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Over the last decade we have witnessed a rapid, so far unexplained, increase
in the emission of methane to the atmosphere and this increase could lead
to an acceleration of the ongoing climate changes. The increase is likely to
originate from agriculture, but oil and gas production as well as wetlands are
also under suspicion. The best way to quantify the emission of methane and
other greenhouse gasses to our atmosphere is by using space based remote
sensing. Here, we analyse 3 years ofmeasurements of the column-averaged dry-
air mole fraction of methane from the Tropospheric Monitoring Instrument on
Sentinel-5P obtained with two different retrieval methods in order to evaluate
the dependency on geographic, land cover type and season. The land cover
types were obtained from the Moderate Resolution Imaging Spectroradiometer
aboard the Terra and Aqua satellites and from the World Cover data product
using observations from the Copernicus Sentinel-1 and Sentinel-2 missions. The
analysis reveals that while the highest methane concentrations are generally
found over croplands, the lowest are generally found over shrublands, which
is in agreement with expectations. It is more surprising that the analysis also
reveals lower than average methane concentrations over wetlands as wetlands
are generally thought to be a major source of methane emission. Until this
discrepancy is resolved the methane concentration over wetlands from the
Tropospheric Monitoring Instrument on Sentinel-5P should be handled with
caution. It is also found that the annual methane cycle, as seen in the measured
methane concentrations, for croplands, shrublands and savannas is delayed in
Africa compared to Asia.

KEYWORDS

remote sensing, atmospheric methane, sentinel 5p, greenhous gases, wetlands,
TROPOMI

1 Introduction

Greenhouse gasses can be monitored from satellites using infrared spectra of reflected
sunlight. Such measurements hold a large potential for not only understanding greenhouse
gas emission, but also for reducing greenhouse gas emission by providing objective
and transparent information that can be used in the taxating of the largest emitters.
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The greenhouse gasses that contribute most to global warming,
except for water, are carbon dioxide (CO2) and methane (CH4)
and the atmospheric concentration of both these gasses can be
measuredwith satellites.The column-averaged dry-airmole fraction
of CO2 and CH4 are denoted XCO2 and XCH4, respectively and
changes in these quantities can be used to estimate the growth
rates. In this way, the annual grow rates of XCO2 and XCH4 have
been measured to 2.28 ± 0.04 ppm yr−1 and 7.9 ± 0.2 ppb yr−1,
respectively (Reuter et al., 2020). Over the last decade we have
witnessed a rapid increase in the annual growth rate of CH4 in the
atmosphere (Nisbet et al., 2016; Saunois et al., 2020). An increase
that largely remains unexplained (Saunois et al., 2016). One of the
main reasons for this is that the uncertainties on the estimates of
local emission from different land cover types is still very large –
uncertainties of the order of 100% are not uncommon (see, e.g.,
Bloom et al., 2017).

Measurements of XCO2 and XCH4 can be used to estimate the
emission of these greenhouse gasses using an inversion approach
(Maasakkers et al., 2019). This is called a top-down approach and
can be compared to estimates based on a bottom-up approach
utilising inventories of anthropogenic emission as well as models
of natural emission (Friedlingstein et al., 2020; Saunois et al., 2020).
The uncertainties on both the top-down and the bottom-up
approach are large and difficult to assess and the situation is further
complicated by the fact that the bottom-up approach is often used as
input to the top-down approached, where combinations of emission
inventories are used as prior for the inversion (Maasakkers et al.,
2019). There is therefore a need for data driven approaches that can
test the results, uncertainties and conclusions from the top-down
and the bottom-up approaches with as few assumptions as possible.
One such data driven approach was presented by Buchwitz et al.
(2017), who derived an analytical approach for calculating methane
emission based on XCH4 as well as local pressure and wind velocity.

XCO2 and XCH4 have been measured with different precision
and temporal and spatial resolution (see, e.g., Reuter et al.,
2020). Current state-of-the-art is provided by the TROPOspheric
Monitoring Instrument (TROPOMI) on board the Sentinel five
Precursor (S5-P), which is capable of measuring XCH4 with a
precision of 14.0 ppb, a resolution of 5.5 x 7 km, a revisit time of 16
days (Schneising et al., 2019). These observations have been used in
different applications such as: understanding the role of wetlands in
the appeared large CH4 emission from South Sudan (Pandey et al.,
2021), evaluating the year-to-year anomalies in tropical wetland
CH4 emission (Parker et al., 2018), analysing the effect of increased
rainfall on wetland CH4 emission in East Africa (Lunt et al., 2021)
and estimating CH4 from oil and gas production regions in the
United Sates (Zhang et al., 2020b; de Gouw et al., 2020) and Russia
(Ialongo et al., 2021). In addition, due to its high observational
density and resolution, TROPOMI concentrations are being used in
cloud-based facilities developed to respond to a growing demand
for tools to infer regional methane emissions (Varon et al., 2022).

