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The eastern Tibetan Plateau has attracted widespread attention due to its
complex topography and strong seismicity. However, the mechanism
controlling the growth of this margin remains enigmatic. Here, we present
detailed upper mantle structures of the easternmost and northeastern Tibetan
Plateau from dense-array adjoint waveform tomography. The seismic images
show mushroom-shaped low-velocity zones atop at the uppermost mantle of
the eastern margin of the Tibetan Plateau and slab-shaped high-velocity bodies
preserved beneath both the eastern Himalayan syntaxis and the western Sichuan
basin. The seismic features suggest asthenosphere upwelling and lithospheric
delamination beneath the western Yangtze Craton, which might be induced by
the retreat of the subducted Indian Plate. Our study shows that the mantle
dynamics of the western Yangtze Craton have played an important role in the
Tibetan Plateau growth and suggests that the Yangtze Craton might be
reconstructed by ongoing continental collision.
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1 Introduction

The eastern Tibetan Plateau (Figure 1), the area of the latest growth of the plateau, is a
preferable area to study when analyzing the geologic evolution of the Himalayan-Tibetan
orogen. From south to north, the eastern Tibetan Plateau contains the eastern Himalayan
syntaxis (EHS), the Songpan-Ganzi terrane (SPGZ) and the eastern Kunlun terrane (EKL). The
EHS, where the Lhasa terrane rotated to a north-south trend during the Cenozoic era, was
interpreted as a consequence of the convergence among the Indian Plate, Tibetan Plateau and
the Burma block (Royden et al., 2008). To the east, the SPGZ is covered with thick and folding
Triassic flysch complexes as well as widespread Mesozoic granitic plutons (Yuan et al., 2010). In
the north, the Pre-Cenozoic EKL, Qilian orogen (QL) and Qaidam basin (QDB) form the
northeast margin of the Tibetan Plateau and reveal significant crustal shortening of
approximately 1,000–1,400 km since the Eocene (Yin and Harrison, 2000).

With the Alxa basin (AB), Ordos basin (OB), Sichuan basin (SCB), and Yangtze Craton
separated by large-scale faults to the east (Tapponnier et al., 2001; Figure 1), the eastern margin
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of the Tibetan Plateau currently suffers strong crustal deformation.
Cenozoic volcanism and metallogenic deposits as well as large
intraplate earthquakes are widely reported on the eastern margin of
the Tibetan Plateau (Pei et al., 2019; Xu et al., 2021). In the past several
decades, various studies have been conducted to determine how
subsurface materials are exchanged between the eastern Tibetan
Plateau and its surrounding regions (Tapponnier et al., 2001;
Royden et al., 2008; Liu et al., 2014; Ye et al., 2015; Shen et al.,
2017; Yang et al., 2020). However, the subsurface dynamics
underneath the eastern Tibetan Plateau remain open to debate. For
example, ductile flow-driven or rigid shear-induced processes need to
be clarified. Moreover, a thorough understanding of the subsurface
structure and mantle dynamics beneath the eastern margin of the
Tibetan Plateau is necessary to further clarify the tectonic evolution of
the plateau’s expansion.

Many geophysical studies have been carried out within and
around the eastern margin of the Tibetan Plateau to image the
crust and the mantle structure. These research methods have
included deep seismic sounding (Wang et al., 2007),
magnetotelluric imaging (Bai et al., 2010), receiver function (Zhang
et al., 2010), shear wave splitting (Chang et al., 2017) and seismic
tomography (Yao et al., 2008; Lei and Zhao, 2016; Huang et al., 2019).

However, even with these efforts, the principal dynamics of the eastern
Tibetan Plateau in the Cenozoic era are still being debated. Models of
the horizontal diffusion of the crust and mantle (Bai et al., 2010; Shen
et al., 2017), the vertical upwelling of the asthenosphere (Bao et al.,
2020) and the big mantle wedge (Lei and Zhao, 2016) have been
postulated according to different geophysical observations. In other
words, the deep structures beneath the eastern Tibetan Plateau have
not been well resolved, either due to the irregular distribution of
observations or the limited resolution of the tomographic methods.

