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Given the inconsistency between the information value and theweight value in the
weighted information valuemodel, a weight model based on the Apriori algorithm
is established in this paper to analyze the correlation between the second-level
intervals of disaster factors and the susceptibility of geological disasters. The
objective weight of the second-level intervals of each index factor is calculated
through the mining of association rules by the Apriori algorithm. The subjective
uncertainty of the existing second-level factor weighting method is eliminated.
Taking the geological disaster data of Xiangtan urban area as an example,
10 evaluation indexes were selected to establish the entropy weight method-
information value (EWM-IV) model and the entropy weight method-Apriori
algorithm-information value (EWM-Apriori-IV) model to evaluate the geological
disaster susceptibility, and the disaster area ratio and the receiver operating
characteristic curve (ROC) verification method were used to test and analyze
the evaluation results. The results showed that comparedwith the EWM-IVmodel,
the EWM-Apriori-IVmodel is used to evaluate the disaster area ratio of high-prone
area increased by 58.3%, and the disaster area ratio of low-prone area decreased
by 43.1%, the area under the curve (AUC) increased by 7.4%, and the evaluation
accuracy was relatively improved compared with the former. This paper proves
the rationality and practicability of the weighting method of the geological hazard
susceptibility evaluation index based on the Apriori algorithm.
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1 Introduction

Geological hazard susceptibility evaluation is an important link and basis for disaster
prevention and reduction (Chen et al., 2005; Ma et al., 2021). Currently, the commonly used
susceptibility evaluation models include analytic hierarchy process model (Chung and
Fabbri, 1999; Wang et al., 2009; Xu et al., 2009), weighted information value model
(Wang et al., 2014; Jiao et al., 2019; Alsabhan et al., 2022), logistic regression model
(Budimir et al., 2015; Tang and Ma, 2015), artificial neural network model (Nourani et al.,
2014), support vector machine model (Kavzoglu et al., 2014), etc., among which the weighted
information value model is widely used in the research field of geological disaster
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susceptibility evaluation due to its clear physical significance and
simple algorithm. Shen H et al. (Shen et al., 2021) established a
weighted information value model based on the weight value and
information quantity value of each index obtained by the analytic
hierarchy process (AHP) and information value model to conduct a
comprehensive assessment of landslide susceptibility. Liang L et al.
(Liang et al., 2019) used the certainty factor model to determine the
first-level weight of each index factor, and then multiplied the
information value to establish a weighted information value
model to evaluate the susceptibility of geological disasters. Yang
P et al. (Yang et al., 2020) multiplied the weight of each first-level
index factor determined by the random forest model and the
information value of each second-level index factor determined
by the information value model respectively, and established the
weighted information value model for the evaluation of landslide
susceptibility. All of the above studies are based on the establishment
of weighted information value model for susceptibility evaluation by
obtaining the weight of first-level factors and combining with the
second-level interval information value of each factor. However, the
problem of inconsistency between the weight value of first-level
factors and the information value of second-level factors may occur,
thus affecting the accuracy of geological disaster susceptibility
evaluation. Aiming at this problem, some scholars (Xie, 2011;
Wang et al., 2012) determined the second-level interval weights
of indicators based on the trapezoidal fuzzy number with subjective
experience for susceptibility evaluation, but the evaluation results
were worse than the mathematical statistics model with objective
weighting. In view of this, this paper introduces the weighting
method of geological disaster susceptibility evaluation index
based on Apriori algorithm, and obtains the second-level factor
weight value by analyzing objective data. Apriori algorithm was
proposed by R.Aglawal et al. based on previous research results of
AIS algorithm (Agrawal and Srikant, 1994; Yu, 2004). This
algorithm is applicable to transaction database association rule
mining and can reflect the interdependence and correlation
between one thing and other things through association rules.
Wu T et al. (Wu and Niu, 2011) used the Apriori algorithm to
dig for the correlation between disaster scale and various single and
multiple factors. Li J et al. (Li and Niu, 2013) obtained the
relationship between land use type and landslide stability through
the Apriori algorithm. Jie Q et al. (Jie et al., 2015) used the Apriori
algorithm to excavate the deformation laws of several landslides. The
above scholars use Apriori algorithm to dig out the internal
connection between geological disasters and first-level disaster
factors, and prove the feasibility of Apriori algorithm in the field
of geological disasters. Therefore, according to the principle that the
Apriori algorithm can mine the commonness of historical disaster
data, it is integrated into the weighted information value model and
weighted to the second-level interval information value of each
evaluation factor to solve the problem that the factor weight value is
inconsistent with the caliber of the information value.

