
TYPE Original Research
PUBLISHED 24 February 2023
DOI 10.3389/feart.2023.1130262

OPEN ACCESS

EDITED BY

Guiming Zhang,
University of Denver, United States

REVIEWED BY

Liang-Jun Zhu,
Institute of Geographic Sciences and
Natural Resources Research (CAS), China
Min Chen,
Nanjing Normal University, China

*CORRESPONDENCE

Matt Duckham,
matt.duckham@rmit.edu.au

Nenad Radosevic,
nenad.radosevic@rmit.edu.au

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing, a section of the journal
Frontiers in Earth Science

RECEIVED 23 December 2022
ACCEPTED 10 February 2023
PUBLISHED 24 February 2023

CITATION

Forkan A, Both A, Bellman C, Duckham

M, Anderson H and Radosevic N (2023),

K-span: Open and reproducible spatial

analytics using scientific workflows.

Front. Earth Sci. 11:1130262.

doi: 10.3389/feart.2023.1130262

COPYRIGHT

© 2023 Forkan, Both, Bellman,
Duckham, Anderson and Radosevic. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

K-span: Open and reproducible
spatial analytics using scientific
workflows

Abdur Forkan1, Alan Both2, Chris Bellman3, Matt Duckham3*,
Hamish Anderson4 and Nenad Radosevic3*
1Department of Computing Technologies, Swinburne University of Technology, Melbourne, VIC,
Australia, 2School of Global, Urban and Social Studies, RMIT, Melbourne, VIC, Australia, 3School of
Science, RMIT University, Melbourne, VIC, Australia, 4Geoscience Australia, Canberra, ACT, Australia

This paper describes the design, development, and testing of a general-
purpose scientific-workflows tool for spatial analytics. Spatial analytics processes
are frequently complex, both conceptually and computationally. Adaptation,
documention, and reproduction of bespoke spatial analytics procedures
represents a growing challenge today, particularly in this era of big spatial
data. Scientific workflow systems hold the promise of increased openness and
transparency with improved automation of spatial analytics processes. In this
work, we built and implemented a KNIME spatial analytics (“K-span”) software
tool, an extension to the general-purpose open-source KNIME scientific
workflow platform. The tool augments KNIME with new spatial analytics nodes
by linking to and integrating a range of existing open-source spatial software
and libraries. The implementation of the K-span system is demonstrated and
evaluated with a case study associated with the original process of construction
of the Australian national DEM (Digital Elevation Model) in the Greater Brisbane
area of Queensland, Australia by Geoscience Australia (GA). The outcomes
of translating example spatial analytics process into a an open, transparent,
documented, automated, and reproducible scientific workflow highlights the
benefits of using our system and our general approach. These benefits may help
in increasing users’ assurance and confidence in spatial data products and in
understanding of the provenance of foundational spatial data sets across diverse
uses and user groups.

KEYWORDS

scientific workflows, KNIME, reproducibility, open source, geospatial analysis, Digital
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1 Introduction

Reproducible research encourages scientists to publish not only their findings, but
also the data, code, and software used to produce those findings (Peng, 2011; Cohen-
Boulakia et al., 2017; Kitzes et al., 2018). By enabling others to interrogate any aspect
of an analytics process, scientific research becomes far more transparent and verifiable.
There are two major barriers to implementing reproducible research: making the data
used available and making the analytics process accessible. Of the two, making the
data available has seen the most progress, led by the open data movement, which
encourages not only scientists but also governments and industry to publish the data
they generate in an accessible, non-proprietary format (exemplified by the FAIR—findable,
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accessible, interoperable, and reusable—data movement
Wilkinson et al., 2016, for instance).

While making the code and data used to produce research
available does greatly improve reproducibility, sharing code alone
may not be reproducible by those without the necessary technical
expertise or if it relies on proprietary software (Kitzes et al., 2018;
Radosevic et al., 2020). In addition to producing results that may be
in a proprietary and closed format, the code of proprietary software
is generally not available for review, usually resulting in an aspect
of the process that cannot be interrogated. Open source software
(OSS) addresses this issue by making the code freely available for
anyone to use, analyze, and modify. OSS is used extensively in the
field of geospatial science, with software such as GDAL1, QGIS2, and
PostGIS3 being used to develop solutions for geospatial processes
in areas such as environmental modeling (Callaghan et al., 2010;
Neteler et al., 2012; Thorp and Bronson, 2013; Turuncoglu et al.,
2013), hydrological modeling (Horsburgh et al., 2015; Leonard and
Duffy, 2016; Sangireddy et al., 2016), and drainage systems (Riaño-
Briceño et al., 2016).

The increasing availability of open spatial data and diversity of
open spatial software presents both opportunities and challenges.
The ubiquity of spatial data and tools today is helping to seed
new hypotheses in diverse areas of science and to reveal new
patterns in big data. On the other hand, the computational and
conceptual complexity of many spatial data analytics procedures
presents significant challenges to the efficiency and reproducibility
of those analytics.

In this paper we explore the design, development, and testing
of an open and reproducible KNIME spatial analytics workflow
tool (called “K-span”), based on existing open-source spatial tools
combined with a general-purpose scientific workflow platform.
We chose KNIME4 (Konstanz Information Miner) (Berthold et al.,
2009; Warr, 2012) as our open-source scientific workflow platform
(discussed further in later sections).TheK-span integrates a range of
commonopen-source spatial tools and formats, includingGeoTools,
GDAL, PostGIS, and GeoJSON with existing KNIME capabilities as
a freely available, open-source KNIME spatial analytics workflow
tool. The benefits of the K-span software tool include:

• Openness: Scientific workflows help to decompose complex
spatial analytics processes into a sequence of unambiguous
spatial operations connected by data flows (Bakos, 2013;
Liew et al., 2016). Managing complexity in this way makes
it easier for anyone to create, adapt, remix, reuse, and
reproduce spatial analytics. The approach also makes it
easier to integrate non-spatial operations, such as machine
learning and data mining techniques, not common in today’s
siloed GIS tools (Morisette et al., 2013; Radosevic et al., 2020).
Reliance on open-source tools further decreases dependency on
proprietary software and increases the options for openness and
reproducible spatial analysis.

1 http://gdal.org.

2 http://qgis.org.

3 http://postgis.net.

4 https://www.knime.com/.

