanism is favorable to the increase in the
universe’s expansion rate.

xj
i l + 1( )opposite �

xj
i +X′

j × TDR × ubj − lbj( ) × r4 + lbj( ), r3 < 0.5,

xj
i +X′

j × TDR × ubj − lbj( ) × r4 + lbj( ), r3 ≥ 0.5,

⎧⎨⎩ r2 <WEP&r6 < λ,

xj
i , r2 ≥WEP ‖ r6 < λ,

⎧⎪⎪⎨⎪⎪⎩
(13)

xj
i l + 1( ) � xj

i l + 1( )opposite, NI xj
i l + 1( )opposite( )>NI xj

i l( )( ),
xj
i l( ), NI xj

i l + 1( )opposite( )≤NI xj
i l( )( ),

⎧⎨⎩
(14)

where X′
j denotes the j object of the current worst universe.

xj
i (l + 1)opposite denotes the result of the calculation based on the

reverse wormhole mechanism, xj
i (l + 1) is the j variable of the i

universe where the number of iterations is l + 1, and xji (l) is the j
variable of the i universe before the reverse wormhole mechanism in
the l iteration.

2.3 Adaptive ensemble learning by opposite
multiverse optimizer

The idea of ensemble learning is that even if one base learner
makes a wrong prediction, other base learners can correct the error,
which aims to integrate multiple base learners to improve the

accuracy of prediction. The main process is to first train multiple
base learners by certain rules, then combine them using an
integration strategy, and finally predict the result by
comprehensive judgment of all base learners. Currently, ensemble
learning has been successfully applied in pattern recognition, text
classification, numerical prediction (Wang et al., 2011), and other
fields.

The current integration strategy can be broadly divided into two
categories: one is the sequential generation of base classifiers, with
strong dependencies between individual learners, represented by
AdaBoost (Ying et al., 2013), and the other is the parallelized
integration method, which can generate base classifiers
simultaneously, without strong dependencies between individuals,
represented by Bagging (Dudoit and Fridlyand, 2003).

As unconventional reservoir data are collected from different
reservoirs and have different reservoir data characteristics, this
study improves the accuracy of the model by accommodating as
many base learners as possible into a parallelized integration
method to suit the different reservoir data characteristics.
However, accommodating more models can lead to overfitting
(Džeroski and Ženko, 2004). Therefore, the K-fold cross-
validation method and opposition-based learning are
introduced to avoid overfitting.

In this study, the search for the best weights of base learners is
considered an optimization problem, and the OBL-MVO algorithm
is used to solve the optimization problem. The integration strategy of
AIL-OMO is to divide the original dataset into several sub-datasets
which are fed into each base learner in layer 1. In layer 1, each base
learner outputs its own prediction results as meta features. The meta
features are then used as an input to layer 2, where the OBL-MVO is
used to search for the best weights of base learners.

FIGURE 1
Conceptual model of the proposed OBL-MVO algorithm r2(NI(Ubest)>NI(U1)>NI(U2)//>NI(Un)).
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FIGURE 2
Integration strategy of AIL-OMO.

FIGURE 3
Flowchart of the AIL-OMO.
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The integration strategy used in this study is shown in Figure 2.
In order to fully exploit the individual strengths of each model,

the probabilities of each reservoir predicted by each model are used
as an input to train the ensemble learning model. In order to
improve the accuracy and generalize the ability of the models
completed by integration learning, the aforementioned OBL-
MVO algorithm is introduced to reasonably optimize the
integration learning process and search for the best weight of
base learners.

The main contributions of this study are as follows:

(1) Collection of data and work on data collation and labeling.
(2) Proposed an algorithm OBL-MVO to optimize integration

learning.
(3) Proposed an ensemble learning model AIL-OMO for the

reservoir fluid classification task.

3 Experiments and results

To validate the effectiveness of our proposed method, we
conducted experiments on the dataset. The following sections
provide details on the model implementation, dataset processing,
and final comparison results. The Flowchart of the AIL-OMO is
shown in the Figure 3.