Based on this, this paper takes Xiangtan urban area in Hunan
Province as the research area, introduces the Apriori algorithm to
mine and analyze the association rules between historical disaster
data and geological disaster susceptibility, establishes the evaluation
index system of geological disaster susceptibility in Xiangtan urban
area, determines the objective weights of the second-level intervals of
each index factor, and combines with the objective weight of first-

level index factor of entropy weight method. The EWM-IV model
and the EWM-Apriori-IV model were established respectively to
evaluate the susceptibility of geological disasters. The feasibility and
accuracy of the weight model based on the Apriori algorithm were
demonstrated through accuracy verification and comparative
analysis.

2 Materials and methods

2.1 Overview of the study area and data
source

Xiangtan urban area, Hunan Province, with a total area of
657.4 km2, is located in the middle part of the Hengshan
Mountain range and belongs to the alluvial plain and red soil
terrace on both sides of the Xiangjiang River. The terrain is high
and convex in the east and west, and low and concave in the middle.
The overall terrain is relatively flat, with an elevation
between −82 m and 289 m. The outlying strata in Xiangtan
urban area are relatively complete and are characterized by the
wide distribution of red beds and pre-Devonian shallow
metamorphic clastic rocks and a complex and diverse
sedimentary environment. From old to new, Lengjiaxi Group,
Banxi Group, Sinian System, Cambrian system, Ordovician
system, Devonian system, Carboniferous system, Permian system,
Triassic system, Jurassic system, Cretaceous system, Paleogene
system and Quaternary system (including alluvium and residual
slope layer) are exposed successively. The regional structure can be
divided into three types: the Heling-Nanzhushan fault folds belt in
the northwest, the Xiangtan fault depression basin in the middle,
and the Baimalong-Shuangmazhen fault folds belt in the east. The
river system in the territory is mainly composed of the Xiangjiang
River and its main tributaries Lianshui River and JinJiang River.
Affected by the subtropical humid monsoon climate, it enjoys
abundant sunshine, and high temperature and rain in summer.
The annual rainfall is between 1,250 and 1,500 mm, mainly in spring
and summer, with 68% of the annual rainfall. There are
121 geological disaster spots in Xiangtan urban area (Figure 1),
mainly landslide, collapse, and ground collapse disasters. The
threatened population is about 2,500, and the potential economic
loss is nearly 10,000 yuan. The main data sources of this paper are
shown in Table 1.

2.2 Methods

2.2.1 Establishment of weight model based on
apriori algorithm

The Apriori algorithm is the most classic algorithm for mining
frequent item sets, which can extract association rules from large
data sets (Zhang, 2016; Hidayanto et al., 2017). Algorithm steps
(Han and Kamber, 2001; Yu, 2004; Li et al., 2020) are shown in
Figure 2 below.

Apriori algorithm adopts iterative method to find frequent item
sets. In the mining process of association rules, the frequent item sets
of k-1 items will be connected all the time to generate k item sets.
Then, the minimum support threshold is set by calculating the
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support degree of k item sets, namely, the probability of X and Y
appearing simultaneously in the data set, and the frequent item sets
of k items are obtained by pruning the k item sets that do not meet
the threshold. The frequent item sets of k items are searched and
iterated layer by layer until there are no new k item sets.