• Transparency: The diversity of spatial operations (e.g., distance
may refer to Euclidean, Manhattan, or Hausdorff measures)
and even implementations of those operations (e.g., both the
winding number and crossing number algorithms can be used
to determine if a point is inside a polygon) frequently leads
to bespoke or poorly documented steps in spatial analytics
today. Scientific workflows make implicit decisions explicit.
Together with open data, scientific workflows can turn spatial
analytics into “executable documentation,” giving industry and
government certainty about how exactly data was created and
decisions were made (Ludäscher et al., 2009).
• Automation: By providing a visual language for spatial analytics,

spatial workflows can automate data analysis and enable a more
user-friendly approach than programming, but more rigorous
and reproducible than ad hoc use ofmenu-driven desktop tools,
such as GIS (Yue et al., 2015; Yin et al., 2018).This combination
provides and ideal environment for integrated and collaborative
prototyping and development of automated spatial analytics.

In this context, the key contributions of this paper are:

1 The building and implementation of the open-source K-span
software tool built on the freely available KNIME scientific
workflow platform. The result provides a visual language for
spatial analytics, allowing users to combine geospatial analysis
with other data analytics techniques for efficient processing of
large geospatial datasets.

2 The application of the spatial scientific-workflow approach
to a major case-study of constructing the national Digital
Elevation Model (DEM) for Geoscience Australia5 (GA)
(Geoscience Australia, 2015). The result is a more open,
transparent, automated, and reproducible procedure for building
a foundational spatial dataset of national significance.

3 A qualitative and quantitative evaluation of the differences
between the conventional (“black box”) approach to
constructing a DEM and our open and reproducible scientific-
workflow approach. The potential for increased assurance
and confidence in spatial data products—sometimes termed
“warrantability”—using our approach is a key finding of our
results.

The rest of this paper is organized as follows. Section 2 provides
further background into the scientific workflows approach to spatial
analytics. The design and development of the K-span software tool
is described in Section 3. Section 4 presents our reference case
study for building a K-span workflow for DEM construction and
Section 5 describes the results through qualitative and quantitative
comparisons with GA’s prior DEM construction process. Finally,
Section 6 concludes the paper with a discussion of future work.

2 The scientific workflows approach

Thiswork seeks to combine the benefits of reproducible research,
open data, and open source software to create an open, transparent

5 Geoscience Australia, http://www.ga.gov.au.
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and automated computational tool for constructing spatial analytics.
To do so, we make use of scientific workflows. While workflow-
based technologies were first adopted by the business community,
they have drawn a great deal of attention in the databases
and information systems research and development communities
(Barker and Van Hemert, 2007). Like business workflows, scientific
workflows are executable models constructed through intuitive and
interactive graphical user interfaces. Scientific workflows apply the
workflow paradigm for describing, managing, and sharing solutions
to complex scientific problems. They commonly adopt a dataflow-
oriented approach, where a complicated analytics task can be
modularized into chains of analysis operations connected by data
flows.

In the past scientific workflow systems were used extensively in
the field of bioinformatics to not only capture analytical processes
but also to document those processes amongst collaborators for
review and revision (Sun et al., 2011). While scientific workflows
are used extensively for non-spatial processes (Brown et al., 2007;
Barseghian et al., 2010), their ability to conduct spatial operations
are still in the initial stage of development (Callaghan et al., 2010;
McFerren et al., 2012; Zyl et al., 2012; Yue et al., 2015; Scheider
and Ballatore, 2017; Radosevic et al., 2020). Some researchers have
already propounded the use of scientific workflows for spatial
analytics (Ludäscher et al., 2006; Freire et al., 2018; Kitzes et al.,
2018; Radosevic et al., 2020; Cerutti et al., 2021). These workflows
allow users to break down complex spatial analytics tasks into
chains of modular components (Zhang et al., 2006; Zyl et al., 2012;
Yue et al., 2015).

One example is the Kepler6 scientific workflow system,
which has made progress developing nodes for spatial operations
(Jaeger et al., 2005). The platform is becoming increasingly capable
of processing large amounts of spatial data such as point clouds
produced from Light Detection and Ranging7 (LiDAR) data (Crawl
and Altintas, 2008). To aid in processing large amounts of data,
cluster capabilities have been added to Kepler (Ludäscher et al.,
2006), along with parallel processing capabilities using mapReduce
(Wang et al., 2012).

Of the scientific workflow platforms under active development,
we found that Kepler, KNIME, VisTrails8, and Apache Taverna9

(Hull et al., 2006) met our requirements of being OSS, cross-
platform, scalable from a single desktop to high performance
computing environments, containing a wide variety of inbuilt non-
spatial analytics, and ease of incorporating spatial operations.

2.1 KNIME

KNIME is written in Java and comes with an extension
mechanism to simplify the process of adding plugins for providing
additional functionality. This has allowed a large number of
community contributors to create their own plugins, in addition

6 https://kepler-project.org/.

7 https://oceanservice.noaa.gov/facts/lidar.html.

8 https://www.vistrails.org//index.php/Main_Page.

9 https://incubator.apache.org/projects/taverna.html.

to the wide range of integrated tools such as machine learning
algorithms from Weka and the statistics package R.

We ultimately chose KNIME over the other options primarily
due to its ability to selectively execute each node within a workflow.
This is in contrast to the other platforms investigated, which require
the entire workflow to be executed. Specifically, when a node is
executed in KNIME, only that node, and any unexecuted dependent
nodes (i.e., its descendant nodes) will run. While all scientific
workflow platforms are capable of decomposing a complex spatial
process into a set of discrete steps (i.e., nodes), KNIME allows
for each step to be individually executed, with its results, models,
and interactive views available for inspection and alteration at any
time.

KNIME utilizes a table-based approach to data representation,
where data attributes are stored as columns and data instances are
stored as rows. Figure 1 shows an example workflow including
our implemented nodes in the KNIME workbench, where squares
represent processes applied to the data and arrows represent the flow
of data. Specifically, a KNIME data processing node will have some
or all of the following components.

1 A set of input ports used for taking input data in tabular format.
2 A node dialogue for configuring processing parameters (e.g., to

set the distance for a buffer operation).
3 A set of output ports to represent the results of the process in

tabular format.
4 A result visualizer to graphically display information about the

process’ output (e.g., a map, graph, or image).

Not all OSS that are capable of spatial analytics make use of
scientific workflows. QGIS, a popular open source GIS software,
does have some scientific workflow capabilities (Cagnacci and
Urbano, 2008), utilizing a built-in graphical modeler to construct
workflows. Nevertheless, its workflow interface is tailored towards
constructing simple spatial analytics workflows for use in batch
processing, and as such does not scale well to large, complex and
automated scientific workflows built with KNIME. The focus of
QGIS is not directed towards documentation of spatial analytics
process, but rather to enable visualization of spatial data using
manually executed processes. In contrast, KNIME is capable of
providing detailed documentation and annotation of the whole
spatial analytics process. Such limitations are a natural consequence
of QGIS being a GIS with added workflow capabilities rather than
software designed as a workflow system from the ground up, such as
KNIME.