Here we take a data driven approach to analyse the
entire TROPOMI data set that is inspired by the approach in
Buchwitz et al. (2017). We use the TROPOMI data set to calculate
distributions of the methane concentrations for different land cover
types, different continents and different seasons. Assuming that the
measurements have been corrected correctly for differences in the
albedo of the different land cover types, this analysis allows to assess

differences in the methane emission from different land cover types
as function of continent and season. The approach is built on the
large number theorem in the sense that a single measurement does
not say much about the methane emission of the land cover type
from which is was taken over, but 106 measurements does.

It should however, be stressed that we analyse methane
concentrations and not emissions in this study.The analysis can thus
not be used to evaluate the total methane emission from a given land
cover type, only the relative methane emission from a parcel of a
given land cover type.

2 Data and methods

2.1 Sentinel-5P observations

The TROPOMI instrument is an imaging spectrograph with
7 x 7 km2 resolution (upgraded to 5.5 x 7 km2 in August 2019).
Measurements of XCH4 is produced by the operational methane
retrieval algorithm (Hu et al., 2016) using a forward model where
the observed spectra arematched to spectra from a radiative transfer
model by varying XCH4 in an inversion procedure. The operational
methane retrieval algorithm also produce measurements of XCO
as a byproduct. The XCH4 measured from TROPOMI covered
the period 20 December 2017 to 21 December 2020 is shown in
Figure 1.

2.2 TROPOMI CH4 retrieval algorithms

Schneising et al. (2019) presented an improved reduction of the
uncertainty in the TROPOMI observations based on the Weighting
Function Modified Differential Optical Absorption Spectroscopy
(WFM-DOAS) algorithm. The WFM-DOAS algorithm is similar to
the operational methane retrieval algorithm, except that it includes
a machine learning based quality filter that removes measurements
with high uncertainties due mainly to large solar zenith angles
and a machine learning based correction of systematic errors
due to underestimation of XCH4 over dark surfaces. The WFM-
DOAS algorithm also uses another forward radiative transfer model
compared to the operational methane retrieval algorithm that
includes solar zenith angle, altitude, albedo, water vapour and
temperature as variables that are optimised in the inversion.

The precision of the XCH4 measurements depends on a number
of factors, where the most important are surface albedo, solar zenith
angle and of course cloud cover. For albedos larger than 0.03 and
solar zenith angles less than 75° the precision is generally better
than 1% for the WFM-DOAS reduction (Schneising et al., 2019). In
general, albedos lower than 0.03 are only found over the oceans.

Lorente et al. (2021) improved the operationalmethane retrieval
algorithm by utilising the full-physics retrieval algorithmRemoTeC.
For the rest of the paper, this algorithm is referred to as S5P-
RemoTeC. The S5P-RemoTeC algorithm improves the operational
algorithm with respect to regularization scheme, the selection of the
spectroscopic database, the implementation of a higher resolution
digital elevation map (DEM) for surface altitude and an improved
correction for systematic biases in low- and high-albedo regions
seen in the data from the operational methane retrieval algorithm.
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FIGURE 1
Average measurements of XCH4 covering the period 20 December 2017 to 21 December 2020 obtained with the WFM-DOAS algorithm in
Schneising et al. (2019). The figure has been calculated by mapping the observations into a grid with a cell size of 0.036 times 0.072°. The well know
interhemispheric gradient in XCH4 (Hu et al., 2016), with stronger values in the northern compared to the southern hemisphere is clearly visible. The
largest values of XCH4 is seen over central Africa and southern Asia. Data points from high-elevated sites have been removed by the quality filter
described in Schneising et al. (2019), as they are associated with large uncertainties.

The surface albedo correction is done by comparing methane
measurements of closely separated locations, but with different
albedo values, which allowed to calculating the bias in the methane
retrieval algorithm as a function of surface albedo.

As both the WFM-DOAS and the S5P-RemoTeC algorithms
includes improved albedo corrections, which is important when
studying differences in the methane concentrations as function of
land cover type, theywhere chosen for this study. Both data sets were
corrected as described above. The entire analysis was performed in
parallel using both algorithms, which allowed validation of that any
detected trends would not be due to the data retrieval algorithm.