In this study, we present 3-D seismic images of the entire upper
mantle in the easternmost and northeastern Tibetan Plateau based on
dense-array adjoint tomography. The combination of dense
observations and accuracy tomographic techniques results in
detailed images of the subsurface structure in the study region,
which may help researchers reach better understanding of the
geological evolution of the eastern Tibetan Plateau.

2 Data and methods

Extensive seismic observations have been performed on the
eastern margin of the Tibetan Plateau to better understand the

FIGURE 1
Topography, major tectonics, and seismic observations of the eastern Tibetan Plateau. (A) Black solid and dashed lines represent faults and suture zones
obtained from the HimaTibetMap-1.1 dataset (Styron et al., 2010), respectively. Gray triangles represent the dense seismic array in the eastern Tibetan Plateau.
Red triangles and beach balls represent seismic stations and earthquake event shown for waveform fitting. (B) Waveform fitting of the selected stations and
event (earthquake ID 200811100122A, provided by https://www.globalcmt.org). Black lines denote the transverse component of the observedwaveform
and red lines denote the synthetics. ATF: Altyn Tagh fault, BNS: Bangong-Nujiang suture, EHS: Eastern Himalaya Syntaxis, EKL: eastern Kunlun terrane, GLS:
Ganzi-Litang suture, HYF: Haiyuan fault, ITS: Indus-Tsangpo suture, JSS: Jinsha suture, KQDS: Kunlun-Qinglin-Dabie suture, LMSF: Longmenshan thrust belt,
QDB: Qaidam basin, QL: Qilian orogen, QT: Qiangtang terrane, RRF: Red River fault, SCB: Sichuan basin, SPGZ: Songpan-Ganzi terrane, WQLF: West Qinglin
fault, XJF: Xiaojiang fault, XJHF: Xiaojinhe fault, XSHF: Xianshuihe fault.
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lateral expansion of the Tibetan Plateau as well as the mechanisms
of strong earthquakes. The large-scale broadband ChinArray
project (triangles in Figure 1A), which has provided
unprecedented data coverage with an average spacing of
approximately 35 km, promotes the seismic study of the eastern
Tibetan Plateau and has facilitated great progress (Zhang et al.,
2017; Zhang et al., 2018). On the other hand, adjoint tomography
(Tape et al., 2009), which provides high-accuracy in wavefield
calculations and considers finite-frequency effects, has led to the
new discovery of seismic features in heterogeneous regions.

Based on the large-scale ChinArray project and adjoint
tomography methods, we built a seismic model of the Tibetan
Plateau, named TP2019 (Xiao et al., 2020), that provides good
illumination of the upper mantle of the eastern Tibetan Plateau.
Benefitting from the inversion of multifrequency (from 12 to 100 s)
body waves and surface waves recorded on three-component
waveforms (Figure 1B), TP2019 reconstructed the subsurface
structure with radial anisotropy, including the horizontally
propagating with horizontally polarized shear velocity VSH and
the horizontally propagating with vertically polarized shear
velocity VSV. Spatial distribution of the misfit kernel shows good
illumination of the upper mantle structure of the eastern Tibetan
Plateau. In detail, point spread function resolution test suggest that
an anomaly structure with radius of ~120 km could be resolved well
by the current dataset (Figure 2). Details about the construction
and assessment of the seismic model can be found in Xiao
et al., 2020.

Here we provide a detailed interpretation of the upper mantle
structures of the eastern margin of the Tibetan Plateau. As shear
wave propagation is sensitive to mineral density, we present the
structural features in terms of the isotropic shear wave velocity in
the following section. The shear wave velocity is computed from the
Voigt average (Babuska and Cara, 1991) of the elastic tensor over
all angles in the radially anisotropic model as VS

2=2/3VSH
2 + 1/

3VSV
2.