Further, most other open source data analysis tools are limited
by significant working memory constraints whereas KNIME is
a scalable workflow platform capable of processing very large
data volumes without restrictions on RAM or working memory
Berthold et al. (2009). The K-span software tool can therefore take
advantage of some of KNIME’s general features including memory
management, which allows scaling to billions of rows with a desktop
computer. This feature is vital for our DEM case study, given that
we need to process terabytes of data. KNIME workflow models are
stored in plain-text XML files, making them human-readable and
easy to parse. The models can also be easily exchanged with or
without data. Moreover, KNIME allows wrappers for calling other
code in addition to providing nodes that allow to run R, Python,
Perl, and other code fragments.
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FIGURE 1
An overview of our implemented nodes in the KNIME workbench. The node repository panel (left) presents our developed spatial nodes (Geometry IO
and visualization, Geometry conversion, Geometry processing, Geometry relations and measurements, Raster operations and PostGIS operations—for
the full list of nodes in the K-span software tool see Table 1), a configuration window (bottom left) shows options available for the buffer node, spatial
data is displayed by the map viewer node in a map window (bottom right), and detailed documentation about the node is presented in the right panel.

3 K-span software tool

To integrate geospatial operations and processing, we developed
K-span, a KNIME software tool containing various spatial analytics
nodes for working with geospatial data. The K-span software tool
was designed to take advantage of existing OSS libraries, integrating
them to fulfill our needs, in preference to reimplementing
fundamental spatial operations (such as GIS overlay, buffer,
controid, and topological operations on geometries). Specifically,
we reuse established spatial algorithms in existing libraries and
expose that functionality in KNIME by building a new K-span
node with appropriate input and output ports based on that
process’ structure and purpose. By adopting this component-based
approach, we simplify the development process and provide control
over modularity.

For example, to process vector-based spatial data we make use
of GeoTools, an open-source Java library that provides methods
for the manipulation of geospatial data. By providing the basic
components of spatial data processing, GeoTools allows developers
to focus on higher-level geospatial processes by re-using basic
functions such as reading a Shapefile, buffering a geometry, or
styling and displaying a set of features. GeoTools also provides
interfaces for spatial concepts and data structures, and is itself

built on open-source libraries such as the JTS10 (Java Topology
Suite) and Open Geospatial Consortium’s (OGC) GeoAPI11. JTS
provides a complete, consistent, and robust implementation of
fundamental algorithms for processing linear geometry on the 2-
dimensional Cartesian plane, and supports modeling geometry as
points, linestrings, polygons, and geometry collections (Shekhar and
Xiong, 2008).

Given that such representations do not fit neatly into a table-
based structure, however, K-span required a suitable tabular data
format rapidly interchangeable with the geometry and ideally
human-readable. Accordingly, we adopted the GeoJSON12 format,
capable of encoding a variety of geographic data structures in a
human readable text-based format, along with their non-spatial
attributes (Butler et al., 2016). GeoJSON is based on JavaScript
Object Notation13 (JSON), and is an open and widely used format.
Since we need to store vector geometries in a format compatible with

10 https://www.osgeo.org/projects/jts/.

11 https://www.ogc.org/standards/geoapi.

12 https://geojson.org/.

13 https://www.json.org/json-en.html.
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TABLE 1 Developed and implemented the K-span software tool to KNIME.

Node category List of nodes

Geometry IO and visualization Shapefile reader, shapefile writer, shapefile merger, GeoJSON reader, GeoJSON writer, web feature service (WFS) connector,
map viewer

Geometry conversion Transform, snap to grid, polygons to lines, lines to polygons, geometries to multi-geometries, multi-geometries to geometries,
vertices to points, line endpoints, line merge

Geometry processing Buffer, concave hull, convex hull, centroid, minimum bounding rectangle, remove holes, remove repeated points, unary union,
intersection, union, difference, split

Geometry relations and measurements Area, distance, length/perimeter, boolean operations (contains, covered by, covers, crosses, disjoint, equals, intersects, overlaps,
touches, within)

Raster operations Resample/warp/reproject, mosaic raster, mask raster, raster calculator, clip raster, rasterize, proximity

PostGIS operations Database connector, reader, table connector, writer/update

Metanodes Intersects, difference

Custom code integration R snippet

FIGURE 2
Example of the Clip raster node in operation, with input table and output tables on the left, and node dialogue pane on the right.

KNIME tables, we take advantage of GeoTools’ GeoJSON library
to store the spatial aspect of data. Specifically, geometries and their
coordinate reference systems are stored as GeoJSON strings in a
geometry column, with the non-spatial data stored alongside in
separate columns of the table. Table 1 presents the list of geospatial
data processing nodes we have developed to date. Nodes are grouped
in eight different categories, and each node is constructed to serve
a specific spatial operation. In addition, each node includes a
dialog pane14 (see Figure 2 for an example of node dialog pane)

14 https://www.knime.com/developer/documentation/node-dialog.

enabling openness and transparency of the K-span software tool
by allowing users to reuse, edit, adapt and modified the node
settings. Following sections go further into details about each node
category.

3.1 Geometry input output (IO) and
visualization nodes

This category of workflow nodes read or write data and are
used for the import, export, or display of geospatial data. Import
nodes such as the Shapefile and GeoJSON readers make use of
node dialogue panes to identify file locations. Next, these nodes
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read the input file’s data and convert input data geometry along
with other non-spatial attributes to a table format for easier
manipulation by other nodes. For example, the Shapefile reader15

reads an ESRI Shapefile16 and creates an output data table which
includes geometries (polygon, line, or point) and other non-spatial
information in the Shapefile. Such “reader nodes” are unusual in that
they have only an output port, reading the input data froma specified
location on file (cf. Figure 1). “Writer” and “viewer” nodes, in
contrast, lack an output port taking in a geometry table through their
input port. “Writer” workflow nodes store input geometry along
with its associated non-spatial attributes in a location specified using
the node dialogue pane. For instance, the Shapefile writer17 stores
the input data table in an ESRI Shapefile specified by a destination
location.TheMap viewer workflow node works similarly to generate
a simple map view of the geometries, allowing the user to quickly
view the geometry without having to export and load the data into
another system (see Figure 1).