2.3 XCH4 as a function of land cover type

Two different land cover type data sets were also utilised in order
to allowed validation of that any detected trends would not be due to
the land cover type algorithm.The land cover types that were utilised
were from Friedl et al. (2010) and from ESA WorldCover project.

The land cover types in Friedl et al. (2010) are based
on observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard the Terra and Aqua satellites.
An ensemble supervised classification algorithms based on both
Neural Networks and Decision Tree Classifies where used to
estimate land cover type from the MODIS observations. The 17-
class International Geosphere-Biosphere Programme classification
(Loveland and Belward, 1997) was used for the land cover type
classification (see Table 1). All 17 classifications are fairly well
represented with barren being the most abundant and deciduous
needleleaf forest being the least.

TheMODIS teamquote an accuracy of 73.6% for their land cover
type classification1, but this accuracy is likely to hide smaller regional

1 https://modis-land.gsfc.nasa.gov/ValStatus.php?ProductID=MCD12.

accuracies depending on the individual land cover type. Zeng et al.
(2015) e.g., compared the MODIS classification to the national land
cover database of China (NLUD-C) and found an overall accuracy
of 66.42%. For the Shrublands and the permanent wetlands land
cover types, the obtained accuracies were however, well below 10%.
This does not necessarily mean that the accuracy of theMODIS land
cover type is below 10% for these land cover types, it could also be
due to differences in the definition of these land cover type in the
two databases.

The land cover types in the ESA WorldCover project are based
on visual observations from the Sentinel-2 and Landsat satellites and
on Synthetic Aperture Radar (SAR) observations from Sentinel-1
(Zanaga et al., 2021). These observations are combined to provide
a global land cover product with a resolution of 10 m. Again, all 11
classifications (see Table 1) are fairly well represented with barren
being the most abundant and mangroves being the least. The overall
global accuracy is quoted to be 76.7%2.

For both land cover type data sets, the most likely land cover
type was extracted for a 7 x 7 km foot print for each of the XCH4
measurement using the Google Earth Engine Python API (Google
Earth Engine also provide interactive maps of the two land cover
type data sets that allow for detailed inspection of the distributions
of the different land cover types). Google Earth Engine stores data
on multiple scales in image pyramids, where each pixel at a given
level of the pyramid is computed from the aggregation of a 2x2
block of pixels at the next lower level. For a limit number (<1%) of
the XCH4 measurements, it was not possible to obtain a land cover
type. We only ascribe one land cover type to each 7 x 7 km foot
print even though that each foot print might contain a variety of
different land cover types. In this way, we might miss contributions
from, e.g., small wetlands and urban areas that are dominated by the
surrounding land cover type. This approach is justified by the large

2 https://esa-worldcover.org/en/about/about.
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TABLE 1 Land cover type used by theMODIS and ESAWorldCover data sets.

MODIS ESA

1 Evergreen needleleaf forests:

dominated by evergreen conifer trees Trees

2 Evergreen broadleaf forests:

dominated by evergreen broadleaf and
palmate trees

Shrubland

3 Deciduous needleleaf forests:

dominated by deciduous needleleaf (larch)
trees

Grassland

4 Deciduous broadleaf forests:

dominated by deciduous broadleaf trees Cropland

5 Mixed forests:

dominated by neither deciduous

nor evergreen (40–60% of each) tree types Build-up

6 Closed shrublands:

dominated by woody perennials Barren/ sparse vegetation

7 Open shrublands:

dominated by woody perennials Snow and ice

8 Woody savannas Open water

9 Savannas Herbaceous wetland

10 Grasslands: dominated by herbaceous
annual

Mangroves

11 Permanent wetlands:

permanently inundated lands with

30–60% water cover and >10% vegetated
cover

Moss and lichen

12 Croplands: at least 60% of area is cultivated
cropland

13 Urban and built-up lands:

at least 30% impervious surface area

including building materials, asphalt and
vehicles

14 Cropland/ natural vegetation mosaics:

mosaics of small-scale cultivation

40–60% with natural tree, shrub or
herbaceous vegetation

15 Permanent snow and ice:

at least 60% of area is covered by snow

and ice for at least 10 months of the year

16 Barren:

at least 60% of area is non-vegetated barren

(sand, rock, soil) areas with less than 10%
vegetation

17 Water bodies:

at least 60%of area is covered by permanent
water bodies

number theorem discussed in the introduction – i.e., some of the
land cover types of the 7 x 7 km foot print might contain significant
contribution from other land cover types, but for an ensemble of 106

this effect vanish.The approach do however, build on the assumption
that the main part of the methane emission happens at a scale that is
not much small than 7 x 7 km.