3 Results

3.1 Shear wave velocity at upper mantle
depths

In the shallow upper mantle (~100 km), the eastern Tibetan
Plateau and surrounding basins (QDB, AB, OB, and SCB) as well
as the Yangtze Craton are all imaged with high velocity, while the low-
velocity imaging zones are located mostly in the easternmost Tibetan
Plateau (Figure 3A). Receiver function studies have suggested that
both the AB and OB are rigid blocks at the lithospheric scale (Shen
et al., 2017), while the seismic velocity of the AB at a depth of 100 km is
lower than those of the OB and SCB (Figure 3A). Vertical cross-
sections of shear wave velocity from EHS to QDB (Figure 4A), AB
(Figure 4B), OB (Figure 4C) and SCB (Figure 4D) show that high-
velocity zones existed beneath these basins at depths shallower than
~200 km. However, the eastern margin of the SPGZ is depicted with
significantly low-velocity anomalies at the shallow depths (Figures 3A,
B; Figures 4C, D). Such low-velocity anomalies in the upper mantle
show spatial consistency with the observed crustal low-velocity zones
(Bao et al., 2020).

The strong contrast in velocity between the eastern margin of the
Tibetan Plateau and the surrounding basins gradually becomes
undetermined with depth, although low-velocity zones remain
visible beneath the QL and the northeastern SPGZ (Figures 3C, D).
Another distinctive feature is the vertical variation in the seismic
velocity beneath the southeastern SPGZ. At the shallower upper
mantle (~100 km), the southeastern SPGZ exhibits low-velocity
features similar to those observed in the northeastern SPGZ
(Figure 3A). However, the low velocity of the southeastern SPGZ
suddenly converts to high velocity at a depth of 200 km, and these high
velocities extend to deeper depths (Figures 3B–D). In addition, distinct
high-velocity zones are observed beneath the EHS area (Figure 4). The
high velocity of the EHS is visible in almost the entire upper mantle
and is dominant in the lower upper mantle (Figures 3C, D).

FIGURE 2
Point-spread function resolution test at the depth of 200 km beneath the eastern Tibetan Plateau. (A) The input Gaussian perturbation for VSV. (B) The
PSF output for VSV. (C) The PSF output for VSH.
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3.2 Three-dimensional seismic structure of
the upper mantle

Figure 5 shows the 3-D visualization of the shear velocity
perturbation. High-velocity bodies are clearly present beneath the
eastern Tibetan Plateau, OB and Yangtze Craton (Figures 5A, B). In
the eastern Tibetan Plateau, the high-velocity body lies flat from the
QDB to the SPGZ in the uppermost mantle and penetrates to great
depths with a subvertical angle beneath the EHS (HV1, Figures 5B, C).
Underneath the western SCB, the high-velocity body shows an oblique
distribution toward the SPGZ, with a morphology similar to a
subducting slab (HV2, Figures 5B, D). In contrary, low-velocity
zones (LVZ) are present more or less beneath the eastern margin
of the Tibetan Plateau, including a localized LVZ beneath the QL and a

mushroom-shaped LVZ underneath the eastern SPGZ (Figures 5A,
C). The mushroom-shaped LVZ is mainly distributed west of the
Longmenshan thrust belt, originated from a depth of ~250 km.

4 Discussion

4.1 Subducted Indian slab beneath the eastern
Himalayan syntaxis

Recent seismic studies suggest that subduction of the Indian plate
might occur beneath the EHS (Li et al., 2008; Peng et al., 2015; Li and
Song, 2018; Liu et al., 2019), although the manner of this subduction is
controversial. Different hypotheses have been proposed: some authors

FIGURE 3
Shear velocity at the depth of 100 km (A), 200 km (B), 300 km (C) and 400 km (D) beneath the eastern Tibetan Plateau. The black lines represent sutures
and faults, while the purple lines denote the locations of the vertical cross-sections in Figure 4.
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have suggested continuous subduction (Li et al., 2008; Lei and Zhao,
2016), while others prefer slab tearing (Peng et al., 2015; Li and Song,
2018), slab breakoff (Zhang et al., 2017) or slab rollback (Liu et al.,
2019).