The Apriori algorithm is applied to mine the correlation
between the susceptibility of geological disasters and the second-
level interval of the disaster factor. The second-level interval of the
disaster factor is a data type in the form of Boolean (binary type).
According to the requirement of the Apriori algorithm that the data
type must be a Boolean value, the objective weight of the second-
level interval of each disaster factor reflecting the correlation of

geological disaster susceptibility can be obtained. The specific
implementation process is as follows:

(1) Storing data sets.
The data set contains historical geological disaster data and all

geological data in the study area. Boolean data after data processing,
each set in the data set contains a disaster point and the second-level
interval to which all corresponding disaster factors belong. Each set
represents the occurrence of a disaster point and the emergence of
second-level intervals of all disaster factors. The data set is scanned
and the Apriori algorithm is run, searching for each transaction until
the search result is obtained.

(2) Generate the candidate item set.

FIGURE 1
Geological hazard distribution map of Xiangtan urban area.

TABLE 1 Basic data of the study area.

Name Type Resolution Extraction data

RS image Raster 0.5 m Vegetation coverage

DEM Raster 1:10000 Altitude, Slope angle, Slope aspect

Engineering geology map Vector 1:50000 Geologic structure, Lithology

Land use map, Landform type map Vector 1:50000 Land use pattern, Landform

Fault map, Road map Vector 1:50000 Distance to faults, Distance to roads

Rainfall data (1990–2019) Data table - Average annual rainfall
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Scan the transaction set and defines all the second-level intervals
in the transaction set and the occurrence of geological hazards as the
members of the candidate set. Each member of the candidate item
set is an independent item set.

(3) Calculate the weight of the index factor second-level interval.
Eq. 1 was used to calculate the support degree of each member in

the candidate set. Support degree of association rule X→Y refers to
the probability of the combination of second-level intervals in the
geographic data set of the study area and the occurrence of
geological disasters at the same time. If the occurrence occurs
once, the support degree accumulates once. The support result is
the weight of the second-level intervals of each indicator factor.

Support X → Y( ) � P X ∩ Y( ) (1)
(4) Determine the weight of the index factor’s second-level

interval.
In the process of mining association rules, by setting the minimum

support threshold, the association rules that do not meet the minimum
support threshold are pruned to improve the efficiency of the algorithm.
If the minimum threshold of the above support is met, it can be
determined as the second-level weight of the index factor.

2.2.2 Entropy weight method
As an objective weight method with a good evaluation effect, the

entropy weight method (EWM) has been widely used in research

and practice of geological disaster susceptibility evaluation (Liang
et al., 2010; Jiang et al., 2019). The specific calculation method is as
follows (Devkota et al., 2013):

FRij � bij
aij

(2)

Pij � FRij

∑n
j�1FRij

(3)

Where FRij is the occurrence frequency of geological disasters; Pij is
frequency density; aij and bij are the disaster quantity and regional
area in the j second-level interval of the i first level factor,
respectively; n is the total number of second-level intervals of the
i first-level factor.

The entropy value of the i first-level factor can be expressed
as Hi:

Hi � −e∑n

j�1Pij lnPij (4)

Where e � 1
ln n is constant; In order to ensure the 0 ≤ Hi ≤ 1,

regulation: if Pij = 0, the lnPij = 0.
Finally, the objective weight wi of the index first-level factor can

be obtained:

wi � 1 −Hi

N −∑N
i�1Hi

(5)

Where N is the total number of index factors.

2.2.3 Information value model
The information value (IV) model is a mathematical statistics

method commonly used to analyze data. Through statistical analysis
of historical data, the information value of each impact factor is
calculated to determine the importance of each impact factor (Fan
et al., 2012; Chen et al., 2021). The calculation method is as follows:

Iij � ln
Nij/N
Sij/S

(6)

Where Iij is the information value of the j second-level interval of
the i first-level factor; S is the layer area of each evaluation index; Sij
is the interval area of the j second-level interval of the i first-level
factor;N is the total number of disaster points in the study area;Nij

is the number of disaster points in Sij interval.
Combined with the weight model, the weighted information

value (WIV) model is constructed. The calculation formula is as
follows:

I � ∑n

i�1∑
m

j�1 Iij × Qij( ) (7)