2.4 XCH4 as a function of continent

The continent of the XCH4 measurements was obtained using
a shapefile provided by Environmental Systems Research, Inc. and
downscaled to 1% of the original resolution (∼100 km) in order to
make the handling of 800 mio. data points feasible.

2.5 XCH4 as a function of season

Observations covering the period 20 December 2017 to 21
December 2020 were analysed. XCH4 levels were calculated as a
function of season, where borders of the seasons were defined by
summer and winter solar solstice as well as spring and fall equinox.
The separation could have been based on the Gregorian calendar
months instead, but astronomical calendar appears more universal.

Given that 3 years of observationswere analysedmeans that each
season contains observations from three different years.

3 Results and discussions

The global distributions of XCH4 as function of land cover type
is shown in Figure 2. Figure 3 shows an example for the fall season,
whileFigure 4&Figure 5 showhow the fall season looks inAsia and
Africa, respectively. All figures are based on the WFM-DOAS data
retrieval algorithm and the MODIS land cover type. The rest of the
figures, including all continents, for all seasons, both data retrieval
algorithms and land cover type data sets can be found at [link to
github] – including code for generating the figures.

Figure 2 reveals that none of the distributions of XCH4 retrieved
with the WFM-DOAS algorithm as function of MODIS land cover
type are normally distributed as could naively be expected given
the large number of observations involved. All the distributions are
clearly either bimodal or asymmetric. This is especially the case for
deciduous needleleaf forest and open and closed shrublands. The
effect is also seen using the ESA WorldCover land cover type, but
it is less significant in the XCH4 measurements retrieved with the
S5P-RemoTeC algorithm. For Africa the effect is however, present
for both land cover data set and retrieval algorithms.

A bimodal or asymmetric distribution of XCH4 reflects that
either the categorisation, with respect to land cover type, continent
or season, has not been sufficiently detailed (mainly the case for
the clearly bimodal distributions) or XCH4 do not follow a normal
distribution (a log normal distribution would be a good candidate
then).

The red lines in the distribution give that mean value of XCH4,
which is also printed in the upper left corner. As can clearly be seen
in the figures, the mean values should be handled with caution for
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FIGURE 2
Global distribution of XCH4 retrieved with the WFM-DOAS algorithm as function of MODIS land cover type. The mean values of the distributions is
indicated with the red lines and the red number in the upper left corner. The numbers on the y-axis (provided as multiple of 106 in some panels)
represent the abselut numbers of cases in each bin. Cropland is the land cover type with the largest mean XCH4, while shrublands is the one with the
smallest.
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FIGURE 3
Similar to Figure 2, but here showing the global distribution of XCH4 retrieved with the WFM-DOAS algorithm as function of MODIS land cover type for
the fall season. All of the land cover types show bimodal or asymmetric distributions. Most of these can be explained by significant lower methane
emission during the fall and winter seasons in the southern hemisphere compared to the spring and summer season in the northern hemisphere.
Similar bimodal or asymmetric distribution is seen for the global distribution obtained with the S5P-RemoTeC algorithm.
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FIGURE 4
Similar to Figure 2, but here showing the distribution of XCH4 retrieved with the WFM-DOAS algorithm as function of MODIS land cover type for Asia
for the fall season. Again, the largest mean XCH4 is seen from croplands.
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FIGURE 5
Similar to Figure 2, but here showing the distribution of XCH4 retrieved with the WFM-DOAS algorithm as function of MODIS land cover type for Africa
for the fall season. Most of the land cover types show bimodal or asymmetric distributions.
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FIGURE 6
Colour coded matrices showing how the measured XCH4 values
deviate of the mean as a function of land cover type, continent and
season. The values for the ‘Any Land’ land cover types is given in ppb,
while the other values are given as the deviation from this value in ppb.
The complete names of the land cover types are given in Table 1. The
XCH4 values were retrieved with the WFM-DOAS algorithm as function
of MODIS land cover type.

these non-normal distributions. The mean values for all continents
and all seasons are tabulated in Figure 6. The signatures in the
XCH4 measurements retrieved with the S5P-RemoTeC algorithm
and/or the MODIS land cover type data set in general looks very
similar, with lower XCH4 levels observed over Australia and South
America. For Australia and South America the highest XCH4 levels
are observed in the summer seasons, while it is observed in the fall
seasons for all other continents.