3.2 Geometry conversion nodes

Geometry conversion workflow nodes convert geometries from
one type to another while the underlying vertices remain in the
same location.These workflow nodes are unary (take a single input),
transforming each geometry in a column of input geometries into
a corresponding geometry in an output geometry column. For
example, theTransformnode applies changes to geometry of selected
geometric features listed in input table by using displacement vectors
or spatial reference IDs (SRID) to enable the best-fit geometric
transformation between two different coordinate systems (ESRI,
2021). Nodes in this category possess both input and output ports.
An spatial input table requires a geometry column in GeoJSON
format. The output table contains a second, additional output
geometry column in GeoJSON format. In many cases, parameters
are not required for geometry conversion and so the workflow node
does not contain a dialogue pane. Where parameters are required,
(e.g., a new coordinate reference system for the transform node
or a grid size for the snap to grid node), they are captured via
the workflow node dialogue pane. In either case, all nodes validate
inputs before execution and highlight potential errors. For example,
the Polygons to lines geometry conversion node will warn the user if
the input table does not contain any polygons or multi-polygons.

Almost all workflow nodes in this category exhibit a one-to-
one relationship between the rows of the input and output Tables. A
few, such as Geometries to multi-geometriesi exhibit a one-to-many
relationship, taking rows with a geometry collection or a multi-
point, line, or polygon and splitting out individual geometries to
their own row. Each output row contains a copy of any non-spatial
data associated with the original row.Multi-geometries to geometries
is the opposite of this, exhibiting a many-to-one relationship and
taking rows and combining them into a single row as either a
geometry collection, or a multi-point, line, or polygon.

15 https://sites.rmit.edu.au/openspatialanalytics/osa-node-rep/
shapefile-reader/.

16 https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm.

17 https://sites.rmit.edu.au/openspatialanalytics/osa-node-rep/shapefile-writer/
.

3.3 Geometry processing nodes

Geometry processing nodes take input geometries and process
them into new geometries, potentially altering their underlying
vertices. For example, the Buffer18 node creates a new geometry with
a buffered area based on a supplied distance around geometries in
the input table. While most processing workflow nodes are unary in
their input, some are binary. For example, overlay spatial operations
executed with Intersection, Union, Difference, and Split workflow
nodes require two sets of geometries. Specifically, these workflow
nodes take the first two geometry columns from the input table and
produce a single output geometry column. All geometry processing
workflow nodes exhibit a one-to-one relationship between the rows
of the input and output tables and simply pass through all non-
spatial columns.

3.4 Geometry relations and measurements
nodes

While workflow nodes from the previous two categories output
altered geometries from the geometries passed through to them,
workflow nodes in this category take in geometries and pass out
non-spatial data. For example, the Area workflow node takes in a
single column of polygons, multi-polygons, or geometry collections
and determines the total area for each row. All workflow nodes
in this category pass through the original geometries and non-
spatial columns unaltered and require no input parameters. Some
workflow nodes, such as Distance and the Boolean operations, are
binary in their input and require two geometry columns. All table
columns are passed through unaltered. Lastly, some workflow nodes
exhibit polymorphism, meaning that they use different processing
algorithms depending on the input data. For example, if the
Length/perimeter workflow node takes in lines or multi-lines, it will
output a length whereas it will output a perimeter for geometries
(polygons) or multi-geometries.

3.5 Raster operations nodes

Raster operations nodes apply spatial operations for preparing,
manipulating, and analyzing raster data. Given that our reference
case study (see Section 4) involves the processing of massive
volumes of raster data, a robust and efficient raster processing
library was required. In light of this, we have built the K-span
raster processing nodes on GDAL, the Geospatial Data Abstraction
Library (Warmerdam, 2008). GDAL is equipped with a variety of
useful command line utilities for translating and processing raster
and vector data stored in a variety of formats.

Raster files tend to be very large and stored in a variety of
formats. Hence, it is not practical to directly pass raster data
through KNIME workflow nodes in tabular format. Instead, only
information about the raster files’ location on a local disk or a remote
server is passed to the workflow nodes. In particular, our Raster

18 https://sites.rmit.edu.au/openspatialanalytics/osa-node-rep/buffer/.
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FIGURE 3
Example of a workflow in KNIME executing spatial processes remotely using PostGIS operation nodes.

operations workflow nodes require the following three components
to process raster images.

1 A location column in the input table, which stores the complete
path to the raster.

2 An output directory in the node dialogue window (see Figure 2),
which allows the user to indicate the folder the output rasters are
stored in.

3 An output name selector in the node dialogue window, which
allows the user to select a column in the input table with the
required names of the output rasters.

By making use of raster file locations, large sets of rasters can
be processed simultaneously. Figure 2 shows an example of the
Clip raster node in configuration, taking in various raster files
and clipping them to the boundaries of a Shapefile. By ensuring
that the output of any raster node includes a location column,
raster operations can be chained together in a similar way to
the vector operations. Raster images can either be viewed within
KNIME using the Image viewer workflow node (Dietz and Berthold,
2016) or can be accessed by an external application such as
QGIS.
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FIGURE 4
Example of an Intersects workflow metanode. This metanode takes in two tables and removes their non-spatial columns before collapsing the
geometry into a single row. The two tables are then joined, and checked to see if they intersect before the intersection operation is performed. A single
data table with intersected geometry is then output.

FIGURE 5
Example of R snippet workflow node with custom code integration.

3.6 PostGIS operations nodes

PostGIS operations nodes were implemented to facilitate
processing of remotely-located spatial data. While some workflow
nodes such as the Raster operations workflow nodes and the Web
Feature Service (WFS)19 connector workflow node are capable of
retrieving spatial data from remote locations, all of the workflow
nodes discussed so far have been limited to processing data locally.

Some existing KNIME workflow nodes (PostgreSQL, Secure
Socket Shell, etc.) are also capable of processing data remotely.
These KNIME nodes are not specifically designed with spatial
processes in mind, however. To make use of PostGIS (Obe and
Hsu, 2015), we developed an extension to the standard KNIME
PostgreSQL workflow nodes that supports geographic objects. Our
extension allows the connection to a PostGIS database to read or
write geometries in tabular format. Figure 3 shows an example

19 https://www.ogc.org/standards/wfs.

workflow in KNIME using our PostGIS operations workflow
nodes where database queries are written using the workflow
node dialogue pane. As an open and transparent software tool,
the K-span allows users to write new or inspect and reuse
the existing queries within Reader workflow node settings. In
addition, results can be displayed using the Map viewer workflow
node.

3.7 Metanodes

A group of connected workflow nodes that performs some
useful task can combined into a single node, called a “metanode.”
Metanodes enable complex configurations of nodes to be collapsed
into a single node for clarity and modularity. An example of
a metanode for a intersection operation is shown in Figure 4.
Metanodes can themselves be nested, further facilitating both the
readability and modularity of a workflow by describing processes
at multiple levels of granularity. K-span includes two metanodes:
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Intersects and Difference for performing intersection and difference
between geometries.