Where I is the total information value of each evaluation unit in the
overlay layer; n is the total number of index factors; m is the total
number of second-level intervals in the first-level factors of each
index; Qij is the index weight value. If the entropy weight method is
used for weighting, Qij is the first-level weight of each index factor
calculated by the entropy weight method. If the entropy weight
method-Apriori algorithm is used for weighting, Qij is the second-
level comprehensive weight of each index factor, the objective weight
wi of each first-level factor calculated by the entropy weight method
is multiplied with the weight rij of the corresponding second-level

FIGURE 2
Flow chart of the Apriori algorithm.
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interval calculated by the Apriori algorithm, as shown in Eq. 8.
Figure 3 shows the calculation process of EWM-Apriori-IV model
based on the entropy weight method-Apriori algorithm.

Qij � wi × rij (8)

3 Results

3.1 Data processing

According to the characteristics of historical geological disaster
data in the study area and previous research results (Lan et al.,
2002; Shahri et al., 2019), 10 geological disaster susceptibility
factors including altitude, slope angle, slope aspect, landform,
lithology, vegetation coverage, average annual rainfall, distance
to faults, distance to roads and land use pattern were initially
selected to evaluate the geological disaster susceptibility in the
study area (Meng et al., 2010; Chen et al., 2013; Zhao et al., 2021).
With 30 m×30 m grid units as evaluation units, the research area
was divided into 907,823 units. In order to facilitate data

processing by the Apriori algorithm, each factor needs to be
classified to convert into Boolean data. The natural breakpoint
method was used to classify each factor in ArcGIS software, and the
data characteristics of each factor in the study area were analyzed
by adhering to the principle of “similar within the interval,
different outside the interval”. The partitioning results of each
evaluation factor were shown in Figure 4.

According to the historical landslide disaster point and the
second-level interval Boolean data of each index factor in the
study area (Table 3), the Apriori algorithm is applied for data
mining to analyze the association rules that have guiding
significance for the construction of geological disaster
susceptibility evaluation index system in the study area, as shown
in Table 2.

According to Table 2, the confidence level of the association
rule “G4, D1, J2, E9, A5, B5, F2″ is the highest, indicating that the
index factors contained in the disaster causing condition obtained
when mining this association rule should be the favorable
candidate factors for the evaluation index system of geological
disaster susceptibility in the study area. Meanwhile, four
association rules in the table cover all index factors with high

FIGURE 3
Calculation flowchart of EWM-Apriori-IV model.
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confidence, indicating that 10 index factors initially selected,
including altitude, slope angle, slope aspect, landform,
lithology, vegetation coverage, average annual rainfall, distance
to faults, distance to roads, and land use pattern, should be
selected as index factors for the evaluation of geological
disaster susceptibility in the study area.

3.2 Determination of weight based on the
apriori algorithm

Through the analysis and processing of geographical data and
historical geological disaster data of the study area, the internal
commonness of historical disaster points is explored. According to
the above 10 susceptibility evaluation indexes such as altitude, slope
angle, slope aspect, lithology, and average annual rainfall, the
Apriori algorithm is used to calculate the correlation between the
second-level interval of each index factor and the occurrence of
geological disasters. To determine the contribution rate (weight) of
different second-level intervals of each indicator factor to the
geological disasters in the study area (Zhang and Jiang, 2004),
that is, to explore the statistical relationship between the point
value data of each indicator factor located in different second-
level intervals and the distribution of geological disasters in the
study area.

The different second-level intervals of each susceptibility
evaluation index factor were numbered, that is, the altitude
was “1″, and the five second-level factor intervals were “1.1,
1.2, 1.3, 1.4, and 1.5″respectively. The slope angle is classified as
“2″, and its 5 second-level factor intervals are respectively “2.1,
2.2, 2.3, 2.4, 2.5″, and so on. Data of all second-level factor
intervals of each historical geological disaster point are
numbered. According to the implementation process of the
Apriori algorithm in Section 2.2.1, the statistical data set of
the disaster point is input into the software for program
implementation by Python language, and the objective weight
value of the second-level interval of each index factor is finally
obtained, as shown in Table 3.