In our tomographic images, the high-velocity body beneath the
EHS (HV1) is visible throughout almost the entire upper mantle,
showing a nearly vertical distribution (Figures 4, 5B). Furthermore, a
high-velocity belt exists to the north of the EHS; this belt lies flat and is
continuous from the EHS to the QDB above a depth of 200 km
(Figure 4A). As the depth of the Lithosphere-Asthenosphere-
Boundary varies within 200 km in the eastern Tibetan Plateau
(Kumar et al., 2006), we suggest that this flat and high-velocity
layer represents the base of the thickened lithosphere of the
Tibetan Plateau. Therefore, the upper-mantle high-velocity
anomalies of the eastern Tibetan Plateau can be divided into two
parts: those beneath the EHS, which is a subducted slab of the Indian

Plate, and those north of the EHS, which represents the thickened
lithosphere of the Tibetan Plateau. These scenarios agree well with the
hypotheses of the steep subduction or rollback of the Indian Plate
beneath the EHS.

4.2 Lithospheric delamination and
asthenosphere upwelling beneath the
Western Yangtze Craton

Upper-mantle high-velocity anomalies beneath the easternmost
Tibetan Plateau have been reported by recent seismic studies (Li et al.,
2008; Lei and Zhao, 2016; Zhang et al., 2018; Huang et al., 2019; Wang
et al., 2021). Nevertheless, the tectonic implications of such observations
are far from explicit. Some studies have proposed that the high velocities
in the mantle represent fragments of detached lithosphere (Huang et al.,

FIGURE 4
Vertical cross-sections of shear wave velocity of profile A (A), B (B), C (C) and D (D). The locations of the cross-sections are shown in Figure 3A. The black
solid and dotted lines represent the surface topography and contour of the seismic velocities, respectively. The perturbation is calculated relative to the 1-D
mean velocity model of the research area.
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2019; Wang et al., 2021). However, the nature and process of lithospheric
delamination are more rarely discussed.

With a west-dipping morphology similar to a slab, the high-
velocity body beneath the western SCB (HV2) is apparently prone
to subduction (Figure 5B). Although both the Cenozoic and Mesozoic
westward subductions have been considered to have taken part in the
evolution of the eastern margin of the Tibetan Plateau (Yuan et al.,
2010; Ye et al., 2015), the driving forces of the westward subduction of
the Yangtze Craton in the Cenozoic era as well as the preservation
mechanism of the Mesozoic subduction are suspicious. On the other
hand, the HV2 cannot be part of either the oceanic or continental
Indian plate because of the robust westward dipping feature.
Specifically, the HV2 is continuously connected to the high-velocity
Yangtze Craton to the shallow depth, overlaid by a mushroom-shaped
LVZ at the uppermost mantle between the EHS and the Yangtze
Craton (Figures 4D, 5B). Therefore, it is reasonable to infer that the
west-dipping HV2 is a part of the lithosphere that originates from the
Yangtze Craton, i.e., the Yangtze Craton delaminates to the
asthenosphere or even the uppermost lower mantle (Feng et al.,
2022) in eastern Tibetan Plateau.

The morphology of continental delamination has been proposed
to be highly similar to the subduction of a slab along a weak layer (Liu
et al., 2018). As major consequences of delamination, regional uplift,
increased heat flow, reduced seismic velocity and mafic volcanism
have been widely reported on the eastern margin of the Tibetan
Plateau and the western Yangtze Craton (Royden et al., 2008; Liu
et al., 2014; Xu et al., 2021). Furthermore, the geodynamic modelling
suggests an upwelling asthenosphere, whichmight be a response to the
retreated subducting slab, could intrude the dense mantle lithosphere
and eclogitized lower crust to delaminate during the continental
collision (Gray and Pysklywec, 2012).