One of the only significant differences between the results with
the WFM-DOAS and the S5P-RemoTeC data retrieval algorithms
is that while permanent snow and ice in general show lower
than average XCH4 levels in the measurements retrieved with the
S5P-RemoTeC algorithm, they show higher than average in the
measurements retrieved with the WFM-DOAS algorithm. For the
ESA WorldCover land cover type, the XCH4 levels are only lower
than average for themeasurements obtained with the S5P-RemoTeC
algorithm. For the measurements obtained with the WFM-DOAS
algorithm, the XCH4 levels over permanent snow and ice are very
close to the average level. The reason for the difference in the XCH4
levels over permanent snow and ice obtained with the two different
retrieval algorithms is likely do to differences in the handling of
albedo effect in the two retrieval algorithms.

3.1 The interhemispheric gradient

The well know interhemispheric gradient in XCH4 with larger
values in the northern hemisphere than in the southern (Hu et al.,
2016; Schneising et al., 2019) is clearly visible in Figure 1. This
gradient leads to the largest methane emission during the fall season
as this broadly represents the shoulder season in the northern
hemisphere.

The largest XCH4 levels are seen over Asia, followed by Europa,
Africa and North America, while the XCH4 levels are clearly
lower over South America and Australia (again reflecting the
interhemispheric gradient). For the XCH4 levels retrieved with
WFM-DOAS algorithm the highest levels are found over barren,
which is likely linked to high XCH4 levels over barren in Africa and
Asia (see Table 2). For the XCH4 levels retrieved with the RemoTeC
algorithm the highest levels are found over build-up lands and
croplands, this could be linked to high XCH4 levels over build-up
lands in Europa and North America and over croplands in Africa
and Asia. A relatively large number of observations from Africa are
assigned as permanent snow and ice, but though Africa does indeed
host three glaciers, this is likely do to misclassification between the
permanent snow and ice and the barren land cover type. A similar,
but opposite, effect is seen in Greenland and Arctic). In general, it
was not possible to make solid conclusions about which land cover
type that is responsible for the largest XCH4, but we see indication
that barren, mangroves, croplands and build-up lands lead to higher
XCH4 levels.

3.2 Low XCH4 levels over wetlands

The results for the lowest XCH4 levels are less ambiguous. Here
the lowest levels are seen over snow and ice, shrublands, moss and
lichen and wetlands (see Table 3). For snow and ice, shrublands and
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moss and lichen this agrees with expatriation (Oertel et al., 2016),
but wetlands are believed to be a major source of methane emission
as they provide a habitat for methanogenic bacteria that produce
methane during their decomposition of organic material. Wetlands
are especially well suited as habitats for methanogenic bacteria as
they provide an oxygen-free environment and abundant amounts
of organic material (Zehnder, 1978). Methanotrophic bacteria are,
on the other hand, capable of consuming methane, which, a long
with dependencies on other factors such as temperature, pH and
salinity, makes it hard to assess the net methane budget associated
with wetlands (Segers, 1998).

The general lower than average XCH4 levels over wetlands are
found with both land cover data sets and retrieval algorithms (see
Table 4; Figure 7), except for North America, South America and
Australia. In general, themethane emission fromSouthAmerica and
Australia is very low and follow a different trend than the rest of the
world (see Figure 8) – the reason being that these two continents
are located on the southern hemisphere and that most methane
sources, artificial and natural, lies in the northern hemisphere
(Volodin, 2015), but for North America the difference contradicts
the common model, where tropical wetlands are expected to emit
more methane, than wetlands at higher latitudes as the higher
temperatures will lead to more biological activity (Lunt et al., 2019).
An explanation for this disagreement could be that the larger
temperatures lead to not only more methanogenic bacteria, but also
more methanotrophic bacteria (Wu et al., 2010) or alternatively that
the lower temperatures in North America compared to the tropical
regions lead to less methanotrophic bacteria activity.