3.8 Custom code integration node

Finally, KNIME also supports the ability to integrate snippets of
code from a variety of languages within workflow nodes. While not
part of the K-span software tool, the case study in the next section
makes limited use of the R snippet workflow node, integrating
R code for spatial analysis into the workflow. Figure 5 shows an
example of such a workflow node used in our case study, which
calculates the least cost shortest path through a raster image between
two points, and highlights the flexibility to integrate an enormous
range of different tools, libraries, and software into a single
workflow.

4 SCDEM workflow

Themain aimof ourwork is to develop amore open, transparent,
automated, scalable, and reproducible spatial analytics software tool.
Hence, it is important that any software tool developed is not
just made available, but is also self-documented and modifiable
by interested user or institution. At present, GA, a government
institution uses ESRI’s ArcGIS for a process of constructing national
DEM. ESRI’s ArcGIS is a GIS proprietary software that is not
freely available for users to create, analyze and manage spatial
analytics. While it would be possible to reimplement the process
by using a proprietary (“black box”) workflow systems that are
capable of geospatial processing, such as ESRI’s ModelBuilder20

(a workflow tool available within ESRI’s ArcGIS), this would not
meet our requirements for openness and reproduction of spatial
analytics. The main aim of ESRI’s ModelBuilder is not focused on
documentation of spatial analytics, but rather to enable graphical
representation of spatial data using manually executed processes.
In particular, ArcGIS is a proprietary GIS software with added
workflow capabilities rather than a scientific workflow system, such
as KNIME. Feature Manipulation Engine21 is another proprietary
and not freely available spatial analytics workflow tool for managing
and executing data driven processes. Nevertheless, application
of these “black box” software tools would still not meet our
requirements of openness, transparency and documentation.Hence,
we applied, tested and validated our K-span software tool by
building and implementing a SCDEM workflow which overcomes
the limitations of the original GA process.

4.1 Case study

Our K-span software tool was applied, tested and validated on
a key part of the process used by GA to construct the national

20 https://pro.arcgis.com/en/pro-app/latest/help/analysis/geoprocessing/
modelbuilder/what-is-modelbuilder-.htm.

21 https://www.safe.com/solutions/ (FME).

Australian DEM of Greater Brisbane, and a component of the
nationalAustralian Foundational SpatialData Framework22 (FSDF).

The process chosen involves constructing a seamless coastal
Digital Elevation Model (SCDEM) from individual LiDAR height
surveys. The SCDEM process was documented, with a written
operator’s manual explaining the process in detail. A breakdown of
the 11 steps of the original SCDEM construction process is shown
in Figure 6.

Figure 7 shows the sample study area chosen for this work,
comprising 13 LiDAR surveys centered on Brisbane and covering
an area of approximately 18,000 km2. The figure highlights the 23
areas of overlap between the 13 individual surveys.

4.2 The workflow design and
implementation

Our workflow implementation of the SCDEM construction
process is a new reproducible scientific workflows approach for
generating the national DEM. It is an open, transparent, automated
and improved version of the original GA process. The SCDEM
workflow also represents an “executable documentation” supported
with our K-span open source and freely available software tool while
replacing ESRI’s ArcGIS proprietary (“black box”) software tool as
the spatial analytics engine. In particular, our workflow is capable
to execute and reproduce the 11 main steps of the original SCDEM
process showed in Figure 7. Also, in our workflow, the SCDEM
process was built and implemented to be fully automated and to
run without user intervention. A summary of the SDEM workflow
is shown in Figure 8, with one of the metanodes (Step 4, Calculate
cutline endpoints) expanded by two levels to show further detail.
The workflow was mainly built from the K-span nodes described in
Section 3 and some of existing nodes within KNIME.

The building and implementation of the SCDEM workflow
involved the following 10 main steps:

1 Resample and Mosaic surveys: In the first step our workflow
reads and ranks LiDAR surveys based on their age (newer to
older). Each survey contains a set of raster tiles. These tiles
are resampled with Resample/warp/reproject workflow node to a
specific resolution (25 × 25 m) and named sequentially in order
to place each tile in its own rank folder. The purpose of this
data management process is to avoid duplicate tile filenames.
After that each survey and every resampled tile within that
survey is selected and joined into a single image mosaic using
Mosaic raster spatial analytics workflow node and given its name
according to that survey’s rank.

2 Polygonise surveys: Polygonisation (vector to raster data format)
spatial data processing is divided in two parts. First part involves
creating a mask raster image using Mask raster workflow node
for eachmosaicked survey.This determines which raster cells are
included in the survey. Second part involves creating Shapefiles
using Shapefile reader and Shapefile writer workflow nodes for
each of these rasters to set their boundaries as polygons. The

22 https://www.anzlic.gov.au/resources/foundation-spatial-data-framework/
fsdf-themes-datasets/elevation-and-depth.
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FIGURE 6
11 steps of the original SCDEM construction process.

FIGURE 7
Outlines of the 13 surveys (light green), used in our Greater Brisbane, Australia, case study, with overlaps in dark green.

Shapefiles are then merged using Shapefile merger workflow
node, to construct a single shapefile with all LiDAR surveys.

3 Calculate survey overlaps: This step determines overlap between
survey polygons. The workflow executes a search of pairs of
survey polygons and their geometries that overlap where the
newer (top polygon) has a higher rank than the older (bottom
polygon) using several nodes from Geometry conversion (Snap
to grid), Geometry processing (Intersection), Geometry relations
(Boolean operations) categories and Intersects metanode.
Figure 10 illustrates the overlap between the newer and
older survey polygons. In cases that two surveys overlap
more than once, the overlapping polygons are divided into
separate polygons. Presence of any linestrings is removed in
the overlapping geometries. Section 5.2.1 further goes into
details associated to the difference between our workflow-
based approach and the original (conventional) GA approach
of defining the overlap between polygons and constructing
cutlines.

4 Calculate cutline endpoints: In this step the workflow calculates
the cutlines between surveys. The workflow applies automated
process for finding the endpoints of cutlines by implementing
simple rules with KNIME nodes (Rule based row filter, if
intersects = true) and spatial data management with spatial

analytics workflow nodes (Snap to grid, Polygon to line, Buffer,
Intersects metanode, Intersection, Multi geometry to geometries,
Length). Difference in the endpoints placementmethod between
our workflow-based approach and the original GA approach is
provided in Section 5.2.1.