3.3 Evaluation of susceptibility

The entropy weight method was used to calculate the first-level
objective weight of each evaluation index, and the information
value of the second-level factor interval of each evaluation index
was obtained by the information value model. The calculation
results are shown in Table 3. According to the superposition
analysis function of ArcGIS software, combined with the weight
results of the above evaluation indicators and the information
value calculation results, the EWM-IV model and the EWM-

FIGURE 4
(Continued).
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Apriori-IV model was established according to Eq. 7 respectively
to evaluate the susceptibility of geological disasters in the study
area. The natural breakpoint method was used to partition the
evaluation results of the two models, and the results of geological
disaster susceptibility evaluation of Xiangtan urban area were
respectively obtained, as shown in Figure 5.

3.4 Comparison of evaluation accuracy

At present, there are disaster area ratio verification methods
and ROC curve verification methods to verify the evaluation
results of geological disaster susceptibility (Kamp et al., 2008;
Bai et al., 2010; Fan et al., 2014). The disaster area ratio

FIGURE 4
(Continued). Zoningmap of geological hazard susceptibility assessment factors in Xiangtan urban area (A) Altitude; (B) Slope angle; (C) Slope aspect;
(D) Landform; (E) Lithology; (F) Vegetation coverage; (G) Average annual rainfall; (H) Distance to faults; (I) Distance to roads; (J) Land use pattern.

TABLE 2 Mining results of association rules.

Serial number Association rule confidence coefficient

1 (G4, D1, J2, E9, H5, I5, A5, B5, C3, F2) → Geological disaster occurs 0.73

2 (G4, D1, J2, E9, H5, I5, A5, B2, C3, F2) → Geological disaster occurs 0.72

3 (G4, D1, J2, E9, H5, I5, A5, B5, C3, F1) → Geological disaster occurs 0.72

4 (G4, D1, J2, E9, H5, I5, A1, B5, C3, F2) → Geological disaster occurs 0.71

5 (G4, D1, J2, E9, H5, I5, A5, B5, F2) → Geological disaster occurs 0.82

6 (G4, D1, J2, E9, A5, B5, F2) → Geological disaster occurs 0.87
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TABLE 3 Calculation results of grading weight and information value (IV) of each evaluation factor.

Index factor The second-level interval First level weight Second level weight IV

Altitude (m) (A1-A5) <50 0.2015 0.0075 −0.4487

50–70 0.0299 −0.3168

70–90 0.1045 0.3264

90–130 0.4179 0.7568

≥130 0.4403 0.6218

Slope angle (°) (B1-B5) 0–25 0.2376 0.0467 0.3826

25–35 0.2880 −1.5611

35–45 0.1744 0.5707

45–60 0.1907 −0.1204

60–80 0.3002 0.0000

Slope aspect (°) (C1-C6) <60 0.0116 0.1035 1.5022

<120 0.1623 −1.0681

<180 0.2596 −1.4547

<240 0.1907 −1.9395

<300 0.1886 −0.7558

<360 0.0953 −1.8060

Landform (D1-D3) Hill 0.0410 0.7907 0.4166

Downland 0.1047 −0.8247

Plain 0.1047 −0.8513

Lithology (E1-E11) Slate (1) 0.1685 0.0974 0.6706

Red clastic rock (2) 0.0000 −0.4590

Quartzite conglomerate, sandstone (3) 0.1988 0.2673

Siliceous rock, siliceous shale (4) 0.0933 0.5961

Carbonate rocks interbedded with clastic rocks (5) 0.0020 0.3173

Siliceous rock, siliceous slate (6) 0.0933 2.5452

Shallow metamorphic sandstone sandwiched with slate (7) 0.0020 0.6272

Sandstone is interbedded with slate (8) 0.0365 0.6946

Soil body (9) 0.4097 −0.8104

Limestone, dolomitic limestone with marl (10) 0.0609 −0.7542

Clastic rocks (11) 0.0061 −1.2896

Vegetation coverage (%) (F1-F3) 0 0.0177 0.3400 −0.5042

0–0.3 0.5100 0.1912

0.3–0.6 0.1500 0.7068

Average annual rainfall (mm) (G1-G4) 1,000–1,100 0.1011 0.0116 −0.6563

1,100–1,200 0.2907 −0.3479

1,200–1,300 0.2907 0.1833

≥1,300 0.4070 0.1803

Distance to faults (m) (H1-H5) ≤100 0.0182 0.1860 0.7201

(Continued on following page)
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FIGURE 5
Zoning map of geological hazard susceptibility assessment in Xiangtan urban area (A) EWM-IV model; (B) EWM-Apriori-IV model.