Though the general lower than average XCH4 levels over
wetlands are found with both land cover data sets and retrieval
algorithms, we cannot rule out that the discrepancy could be due
to misclassification, problems with the low spatial resolution of
the XCH4 measurements or biases in the data retrieval algorithms
coursed by the low albedo ofwetlands.However, redoing the analysis
with observations from, e.g., the Thermal And Near-infrared Sensor
for carbon Observation (TANSO) Fourier Transform Spectrometer
(FTS) on the Greenhouse gases Observation Satellite (GOSAT)
would be beyond the scope of this paper. Also, XCH4 levels from
GOSAT have been compared to observations from Sentinel-5P by
Lorente et al. (2021) and Yu et al. (2022), who both find a high
degree of agreement.

Observations from both GOSAT and Sentinel-5P have been
used to estimate methane emission from wetlands. In general, these
studies find lower posterior emissions compared to prior emissions
from, e.g., WetCHART (Bloom et al., 2017). This is in agreement
with the lower than average XCH4 levels over wetlands that we find.

Maasakkers et al. (2019) used inversion of GOSAT observations
to assess global methane emissions and found slightly lower
posterior emission compared to prior emission based on WetCHAR
for Southern US. This was explained by low soil organic carbon
in these ecosystems. Yu et al. (2022) preformed a similar analysis,
but this time using Sentinel-5P observations and found similar
downward correction of the posterior emissions compared to the
prior emissions in WetCHART for North America.

Methane emission for central Africa were estimated by both
Lunt et al. (2019) using GOSAT observations and Pandey et al.
(2021) using observations from Sentinel-5P. Lunt et al. (2019) found
a methane emission that were 60% smaller than the WetCHART

estimate for the Congo Basin, where 90% of the methane emission
is expected to originate from wetlands (Bloom et al., 2017). The
opposite scenario was however, observed for the South Sudan’s
wetlands, where methane emissions levels four times higher than
WetCHART were observed. The last result was confirmed by
Pandey et al. (2021) using observations from Sentinel-5P and the
data driven approach by Buchwitz et al. (2017).

Lunt et al. (2019) found the highest emission in the June-
November months, while Pandey et al. (2021) found it in the
December to February months, which is generally in agreement
with the result presented here, where the highest concentrations are
seen in the October-March months. As analysed by Pandey et al.
(2021) there is a discrepancy in the seasonal change of the methane
emission in the satellite observations and the WetCHART model
that could be explained by a higher temperature dependence of the
methane emission than suggested by the WetCHART models.

Ma et al. (2021) compared wetland models with emission fluxes
from the GOSAT satellite and found that 72% of the global methane
emission originates from tropical wetlands, but that the temperature
sensitivity of the methane emission from wetlands was in general
lower than expected. Together with our result, this indicates that the
methane emission from wetlands is also controlled by other factors
that just latitude and temperature.

Saunois et al. (2020) estimated the methane emission from
wetlands to be between 100 and 217 Tg CH4 per year. Making it
account for between 11 and 38% of the global methane emission.
In the land cover classifications used here, permanent wetlands
makes up less than 2% of the samples (excluding the oceans).
Therefore, in order for the permanent wetlands to account for even
10% of the global methane emission, the relative emission from
permanent wetlands would have to be significant larger than most
other land cover types. However, the smaller than average XCH4
levels observed over wetlands in this study suggest the opposite.This
is an example of a peculiarity, as described in the introduction, where
the XCH4 measurements points in a different direction than the
methane emission estimates obtainedwith inversion.Thepeculiarity
could be due to some not well understood mechanism in the
inversion that would transport methane away from the permanent
wetlands or it could be due to an overestimation of the priormethane
emission from permanent wetlands used in the inversion. Our
study thus reveals a need to investigate if wetlands are modelled
correctly in the different inversion models used to estimate methane
emissions.

Another factor that influences the global XCH4 distribution
is the interhemispheric transport of air masses. In a combined
analysis using XCH4 observations from GOSAT with atmospheric
simulations at global scale, Belikov et al. (2022) identified the
location of longitudinal zones of active interhemispheric transport
over tropical South America, tropical Africa and Southeast Asia,
where the methane mass fluxes are transported toward the south all
year long.

Is it somewhat puzzling that while the XCH4 levels overwetlands
general seems to be lower than average, the levels of mangroves
seem to be higher and the two land cover types appears very
similar. The mangrove land cover category is only found in the ESA
WorldCover land cover type and in general with low abundances, so
the mangrove measurements a less reliable than the observations of
wetlands.

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2023.1119977
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Karoff and Vara-Vela 10.3389/feart.2023.1119977

TABLE 2 Land cover types with the highest XCH4 levels as function of continent, land cover type data set and data retrieval algorithm. 5 land cover types:
Evergreen Broadleaf Forests, Grasslands, Urban and Build-up Lands and Natural VegetationMosaics have similar XCH4 level for Europe using the RemoTeC
algorithm and theMODIS data set.