5 Calculate delta surfaces: The calculation of the delta surfaces
is conducted in two parts. In first part our workflow clips
the overlapping rasters to the boundary line of the overlap
polygon usingMinimum bounding rectangle and Shapefile writer
workflow nodes. In second part the two rasters are combined
into a delta surface using Clip Raster and Raster calculator
workflow nodes.

6 Calculate shortest path: Our workflow integrates Dijkstra’s
algorithm through the R package gdistance (van Etten, 2017)
usingRSnippet workflownode, to calculate the least cost shortest
path through each delta surface between the corresponding
cutline endpoints.

7 Clip survey polygons: For this step the workflow uses the output
overlap polygons and cutlines from steps 3 and 6 and applies
these geometries to the output survey polygons from step 2.
This process determines the clipped extent of each survey.
The workflow connects and integrates Geometry conversion
(Snap to grid, Multi-geometries to geometries, Line merger,
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FIGURE 8
The SCDEM workflow for executing the original GA process. At the bottom is the overall metanode steps and data flow (cf. Figure 6). The middle part
shows the expanded metanode for one step (Step 4, Calculate cutline endpoints). At the top is the further expansion of one step in Step 4.

Transform), Geometry processing (Minimum bounding rectangle,
Unary union, Buffer, Intersection, Centroid, Split, Difference) and
Geometry measurements (Area, Distance) workflow nodes and
metanodes (Intersects, Difference) to execute this step.

8 Reproject to WGS84: In this step the workflow changes spatial
projection of each survey to WGS84 with a 1-degree cell size
by using Resample/warp/reproject workflow node. WGS84 with
a 1-degree cell size is the coordinate reference system and spatial
resolution used by the national DEM of Australia.

9 Clip survey rasters: The workflow executes spatial operations to
clip the projected raster images from step 8 to the extent defined
with the derived polygons from step 7 using Shapefile reader,
Shapefile writer and Clip Raster workflow nodes. The output
from this step are modified surveys with no overlaps between
them.

10 Mosaic surveys: The final step of SCDEM workflow includes
adding each clipped survey raster into a single imagemosaicwith
Mosaic raster workflow node.

4.3 The workflow adaptations

Previous section demonstrated that K-span software tool can
stitch, connect and compute in parallel multiple raster and vector
processing operations. As such, this tool can be used for more
complex terrain and geometry analysis. However, this may require
some adaptations related to a workflow design and implementation.
For example, in order to increase reproducibility of the original GA
process with our workflow, the original construction of SCDEM
included a number of minor adaptations.
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• Step 1 of the original GA process was split into two steps
1a (image resampling23) and 1b (image mosaicking24). The
steps are conceptually distinct, and indeed our open-source
raster processing library, GDAL, uses separate operations for
resampling (Step 1a) and mosaicking (Step 1b) raster images.
• Step 1a has been split into a separate process thread. Step 1a

(resampling) is typically the most computationally intensive of
the entire SCDEM process, and operates only on individual
surveys in turn. Hence, this process thread can run in
parallel and independently of other parts of the SCDEM
process.
• Steps 1b, 2, and 8 have likewise been separated out into a self-

contained process thread. Each survey can be mosaicked and
polygonized individually and in parallel without inter-survey
comparisons.
• Steps 10 and 11 have been merged into a single, simpler

mosaicking step, because the smaller study area is able to
produce a single output raster, where the national DEM
requires raster catalogs for mosaicking of multiple output raster
images.

5 Results

This section uses the SCDEM case study for Greater Brisbane
area to evaluate our K-span software tool. Comparing our
workflow-based approach with the original (conventional) SCDEM
“black-box” approach, both qualitatively and quantitatively,
is intended to highlight the broader benefits of the K-
span software tool, and the workflows approach more
generally.

5.1 Qualitative evaluation

The case study highlights the three benefits of integrating spatial
analytics and scientific workflows posited at the beginning of this
paper: openness, transparency, and automation.

Openness. The K-span software tool eliminates the need for
proprietary software such as ESRI ArcGIS, instead integrating
libraries and code from open-source spatial and non-spatial
software, in particular GDAL and R. For our SCDEM workflow,
in step 7 (Clip survey polygons), our K-span software tool uses the
R package “gdistance”25 to calculate the least cost shortest path
(Dijkstra’s algorithm) through the cost surface in each overlap
region, between the corresponding cutline endpoints. The entire
process, including data and/or data connections, can be documented
and reproduced directly. New users require only a minimal and
one-off open-source software installation to be able to reproduce
the entire SCDEM construction process or to reuse for their own
purpose.

23 https://gisgeography.com/raster-resampling/.

24 https://www.l3harrisgeospatial.com/docs/mosaicseamless.html.

25 https://cran.r-project.org/web/packages/gdistance/index.html.

Transparency. As it was mentioned in Section 4, the original
construction of SCDEM by GA included a written documentation
about the modeling process and its 12 major steps illustrated in
Figure 6. Despite being documented as a user manual, GA’s written
documentation excluded executable spatial modeling examples
with spatial operations involved in the construction of original
SCDEM. GA’s original process provides rather a closed and
“black box” spatial analytics approach by relaying mainly on
proprietary spatial analytics tools such as ESRI’s ArcGIS. As
consequence, often spatial operations are either unknown or hidden
in proprietary GIS software. Hence, this significantly affected the
transparency of the SCDEM process and opportunity for users
to inspect and investigate spatial analytics of the original GA
process.

K-span software tool provides exactly the opposite. It enables
“executable documentation,” and transforms the SCDEM process
into an open, transparent and “white box” spatial analytics approach
by executing, running and documenting spatial operations using
scientific workflows approach in KNIME. The workflow and
integrated spatial operations do not prevent a human expert
examining rules applied in the original process or adapting them
to their specific requirements or judgment. This scrutiny is aided
by a user’s ability to inspect the workflow at any step. Further, K-
span software tool provides users the ability to query data at any
intermediate operation in the entire workflow, using a simple map-
previewer or writing data to a Shapefile or GeoJSON file for further
inspection. Of course, any human interventions (including experts)
to change the workflow are also explicitly captured and can be
saved and shared as a new version of the workflow using. knwf
file.

Automation. While some steps were automated using Python
scripts, the original SCDEM process was essentially a manual
process of following the written documentation. At certain points,
the original SCDEM construction process further relied on
intervention by a human experts. For example, step 4 required
user’s expert knowledge to decide where to start and end cutlines.
Similarly, in step 7 the process also required expert knowledge
to manually merge cutlines and clip each survey to these lines
individually.