Continental lithosphere delamination (Bird, 1979) has been
widely proposed in Tibetan Plateau from seismological,
petrological, and geological observations (Tilmann et al., 2003;
Chung et al., 2005). In western Yangtze, Pb-Sr-Nd isotopic analysis
of petrological and geochemical studies (Tian et al., 2006; Hou et al.,
2021) show that the potassic alkaline rocks and carbonate rocks
(27–10 Ma) originated from an enriched EMI-EMII mantle source,
indicating asthenosphere upwelling and partial melting of the
lithospheric mantle as well as the timing of the lithospheric

FIGURE 5
Mapview (A) and 3-D visualization of upper mantle shear velocity structures from south (B), east (C) and north (D) direction. HV1: subvertical high velocity
body beneath the EHS, HV2: oblique high velocity body beneath the western SCB, LVZ: low-velocity zones beneath the easternmargin of the Tibetan Plateau.
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delamination. More recently, whole-rock geochemistry and olivine
oxygen isotopes show that the Cenozoic mafic potassic lavas of the
west Yangtze were derived from the lithospheric mantle at different
depths and suggest a deep delaminated lithosphere was located
beneath the southwestern Yangtze Craton, which is more fertile
and denser than the shallow intact lithosphere (Wang et al., 2022).
Such delamination could be caused by lithospheric thickening during
the continental collision (Tilmann et al., 2003), or by slab retreat
during continental/oceanic subduction (e.g., Gray and Pysklywec,
2012; Liu et al., 2018). Our results cannot distinguish an oceanic
lithosphere from a continental lithosphere for HV1 which we crudely
attribute to the Indian plate. However, several recent high-resolution
seismic images in Myanmar suggest a continental lithosphere in the
shallow ~100 km depth (Zheng et al., 2020) and an oceanic lithosphere
continuously extending the mantle transition zone (Bai et al., 2020;
Yang et al., 2022). Considering a nearly constant convergence of
~4–5 cm/yr between India and Asia, we thus deduce that the oceanic,
rather than continental, slab subduction resulted in the delamination
of the overlying lithosphere of Yangtze Craton in the Oligocene,
probably due to the slab retreat of the Neo-Tethyan slab (Gray and
Pysklywec, 2012; Liu et al., 2018).

Accordingly, we prefer to a continent delamination as the
geological interpretation of the observed HV2 (Figure 6). The
delamination of the western Yangtze was probably induced by
the retreat of the subducting Indian Plate through the intrusion of
the upwelling mantle materials. In this case, both the retreat of the

Indian slab and lithospheric delamination of the western Yangtze
might cause asthenosphere upwelling between the EHS and
western Yangtze, which might be observed as the mushroom-
shaped LVZ. The asthenosphere upwelling and lithospheric
delamination could explain the lateral variation of the LAB
depth (Zhang et al., 2010; Zhang and Deng, 2022), the localized
crust-mantle low velocity and weak azimuthal anisotropy (Bao
et al., 2020) as well as the depressed 660-km discontinuity observed
beneath the eastern margin of the Tibetan Plateau (Figure 6).
Consequently, convergence between the eastern Tibetan Plateau
and western Yangtze Craton would be accommodated in the upper
crust dominantly by pure-shear thickening above the zone of
mantle upwelling, and the crustal deformation will be
characterized by contraction at the plateau margins and
extension within the plateau (Gray and Pysklywec, 2012).

5 Conclusion

To understand the subsurface process of the Tibetan Plateau’s
expansion, we present detailed seismic images of the upper mantle of
the eastern Tibetan Plateau. Mushroom-shaped low-velocity zones are
imaged at the uppermost mantle of the eastern margin of the Tibetan
Plateau, showing evidence of asthenosphere upwelling. Two observed
slab-like high-velocity bodies beneath the eastern Himalayan syntaxis
and western Sichuan basin are attributed to the subduction of the

FIGURE 6
Deep tectonics of the eastern Tibetan Plateau. Seismic velocity perturbations in the upper mantle and crust are collected from this study and Bao et al.,
2020, respectively. The depth of LAB, 410 and 660 km discontinuities are retrieved from Zhang et al., 2010 and Zhang et al., 2017. Red hexahedrons represent
the western Sichuan potassic alkaline rocks and carbonate rocks (27–10 Ma), which are collected form Hou et al., 2021.
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Indian plate and the delaminated lithosphere of the western Yangtze
Craton, respectively. Our study shows that the mantle dynamics of the
Yangtze Craton might have contributed notably to the growth at the
eastern margin of the Tibetan Plateau.
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