ESA MODIS

WFM-DOAS RemoTeC WFM-DOAS RemoTeC

Africa Mangroves Croplands Croplands/ Barren Croplands/ N. Vegetation

Asia Barren/ Build-up Mangroves U. Lands N. Vegetation

Australia Mangroves Mangroves D. Forest/ Grasslands N. Vegetation

Europe Mangroves Barren D. B. Forests -

N. America Trees/ Build-up Mangroves D. B. Forests E. B. Forests

S. America Trees Trees/ Mangroves E. B. Forests E. B. Forests

World Barren Build-up Barren Croplands

TABLE 3 Land cover types with the lowest XCH4 levels as function of continent, land cover type data set and data retrieval algorithm. 4 land cover types: Closed
Shrublands, Croplands, Permanent Snow and Ice, Barren have similar XCH4 level for Australia using theWFM-DOAS algorithm and theMODIS data set.

ESA MODIS

WFM-DOAS RemoTeC WFM-DOAS RemoTeC

Africa Shrublands M. and lichen C. Shrublands O. Shrublands

Asia M. and lichen S. and ice D. N. Forests C. Shrublands

Australia S. and ice Wetlands - S. and ice

Europe M. and lichen Mangroves P. Wetlands C. Shrublands

N. America S. and ice S. and ice S. and Ice S. and ice

S. America O. Water M. and lichen E. B. Forests O. Shrublands

World Shrublands S. and ice O. Shrublands S. and ice

TABLE 4 00XCH4 levels (in ppb) over wetlands as function of continent, land cover type data set and data retrieval algorithm. The numbers in brackets give the
mean XCH4 levels for any land cover type. In general the XCH4 levels are found to be comparable to or lower than themean level of any land cover type – except
for 8 (out of 28) cases that aremarked in boldface.

ESA MODIS

WFM-DOAS RemoTeC WFM-DOAS RemoTeC

Africa 1838 (1843) 1846 (1847) 1843 (1848) 1835 (1839)

Asia 1859 (1866) 1843 (1857) 1853 (1862) 1836 (1848)

Australia 1805 (1805) 1800 (1805) 1803 (1803) 1799 (1797)

Europe 1849 (1853) 1842 (1847) 1846 (1852) 1830 (1838)

N. America 1836 (1840) 1844 (1843) 1849 (1844) 1839 (1832)

S. America 1814 (1813) 1817 (1817) 1812 (1811) 1810 (1807)

World 1842 (1844) 1841 (1842) 1841 (1844) 1834 (1833)

The fact that only permanent wetlands were included in
the analysis could have an effect on the results, but the effect
would be in the wrong direction as permanent wetlands have
lower concentrations of oxygen compared to other wetland types
and therefore would favour methanogenic over methanotrophic
bacteria.

It is possible that the low spatial resolution of the XCH4
observations means that many small permanent wetlands are not
included in the analysed wetlands (Hondula et al., 2021). It is
however, not clear how that should change the general picture

observed here that wetlands in general show smaller than average
XCH4 levels.

North America shows larger variability in the relative XCH4
levels over wetlands than other land cover types compared to
other continents (see Figure 6). but the absolute variability is
smaller (see Figure 8). In other words, XCH4 varies out of phase
with other land cover types in North America. These are mainly
barren and permanent snow and ice, which shows clear bimodal
distributions with high values in fall and winter and low values
in spring and summer. As barren and permanent snow and ice
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FIGURE 7
Bar plot of XCH4 levels over wetlands as function of continent, land cover type data set and data retrieval algorithm. The values used in the plot are
given in Table 4.

FIGURE 8
Annual variability of the absolute XCH4 levels over wetlands as function of continent. All continents, except for Australia and South America follows an
annual cycle with high values in the fall and low levels in the spring. The levels over Australia and South America are seen to be lower and off phase
with the rest of the world.

are more common land cover types than wetlands, the variability
of these land cover types dominated the integrated variability
over North America thereby off phasing the variability over
wetlands.