TABLE 4 The disaster area ratio of EWM-IV model evaluation results.

Susceptibility zoning Proportion of area (%) Number of disasters The proportion of disasters (%) The disaster area ratio

High 13.5 64 52.9 0.721

Moderate 28.8 35 28.9 0.185

Low 57.7 22 18.2 0.058

TABLE 3 (Continued) Calculation results of grading weight and information value (IV) of each evaluation factor.

Index factor The second-level interval First level weight Second level weight IV

100–200 0.1395 0.2456

200–300 0.0930 0.3223

300–400 0.1163 0.8306

>400 0.4651 −0.4579

Distance to roads (m) (I1-I5) ≤100 0.0070 0.1163 −0.0939

100–200 0.1744 −0.1259

200–300 0.1395 0.1276

300–400 0.1047 −0.5607

>400 0.4651 0.0894

Land use pattern (J1-J6) Cultivated Land 0.1958 0.0714 0.0081

Forest land 0.7500 0.2004

Lawn 0.1303 0.0000

Waterbody 0.0000 −0.8964

Residential land 0.0483 −0.3481

Unused land 0.0000 0.0000
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verification method compares and verifies the ratio between the
number of historical disaster points and the area in each prone
area. The larger the disaster area ratio in the high-prone area and
the smaller the disaster area ratio in the low-prone area, the more
accurate and effective the evaluation results will be (Chen et al.,
2019). ROC curve refers to the receiver operating characteristic
curve, and the area under the curve (AUC) is used to judge the
accuracy of model evaluation results. The higher the AUC value,
the better the prediction ability of the model (Pradhan, 2013;
Wang et al., 2013).Tables 4, 5 indicates the disaster area ratio
statistics of the EWM-IV model and the EWM-Apriori-IV model.

By comparing the statistical results of the disaster area ratio
evaluated by the two models, the disaster area ratio of the high-
prone areas evaluated by the EWM-Apriori-IV model is 1.141,
which is higher than 0.721 of the EWM-IV model, and a relative
increase of 58.3%. The disaster area ratio of the low-prone areas
evaluated by the EWM-Apriori-IV model is 0.033, lower than
the EWM-IV model’s 0.058, which is a relative decrease of
43.1%. The results show that the use of the EWM-Apriori-IV
model to evaluate the susceptibility of geological disasters in the
study area greatly improves the disaster area ratio of the high-
prone area and reduces the disaster area ratio of the low-
prone area, and the evaluation effect is more accurate and
effective.

The ROC curve test was conducted according to the
evaluation results of geological disaster susceptibility
generated by the two evaluation models. The sensitivity was
taken as the vertical coordinate and the specificity was taken as
the horizontal coordinate, and the evaluation results were
imported into SPSS software for analysis. The results were
presented in Figure 6.

The area under the ROC curve (AUC) generated by the two
models is both 0.7%-0.9, indicating that the success rate and
prediction degree of the results obtained by the two evaluation
models used in this paper are between 70% and 90% when
evaluating the susceptibility of geological disasters in the study
area, with high accuracy. It can be seen from Figure 6 that the
AUC values of the EWM-IV model and the EWM-Apriori-IV
model are respectively 0.753 and 0.809, that is, the
predictive ability of the model is 75.3% and 80.9%, and the
latter is 7.4% higher than the former, showing better predictive
ability.

4 Discussion

Accuracy of geological hazard susceptibility evaluation is affected by
the weighting method of evaluation index. As a commonly used

TABLE 5 The disaster area ratio of EWM-Apriori-IV model evaluation results.