In our workflow, the entire process including steps 4 and 7 have
been fully automated.Automating the entire spatial analytics process
immediately provides a convenience for users to easier generate
and regenerate the SCDEM. Without the requirement of a human
operator executing operations manually and in sequence, the entire
process can be executed at the press of a single button. As the
state of all intermediate steps is always stored in the workflow,
any changes or adaptations only require re-execution of affected,
downstream steps. KNIME automatically keeps track of operations
and step that are upstream of a change, so that they do not need to be
recomputed.

Further, our software tool can comprisemultiple process threads
that can run in parallel (see Section 4; Figure 8). Of course,
individual operations can also be parallelized, although the same
is potentially true for proprietary and non-workflow software
operations, such as using ESRI’s ArcGIS.

Finally, providing an explicit visual language for the spatial
analytics underlying the SCDEM process makes development and
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FIGURE 9
Comparison of cutlines with labeled overlap regions and cost surfaces.

adaptation of the process much easier for users, without the need
for Python programming skills or familiarity with specific user
interfaces, such as ArcGIS menus and toolboxes.

5.2 Quantitative evaluation

We also compared quantitatively the difference between the
data output by the original GA process and our workflow-based
approach. Although the specific differences relate primarily to the
case study details, we use these differences to reflect on the wider
lessons for the application and implementation of spatial analytics
workflows with our K-span software tool.

5.2.1 Cutline construction
The primary challenge when constructing the SCDEM arises

through the sizable overlaps between many of the individual LiDAR
surveys. These overlapping regions contain differences in observed
heights between LiDAR surveys, meaning that SCDEM is not a
simple mosaicking operation. Rather, constructing the SCDEM
requires “cutting” and “stitching together” the individual surveys
using a path that minimizes the cumulative height difference
between surveys.

Figure 9 summarizes the differences between the cutlines
constructed by conventional (original) process and workflow-
based (revised) approach. Figure 9 also illustrates some overlaps
with the zero height difference between two surveys. This slight
anomaly is due to the way in which the LiDAR surveys were
commissioned. Specifically, LiDAR flights were broken into survey
extents approximating the boundaries of local councils, such that
any LiDAR survey covering a larger area was broken into a set of
overlapping smaller surveys.

The two sets of cutlines are not identical due to differences which
can be attributed to the following:

• differences in the algorithms used to calculate the cutline path;
• differences in the placement of cutline endpoints; and
• differences in the weightings used to construct the cost surface.

Difference in cutline path algorithm. In the original SCDEM
process, ArcGIS’s “Cost Distance” tool was used on the delta surface
to create an accumulative cost surface from the start point. The
“Cost Path” tool was then used to find the shortest path through
this cost surface to the end point and then converted to vector
format using the “Raster to Polyline” tool.While it is likely that these
tools operate using some variant of Dijkstra’s algorithm, the exact
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FIGURE 10
Differences between endpoint placement when region overlap (dark green) terminates in an edge. Original process (+) has placed endpoint near the
middle whereas revised process (×) is closest to the older survey (light green region on right).

details of the methods employed in that proprietary software are
unknown. As we stated in Section 4, our main aim is to improve
reproducibility of the original GA process. However, unknown or
hidden information due to use of GIS proprietary and “black box”
tools in the original process creates challenges and difficulties in
reproducing the cutline construction of the SCDEM. In contrast, our
K-span software tool uses the R module “gdistance”, an open-source
implementation of Dijkstra’s algorithm and meets the requirements
for openness, transparency and automation.

In addition, ArcGIS’s least cost path operates on a “queen’s case”
neighborhood of eight adjacent cells (Anselin, 2020). As a result,
cutline paths in the original SCDEM process frequently traverse
cells diagonally. This in turn increases uncertainty and ambiguity
in the cutline construction as it becomes unclear which survey’s
raster cell should be chosen for imagemosaicking.Hence, this affects
the quality and accuracy of the SCDEM. The K-span software tool
integrates and uses the R open-source least-cost path algorithm
which enables the cutline construction to be restricted to “rook’s
case” (i.e., the four cardinal directions) (Anselin, 2020). In particular,
this solution allows reduction in spatial uncertainty and avoiding
any ambiguity at the boundary of cutlines during imagemosaicking.

Difference in the endpoint placement. For three surveys overlap,
the placement of cutline endpoints is set at the centroid of
the overlapping area, for both original and workflow SCDEM
processes. Polygon “centroid” is used to refer to a number
of different operations, including the mean center, center
of mass, and MBR (minimum bounding rectangle) center
(de Smith et al., 2016). However, none of these three measures
were found to match the locations of the endpoint placement
in the original GA process. This means that these points were
most likely placed manually by a human operator. In contrast,
our workflow-based approach automated the placement of
endpoints by using the center of mass measure in the revised
process.

In addition, for cases with two surveys overlap, the original
SCDEM process required manual placement of endpoints using

human operator judgment in cases where the overlap region
terminates as an edge. Our workflow automated the endpoint
placements, using a transparent rule that places endpoints always
closest to the older survey raster. Hence, this rule effectively
maximizes use of larger portion of newer survey by placing the
endpoint on the edge of the region overlap between two surveys (see
Figure 10).

Figure 11 shows the combined Euclidean distance between
cutline endpoints. The cutline for overlap 13 was omitted from
this and all further comparisons due to corruption in the source
data causing the loss of 22 1×1 km tiles since the original SCDEM
process was performed. This has resulted in a cutline that travels
outside the revised overlap (see Figure 9). While it was found that
the distances between endpoints from the original and revised
SCDEM processes where three surveys overlap could produce large
distances (e.g., cutline 3), differences in endpoint placement where
two surveys overlap were found to be much larger (e.g., cutlines 2
and 16). In either case, given that endpoint placement can vary so
widely, it is important to have an automated process that will choose
the same placement given the same geometry to ensure consistent
results.

Difference in cost surface. In the original process, the cost surface
is simply the absolute difference in heights between the surveys.
However, in many cases this can lead to multiple equally low-cost
paths between the cutline end points. In turn, this leads the process
to arbitrarily select one least-cost path, frequently resulting in highly
indirect and sinuous cutlines. This difference is most apparent in
overlap 15, with the original cutline moving back and forth across
the overlap several timeswhile the revised cutline takes amuchmore
direct path (see Figure 12).

This effectwas almost certainly notwhatwas originally intended.
Instead our revised workflow-based approach introduces a minute
cost related to the length of the path (1 μmper raster cell, which adds
a total of 2.9 mm to the cumulative height for the longest revised
cutline). This length penalty is small enough to ensure that even
the smallest height differences always dominate differences in path
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FIGURE 11
Combined Euclidean distance between cutline endpoints. Green indicates cutlines through “same survey” overlap regions; blue cutlines that traverse
overlap regions containing different LiDAR surveys.