3.3 The annual methane cycle

Africa constitute a special case in the analysis as it is located
on both the northern and southern hemisphere and as many of the
distributions seems to be clearly bimodal. The main contribution to
the observed XCH4 over Africa is however, attributed to the land
north of equator (see Figure 1). Bimodal distributions are especially
pronounce for evergreen broadleaf forests, shrublands, savannas
and barrens. The bimodal distributions can all be explained by
significantly higher XCH4 levels during the fall and winter seasons
compared to the spring and summer seasons (See an example of

the fall season in Figure 5). The low XCH4 peak of the bimodal
distributions is strongest in the spring season and then broadens
out during the summer season. In the fall season a high XCH4 peak
appears together with the low XCH4 peak and during the winter
season only the high XCH4 peak is left.

Generally, wetlands emitmethanewhen they arewet and take up
methane when they are dry. It is therefore interesting to look at the
annual variability that is shown in Figure 8.The figure shows that all
continents, except for Australia and South America, follows a trend
with high XCH4 levels over wetlands during the fall season and low
during the spring season. This trend is strongest for Asia, which also
have the strongest rain season. This trend can also be explained by
the fact that the methanogenic bacteria have more organic material
available for decomposition in the fall season and this effect might
be more important for continent with no strong rain season.

The observed annual cycle in XCH4 levels over wetlands
is in agreement with other studies covering North America
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(Javadinejad et al., 2019) that also see higher emission during fall
and winter and India (Chandra et al., 2017; Ganesan et al., 2017)
that see peak concentrations in July and August. A global study
(Tian et al., 2015) shows results in agreement with the results
presented here.

The far largest XCH4 levels are seen in Asia. This can be
explained by the fact that XCH4 levels are larger for croplands in
Asia than in any other continent. This could be due to atmospheric
transport mechanisms, but it could also be due to rise production
taking up a large fraction of croplands in Asia (Zhang G. et al.,
2020) and that croplands is an abundant land cover type in Asia.
In fact, methane emission from rice cultivation in top methane-
emitting countries such as China and India, with roughly 20
and 10% of global share, accounting for over 4 and 1% of total
methane emission, respectively (Crippa et al., 2020).Thiswould also
explainedwhyAsia experience peakXCH4 levels during the summer
and fall season, while Africa, Europe andNorth America experience
peak XCH4 levels during fall and winter. The reason being the
multiple annual rice seasons are common and therefore themethane
emissionwould tend to follow themean temperaturemore closely in
Asia. In Africa, Europe and North America, where multiple harvest
seasons are not that common, the methane emission would follow
the grow seasons more closely, with low emission during spring
and summer were the crops grow and large emission during fall
and winter due to the increase biological activity in the remaining
roots and little oxidation of methane. Another reason for the earlier
peak in XCH4 levels in Asia could be increased precipitation with
the monsoon, which reduces the methane uptake of the croplands
(Oertel et al., 2016).

4 Conclusion

We have used 3 years of XCH4 measurements (over 800 mio.
measurements) from the TROPOMI instrument on Sentinel-5P to
evaluate the XCH4 level as function of geographic, land cover type
and season. The XCH4 values were obtained using the WFM-DOAS
Schneising et al. (2019) and the S5P-RemoTeC Lorente et al. (2021)
retrieval algorithms and the land cover types were obtained from
MODIS (Friedl et al., 2010) and from the ESA WorldCover project.

The main finding of the study is that the average XCH4 levels
over wetlands are generally lower than the average level for all
land cover types – except for North America, South America
and Australia. The reason for this could be that the methane
emission from wetlands is compensated by a methane sink and
that wetlands thus contribute less to the global methane budget
than previously thought. We can however, not rule out that the
discrepancy could be due to misclassification, problems with the
low spatial resolution of the XCH4 measurements or biases in the
data retrieval algorithms coursed by the low albedo of wetlands.
Though the general lower than average XCH4 levels over wetlands
are found with both land cover data sets and retrieval algorithms, we
only analyse observations from one instrument. Before the result is
verifiedwith observations from other instruments, e.g., the TANSO-
FTS instrument on GOSAT and in situ observations, we those
recommend that the TROPOMIXCH4 measurements overwetlands
are handled with caution.

Especially for Africa, a strong annual methane cycle is observed
with significant higher XCH4 levels during the fall and winter
seasons compared to the spring and summer seasons. This suggests
that the XCH4 levels follow the annual growing seasons, with low
emission during spring and summer were the crops grow and high
emission during fall and winter due to the increased biological
activity in the remaining roots and little oxidation of methane.
Similar but smaller methane cycles are seen in North America and
Europe.

In Asia the methane cycles is shifted a few months forward. This
can be explained by the multiple annual rice seasons in Asia, which
would make the XCH4 levels in Asia follow the temperatures more
closely than the annual growing seasons.
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