3.1 Data source and pretreatment

In this section, the data used in this paper and the preprocessing
of the data are introduced. In order to build a reservoir classification
model that can adapt to various unconventional features,
12,379 pieces of reservoir fluid property data from eight different
wells were used for training the model. The data contain six

FIGURE 4
Correlation scatterplot matrix of the original dataset.
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TABLE 1 Parameter size setting of the heuristic algorithms.

Algorithm Parameter Value

Gray wolf optimization (GWO) Convergence constant a Linear decrease [2,0]

Individual dimension 12

Maximum iteration number 50

Whale optimization algorithm (WOA) b [0,1]

l Linear decrease [2,0]

Individual dimension 12

Maximum iteration number 50

Multiverse optimizer (MVO) WEPmin 0.2

WEPmax 1

Maximum iteration number L 50

Dimensions of the universe 12

Opposition-based learning multiverse optimizer (OBL-MVO) WEPmin 0.2

WEPmax 1

Maximum iteration number L 50

Dimensions of the universe 12

FIGURE 5
Fitness curve of OBL-PO and other algorithms. (A)GWO, (B) WOA, (C) MVO, and (D) OBL-MVO.
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categories of labels: dry layer, poor oil layer, water layer, oil-bearing
water layer, oil–water layer, and oil layer. The data include AC (sonic
interval transit time), CNL (compensated neutron logging), DEN
(compensated density), GR (natural gamma ray), SP (spontaneous
potential), CAL (caliper logging), and R045 (0.45 m potential
resistivity). Figure 4 shows the degree of correlation between
variables in reservoir fluid property data (excluding the oil field
name). After obtaining the collected data, the annotation work of the
dataset was carried out by analyzing the logging curves as the
training data for the model.

In the data preprocessing stage, this study mainly operates on
the following issues:

(1) Rejection operations for data that are missing or do not conform
to common sense.

(2) For labels with labeled data, one-hot coding is used for
processing. Category labels from 1 to 6 represent the dry
layer, poor oil layer, water layer, oil-bearing water layer,
oil–water layer, and oil layer.

(3) Data normalization of the data is used as an input to the model.

TABLE 2 Weight of the base learners adapted by OBL-MVO.

Model Weight

Universe size: 20 Universe size: 50 Universe size: 100 Universe size: 200

AdaBoost 1 0 0.02833 0

Decision tree 0.1162 0 0 0.00022322

Gaussian NB 0 0.00048377 0.0038903 0

Gradient boosting 0.068271 0.0019224 0.0014322 0.034983

K-neighbors 0.28552 0.00050389 0.0050942 1

Linear discriminant 0 0.988614 1 0.00023692

Linear SVC 0.55879 0.016247 0.0005649 0.000002809

Logistic regression 0 0.00026492 0.00051013 0

Multinomial NB 0.0051706 0 0.00010339 0.0005012

Quadratic discriminant 0.51818 0 0 0

Random forest 0.037554 0.00046187 0.00048096 0

SVC 0 0.0017196 0.00063828 0.00039366

FIGURE 6
Comparison chart of the real reservoir fluid and predicted reservoir fluid in well 1.
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3.2 Implementation details

In this section, OBL-MVO is used to solve the optimization
problem to build adaptive ensemble learning classifiers for
reservoir fluid property prediction. Since the dataset of
unconventional reservoirs contains various unconventional
reservoir features, each base learner is differently adapted to
the unconventional reservoir features. Therefore, the weight
searching problem in the integration strategy is abstracted as

an optimization problem to obtain and integrate a model with
generalization performance on all unconventional reservoir
features in the dataset. The OBL-MVO algorithm is used to
optimize the weights of the base learners based on the K-fold
cross-validation test set to build the AIL-OMO to avoid the
overfitting of partial features for unconventional reservoirs. In
this optimization problem, to avoid overfitting of the local
features of unconventional reservoirs, the accuracy of the
validation set in K-fold cross-validation of each base learner

FIGURE 7
Comparison chart of the real reservoir fluid and predicted reservoir fluid in well 2.