FIGURE 12
Comparison of cutlines for overlap 15.

length, but that resulting least cost path is reliably also the shortest
and most direct of all least cost paths.

5.2.2 Cutline performance
Figure 13 summarizes the quantitative differences in cutlines, in

terms of:

(a) the difference in length between pairs of (original and revised)
cutlines;

(b) the area enclosed by these pairs (as a proportion of the total area
of corresponding survey overlap)

(c) the Hausdorff distance Min et al. (2007) between the two
cutlines.

These observed differences in cutlines arise as a result of
the combination of all three factors above: different algorithms,
endpoints, and cost surface. However, a few instances of large
differences between original and revised cutline lengths were not
found statistically significant at the 5% level (p = 0.566) using a
Wilcoxon rank sum hypothesis test (Wilcoxon, 1945). Differences
do however appear especially marked between those cutlines that
relate to overlap regions based on the same original LiDAR survey
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FIGURE 13
Quantitative differences in cutlines showing the length of the original and revised cutlines, area enclosed by the pair of cutlines (as a proportion of the
total overlap area), and the Hausdorff distance between the two cutlines. “Same survey” and “Different survey” overlap regions are indicated in green
and blue respectively, and are ordered by maximum cutline length.

(i.e., 1, 2, 8, 9, 10, 16, 18, and 21). The Wilcoxon rank sum
hypothesis test confirms this apparent difference, with systematically
larger differences found to be associated with the “same survey”
overlaps when compared with cutlines for overlaps based on
different surveys (significant at the 5% level, p = 0.0022 and
p = 0.0127 for enclosed proportionate area and Hausdorff distance
respectively).

These discrepancies in particular can be attributed to the
arbitrariness of selecting one least-cost path from amongst the
large number of equally least-cost possibilities in these overlapping
regions. Instead, in our workflow, the least-cost path with shortest
(Euclidean) distance will consistently be chosen (see Section 5.2.1).
This previously unobserved arbitrariness embedded in the original
SCDEMprocedure becomesmore easily observed with “many-eyes”
able to scrutinize open K-span workflow.

As a result, the total length of cutlines through “same survey”
overlaps is shorter using the revised procedure (255,930 m) than
the original procedure (324,802 m). However, a Wilcoxon rank sum
hypothesis test shows that this apparent difference between paired
original and revised “same survey” cutline lengths is not statistically
significant at the 5% level (p = 0.250).

By contrast the same hypothesis test reveals that for the
“different survey” overlap regions, the original SCDEM process
generates cutlines that are shorter (total length 453,511 m) than the
revised process (total length 476,499 m), significant at the 5% level
(p = 0.0353).

However, this analysis does not account for differences in
the lengths of cutlines due to other factors (such as different
endpoint locations). Figure 14 compares the “different survey”
cutlines in terms of total cost (in m height) and the unit cost
(in m height per m length of cutline). Both the total height
difference of cutlines (1,779 m versus 4,856 m height) and the unit
cost (0.0037 m height per m distance and 0.0107 m height per m
distance) was reduced in our revised SCDEM process. Wilcoxon
rank sum hypothesis tests showed that both these differences
were significant at the 5% level (p = 0.0494 and p = 0.0067
respectively).

In summary, taking into account the differences in procedure
details, our revised and more transparent workflow-based approach
improved the overall performance of the process related to the
original goal of reducing total height differences betweenmosaicked
surveys.
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FIGURE 14
Comparison of “Different survey” cutlines in terms of total cost (in m height) and the unit cost (in m height per m length of cutline), ordered by
maximum total cost per overlap region.

6 Discussion and conclusion

In this paper we described the K-span tool, an open-source
software solution for reproducible spatial analysis, based on KNIME
scientific workflow system. The K-span enables analysts to conduct
more open, transparent and automated process of constructing
DEM and opportunity to document complex spatial analytics
procedures.

Our case study associated to the generation of the
SCDEM from LiDAR survey data highlights the benefits
accrued from this increased openness and transparency, and
improved automation of the process. Overall, the case study has
demonstrated how the transition from written documentation
and manual process execution to the “executable documentation”
provided by K-span software tool and scientific workflow-
based approach can aid to more open, transparent, automated
and reproducible spatial analytics. In our case study, this
included:

• Application, testing and validation of K-span software tool for
reproducible spatial analytics;
• Enabling the implementation of the SCDEM process with our

workflow-based approach;
• Providing a graphical description of the processes involved in

generating the DEM;
• Automating human judgment in selecting cutline endpoints;
• Exposing differences in the implementation of basic spatial

operations, such as in shortest path and centroid calculation
between Esri’s ArcGIS and our K-span software tools;

• Enabling the replacement of closed proprietary routines with
open-source alternatives; and
• Revealing unintended discrepancies in the computation of cost

surfaces, affording greater scrutiny of analytics processes by
“many eyes.”

Together, this improved ability to scrutinize spatial analytics
can contribute to increasing the assurance and confidence of
foundational spatial data sets, such as the Australian national
DEM. Using scientific workflow-based tools such as our K-span
for reproducible spatial analytics makes explicit the provenance of
data, not simply as accuracy/precisionmetadata nor throughwritten
documentation, but by linking the software and parameters used to
the raw data sets via the automated and unambiguous sequence of
spatial data operations.

The scope of this work excluded analysis for computational
efficiency of the K-span software tool. In particular, demonstrating
the difference in computational efficiency between the original GA
process and our workflow-based approach was not part of this study.
Hence, future research may include testing on this property of the
K-span software tool. Also, future work will focus on increasing the
scalability of the K-span software tool.This will involve replacing the
current string-based data model for storing geometry with a more
efficient object-based model as well as improving the parallelization
of the system. Presently, nodes use naive parallization, where each
rowof a table is sent individually to the job queue.Given that sending
jobs incurs a cost, fast jobs can spend more of their time managing
the job queue than processing the data. By implementing a more
intelligent parallelization scheme, rows can be dynamically grouped
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into jobs to achieve the optimumbalance between job size and queue
length.

A longer term goal is the development of a new language
for spatial analysis, in a similar vein to Vahedi et al. (2016),
where users focus on asking questions about spatial data
instead of performing operations. Given the current nodes are
modeled after the spatial operations found in PostGIS, this will
involve a complete restructuring of operations to fit the new
paradigm.

7 Software availability

The K-span software tool is available under an open-source
license and the source code and latest releases are available in the
following GitHub repository and an overview of our reference case
study and documentation related to installation and use of the
platform can be found at the following links:

• https://github.com/OpenSpatialAnalytics/ga-osa
• https://sites.rmit.edu.au/openspatialanalytics/
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