Susceptibility zoning Proportion of area (%) Number of disasters The proportion of disasters (%) The disaster area ratio

High 10.4 78 64.4 1.141

Moderate 24.1 29 24.0 0.183

Low 65.5 14 11.6 0.033

FIGURE 6
ROC curves of different evaluation model. (A) EWM-IV model; (B) EWM-Apriori-IV model.
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susceptibility evaluation model, the weighted information value model
is established in most studies by combining the first-level index factor
weighting method with the second-level interval information value of
each factor, while the second-level interval weight of the index factor is
rarely analyzed. Therefore, the inconsistent caliber of information value
and weight value will be generated by using this model for evaluation,
which will affect the evaluation accuracy. In this paper, the Apriori
algorithm is introduced to improve the weighted information value
model. By analyzing the correlation between the second-level interval of
each disaster causing factor and the occurrence of geological disasters,
the objective weight of the second-level interval of each evaluation index
is determined, and the susceptibility evaluation of geological disasters is
completed by combining the second-level interval information value of
each index factor. Thus, the problem that the information value is
inconsistent with the weight value in the weighted information value
model is solved.

According to the evaluation results, the regionalization effect of
EWM-Apriori-IV model is better than that of EWM-IV model.
Compared with EWM-IV model, the disaster area ratio of high and
low prone areas evaluated by EWM-Apriori-IV model increased by
58.3% and decreased by 43.1%, respectively, and the AUC value of
the area under ROC curve increased by 7.4%. Therefore, it is proved
that the accuracy and rationality of introducing Apriori algorithm to
obtain the second-level interval weight of the index factor and
combining with the information value model to predict
susceptibility. In addition, this paper only analyzes the feasibility
of improving the weighted information value model based on
Apriori algorithm. For more susceptibility evaluation methods, it
is worth further discussion and discussion to combine them with the
weighting method of geological hazard susceptibility evaluation
index based on Apriori algorithm to carry out index second-level
factor weighting and susceptibility evaluation.

5 Conclusion

Taking the Xiangtan urban area of Hunan Province as the research
area, this paper selected 10 evaluation indexes, introduced the Apriori
algorithm as the weight model of the second-level interval of the
evaluation index, constructed two evaluation models to evaluate the
susceptibility of geological disasters in the research area, and carried out
precision verification and comparative analysis on the evaluation
results. The results are as follows.

(1) The Apriori algorithm is introduced to analyze the correlation
between the second-level intervals of disaster-causing factors
and the susceptibility to geological disasters. A weighted model
based on the Apriori algorithm is established to achieve the
objective weighting of the second-level intervals of disaster-
causing factors in the susceptibility evaluation of geological
disasters and to solve the problem of the inconsistency
between the information value and the weight value in the
weighted information value model.

(2) The EWM-IV model and the EWM-Apriori-IV model are
established respectively to evaluate the susceptibility of
geological disasters in the study area. The results show that:
When the weight model based on the Apriori algorithm is used
to assign a weight, the accuracy of susceptibility evaluation is

significantly increased by 7.4%, and the disaster area ratio of the
high-prone area is increased by 58.3%, while the disaster area
ratio of the low-prone area is reduced by 43.1%, indicating that
the EWM-Apriori-IV model is more accurate and rational in
evaluation.

(3) According to the susceptibility evaluation results of the
EWM-Apriori-IV model, the study was divided into high,
medium, and low susceptibility areas. The high-prone area
covers 68.4 km2, accounting for 10.4% of the Xiangtan urban
area, and contains 78 geological disaster points, accounting
for 64.4% of the total geological disaster points. The middle-
prone area is 158.4 km2, accounting for 24.1% of the Xiangtan
urban area, including 29 geological disaster points,
accounting for 24.0% of the total geological disaster points.
The low-prone area covers 430.6 km2, accounting for 65.5%
of the Xiangtan urban area, and contains 14 geological
disaster points, accounting for 11.6% of the total geological
disaster points.
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