FIGURE 8
Comparison chart of the real reservoir fluid and predicted reservoir fluid in well 3.
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for each unconventional reservoir feature is obtained from the
validation set in K-fold cross-validation. In this case, the weights
of the base learners are encoded into the individual dimensional
attributes of the population, as shown in Eq. 15. The degree of
learning of each model in each unconventional reservoir feature
is involved in the calculation of the adaptation value of the
optimization algorithm, as shown in Eq. 16.

Xi � x1
i x2

i / xd
i[ ], xj

i ϵ 0, 1[ ] 1≤ j≤ d( ), (15)

fitness � 1 −
∑ts
i�1

max ∑dim
j�1

xj
i · xj

i( ) − yi
ture[ ]

ts
, (16)

whereXi represents the individual i; d is the dimension vector of
Xi; x

j
i is the jth dimension value of the individual i, representing the

weight of the jth model; yj
i is the classification possibility of the jth

model in the test set of K-fold cross-validation; yi
ture is the true

classification of the ith sample; ts is the number of samples in the full
test set in K-fold cross-validation; and fitness is the fitness function
set by this study.

In order to show the performance of OBL-MVO on this dataset,
OBL-MVO is compared with the other swarm intelligence heuristic
algorithms, including whale optimization algorithm (WOA), gray
wolf optimization (GWO), and MVO.

Among them, the parameter settings of each swarm intelligence
heuristic algorithm are shown in Table 1.

In order to compare the four intelligent optimization algorithms,
it is necessary to compare the fitness value curves of their
optimization results. Since the population size of different
algorithms affects the convergence of the fitness curve, in order
to balance the effect of the population size of each algorithms on the
fitness value, the population size for each algorithm is set to 20, 50,

FIGURE 9
Reservoir fluid property prediction by AIL-OMO (classification label: dry layer (1), poor oil layer (2), water layer (3), oil-bearing water layer (4),
oil–water layer (5), and oil layer (6)).
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100, and 200. The fitness curve results of GWO, WOA, MVO, and
OBL-MVO are shown in Figure 5.

Figure 5 shows that OBL-MVO has a faster convergence rate than
MVO, WOA, and GWO (the number of iterations required for the
fitness function to converge and stabilize is the least); OBL-MVO shows a
better convergencefitness value thanMVO,WOA, andGWO, indicating
that OBL-MVO has a better optimization effect than MVO, WOA, and
GWO on the dataset. The corresponding weights of base learners
optimized by OBL-MVO adaptive optimization are shown in Table 2.

3.3 Reservoir fluid property prediction

In this section, the predicted results of the AIL-OMO model
and evaluation of its performance are presented. The AIL-OMO
model was trained using the training dataset and evaluated on the
test set. This paper adopts the accuracy rate as the evaluation
metric, which is widely used in reservoir classification, lithology
identification, and reservoir fluid identification (Moffatt and
Williams, 1998; Al-Anazi and Gates, 2010; Boyd et al., 2013;
Onwuchekwa, 2018).

Figure 6 depicts the results of using seven machine learning
algorithms to predict the reservoir fluid, including the AIL-OMO
model proposed in this paper. The accuracy of the AIL-OMOmodel
surpasses that of the other six models, achieving an accuracy rate of
92.75%, followed by the SVC and linear SVC models in well 1.
Figure 7 presents the reservoir fluid prediction results of the seven
machine learning models in well 2. The accuracy rates from high to
low are given as follows: AIL-OMO (81.93%), logistic regression
(70.37%), linear SVC (69.30%), linear discriminant analysis
(69.26%), KNN (69.11%), AdaBoost (66.45%), and SVC (64.37%).
Figure 8 shows the reservoir fluid prediction results of the seven
machine learning models in well 3. Among the prediction results of
each model, the accuracy rate of the AIL-OMO model is better than
that of the other models, with an accuracy rate of 88.72%, followed
by SVC with an accuracy rate of 83.03%. The worst model is
AdaBoost, with an accuracy rate of only 65.57%. From the

experimental results, it can be interpreted that integrating
multiple weak learners into one strong learner using the OBL-
MVO algorithm leads to a significant improvement in the
prediction accuracy of the original model. Therefore, the
proposed AIL-OMO model has high accuracy and is more
conducive to the prediction of reservoir fluid.

Figure 9 shows the change in the classification accuracy of the
AIL-OMO model with different party sizes.

Figure 9 shows the classification accuracy of different reservoir
fluids by AIL-OMO. Each value in the figure represents the ratio of
the number of reservoir fluids identified by AIL-OMO to the actual
number of reservoir fluids in the dataset. Figure 6 shows that the
results of AIL-OMO exhibit slight fluctuations under different party
sizes. The classification accuracy for the poor oil layer, water layer,
and oil-bearing water layer is relatively low. This can be attributed to
the smaller percentage of poor reservoirs, water layers, and oil-
bearing water layers in the dataset.

Table 3 presents the comparison results of the accuracy of AIL-
OMO and the other six machine learning models. Among them,
AIL-OMO with a party size of 100 achieves the highest accuracy of
85%. This model demonstrates the fewest classification errors for
each reservoir. However, when the party size is increased to 200, the
accuracy of AIL-OMO decreases to 78%. This decrease in accuracy
can be attributed to the party size being too large, causing overfitting
of the model to the data.

4 Discussion

Considering the characteristics of ensemble learning, the MVO
algorithm may promote the overfitting learning phenomenon in the
fluid category with small sample data. Therefore, the more models
the AIL-OMO integrates, the more the corresponding training data
samples should be, so that MVO can achieve the optimization effect
of ensemble learning.

For each model, the identification of oil-bearing water layer and
water layer are not accurate enough, which may be due to the

TABLE 3 Specific results of predicting permeability.

Model Sample number in the interval of absolute error ACC

1 2 3 4 5 6

AIL-OMO (party size: 20) 1,073 272 546 25 165 210 0.61

AIL-OMO (party size: 50) 588 145 368 25 107 273 0.74

AIL-OMO (party size: 100) 127 106 456 14 23 52 0.85

AIL-OMO (party size: 200) 362 132 573 17 114 110 0.78

SVC 239 249 823 29 86 255 0.75

AdaBoost 1,151 290 341 15 210 273 0.62

KNN 242 164 822 29 178 89 0.76

Linear SVC 158 324 830 27 15 285 0.75

Logistic regression 160 297 833 29 110 209 0.75

Linear discriminant analysis 148 199 840 29 203 110 0.74

Bold values are the best training results that can be achieved by AIL-OMO.
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classification confusion caused by noise interference in the logging
curves of the water layer in unconventional reservoirs. In the future,
we aim to decrease the number of base models to improve the
operational speed and enhance our model’s performance by
collecting data from various reservoir types for testing.

5 Conclusion

This study focuses on logging data for unconventional reservoirs,
which exhibit unconventional characteristics and data imbalance. To
address these challenges, this paper proposes a new model that
combines 12 base learners using the multiverse optimizer. The AIL-
OMO model combines multiple weak learners into one strong learner.
The advantage of our ensemble learning lies in its ability to ensure the
diversity of weak classifiers, resulting in better prediction results than
those obtained by other single learner models. Compared to other
widely used models, the new ensemble learning model proposed in this
paper achieves high accuracy on classifying dry layers, oil–water layers,
and oil layers, with accuracy rates of 94.33%, 90.46%, and 90.66%,
respectively. This indicates that the proposedmodel exhibits the highest
accuracy and better generalization for fluid identification in
unconventional oil reservoirs.
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